jstephencorey commited on
Commit
01d618f
·
verified ·
1 Parent(s): 6b25db8

Upload folder using huggingface_hub

Browse files
mean_pooling/AmazonPolarityClassification.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "e2d317d38cd51312af73b3d32a06d1a08b442046",
3
+ "mteb_dataset_name": "AmazonPolarityClassification",
4
+ "mteb_version": "1.1.1",
5
+ "test": {
6
+ "accuracy": 0.5756742500000002,
7
+ "accuracy_stderr": 0.02500078258900109,
8
+ "ap": 0.5453026421737829,
9
+ "ap_stderr": 0.017106904361975303,
10
+ "evaluation_time": 417.88,
11
+ "f1": 0.5660093061259046,
12
+ "f1_stderr": 0.02911253783589219,
13
+ "main_score": 0.5756742500000002
14
+ }
15
+ }
mean_pooling/ArxivClusteringP2P.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d",
3
+ "mteb_dataset_name": "ArxivClusteringP2P",
4
+ "mteb_version": "1.1.1",
5
+ "test": {
6
+ "evaluation_time": 1356.45,
7
+ "v_measure": 0.2592658946113241,
8
+ "v_measure_std": 0.15129656180993495
9
+ }
10
+ }
mean_pooling/ClimateFEVER.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": null,
3
+ "mteb_dataset_name": "ClimateFEVER",
4
+ "mteb_version": "1.1.1",
5
+ "test": {
6
+ "evaluation_time": 3459.72,
7
+ "map_at_1": 0.0209,
8
+ "map_at_10": 0.03469,
9
+ "map_at_100": 0.0393,
10
+ "map_at_1000": 0.04018,
11
+ "map_at_3": 0.02821,
12
+ "map_at_5": 0.03144,
13
+ "mrr_at_1": 0.04756,
14
+ "mrr_at_10": 0.07853,
15
+ "mrr_at_100": 0.08547,
16
+ "mrr_at_1000": 0.08631,
17
+ "mrr_at_3": 0.06569,
18
+ "mrr_at_5": 0.0725,
19
+ "ndcg_at_1": 0.04756,
20
+ "ndcg_at_10": 0.05494,
21
+ "ndcg_at_100": 0.08275,
22
+ "ndcg_at_1000": 0.10892,
23
+ "ndcg_at_3": 0.04091,
24
+ "ndcg_at_5": 0.04588,
25
+ "precision_at_1": 0.04756,
26
+ "precision_at_10": 0.01837,
27
+ "precision_at_100": 0.00475,
28
+ "precision_at_1000": 0.00094,
29
+ "precision_at_3": 0.03018,
30
+ "precision_at_5": 0.02528,
31
+ "recall_at_1": 0.0209,
32
+ "recall_at_10": 0.07127,
33
+ "recall_at_100": 0.17484,
34
+ "recall_at_1000": 0.33353,
35
+ "recall_at_3": 0.03742,
36
+ "recall_at_5": 0.05041
37
+ }
38
+ }
mean_pooling/DBPedia.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": null,
3
+ "mteb_dataset_name": "DBPedia",
4
+ "mteb_version": "1.1.1",
5
+ "test": {
6
+ "evaluation_time": 1983.85,
7
+ "map_at_1": 0.00573,
8
+ "map_at_10": 0.01282,
9
+ "map_at_100": 0.01625,
10
+ "map_at_1000": 0.0171,
11
+ "map_at_3": 0.01,
12
+ "map_at_5": 0.01135,
13
+ "mrr_at_1": 0.07,
14
+ "mrr_at_10": 0.11084,
15
+ "mrr_at_100": 0.11634,
16
+ "mrr_at_1000": 0.11715,
17
+ "mrr_at_3": 0.09792,
18
+ "mrr_at_5": 0.10404,
19
+ "ndcg_at_1": 0.04375,
20
+ "ndcg_at_10": 0.0378,
21
+ "ndcg_at_100": 0.04353,
22
+ "ndcg_at_1000": 0.06087,
23
+ "ndcg_at_3": 0.04258,
24
+ "ndcg_at_5": 0.03988,
25
+ "precision_at_1": 0.07,
26
+ "precision_at_10": 0.0335,
27
+ "precision_at_100": 0.01057,
28
+ "precision_at_1000": 0.00243,
29
+ "precision_at_3": 0.0575,
30
+ "precision_at_5": 0.046,
31
+ "recall_at_1": 0.00573,
32
+ "recall_at_10": 0.02464,
33
+ "recall_at_100": 0.05677,
34
+ "recall_at_1000": 0.12516,
35
+ "recall_at_3": 0.01405,
36
+ "recall_at_5": 0.01807
37
+ }
38
+ }
mean_pooling/FEVER.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": null,
3
+ "mteb_dataset_name": "FEVER",
4
+ "mteb_version": "1.1.1",
5
+ "test": {
6
+ "evaluation_time": 4032.08,
7
+ "map_at_1": 0.03145,
8
+ "map_at_10": 0.04721,
9
+ "map_at_100": 0.05086,
10
+ "map_at_1000": 0.05142,
11
+ "map_at_3": 0.04107,
12
+ "map_at_5": 0.0445,
13
+ "mrr_at_1": 0.0327,
14
+ "mrr_at_10": 0.04958,
15
+ "mrr_at_100": 0.0535,
16
+ "mrr_at_1000": 0.05409,
17
+ "mrr_at_3": 0.04303,
18
+ "mrr_at_5": 0.04674,
19
+ "ndcg_at_1": 0.0327,
20
+ "ndcg_at_10": 0.05768,
21
+ "ndcg_at_100": 0.07854,
22
+ "ndcg_at_1000": 0.09729,
23
+ "ndcg_at_3": 0.04476,
24
+ "ndcg_at_5": 0.05102,
25
+ "precision_at_1": 0.0327,
26
+ "precision_at_10": 0.00942,
27
+ "precision_at_100": 0.00206,
28
+ "precision_at_1000": 0.00038,
29
+ "precision_at_3": 0.01885,
30
+ "precision_at_5": 0.01455,
31
+ "recall_at_1": 0.03145,
32
+ "recall_at_10": 0.08889,
33
+ "recall_at_100": 0.19092,
34
+ "recall_at_1000": 0.3435,
35
+ "recall_at_3": 0.05353,
36
+ "recall_at_5": 0.06836
37
+ }
38
+ }
mean_pooling/HotpotQA.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": null,
3
+ "mteb_dataset_name": "HotpotQA",
4
+ "mteb_version": "1.1.1",
5
+ "test": {
6
+ "evaluation_time": 2654.89,
7
+ "map_at_1": 0.06138,
8
+ "map_at_10": 0.08212,
9
+ "map_at_100": 0.08548,
10
+ "map_at_1000": 0.08604,
11
+ "map_at_3": 0.07555,
12
+ "map_at_5": 0.07881,
13
+ "mrr_at_1": 0.12275,
14
+ "mrr_at_10": 0.1549,
15
+ "mrr_at_100": 0.15978,
16
+ "mrr_at_1000": 0.16043,
17
+ "mrr_at_3": 0.14488,
18
+ "mrr_at_5": 0.14975,
19
+ "ndcg_at_1": 0.12275,
20
+ "ndcg_at_10": 0.11078,
21
+ "ndcg_at_100": 0.13082,
22
+ "ndcg_at_1000": 0.14906,
23
+ "ndcg_at_3": 0.09574,
24
+ "ndcg_at_5": 0.10207,
25
+ "precision_at_1": 0.12275,
26
+ "precision_at_10": 0.02488,
27
+ "precision_at_100": 0.00412,
28
+ "precision_at_1000": 0.00066,
29
+ "precision_at_3": 0.05991,
30
+ "precision_at_5": 0.04097,
31
+ "recall_at_1": 0.06138,
32
+ "recall_at_10": 0.12438,
33
+ "recall_at_100": 0.20601,
34
+ "recall_at_1000": 0.32984,
35
+ "recall_at_3": 0.08987,
36
+ "recall_at_5": 0.10243
37
+ }
38
+ }
mean_pooling/MSMARCO.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": null,
3
+ "dev": {
4
+ "evaluation_time": 4773.9,
5
+ "map_at_1": 0.0134,
6
+ "map_at_10": 0.02219,
7
+ "map_at_100": 0.02427,
8
+ "map_at_1000": 0.02461,
9
+ "map_at_3": 0.01861,
10
+ "map_at_5": 0.02034,
11
+ "mrr_at_1": 0.01375,
12
+ "mrr_at_10": 0.02284,
13
+ "mrr_at_100": 0.025,
14
+ "mrr_at_1000": 0.02535,
15
+ "mrr_at_3": 0.01913,
16
+ "mrr_at_5": 0.02094,
17
+ "ndcg_at_1": 0.01375,
18
+ "ndcg_at_10": 0.02838,
19
+ "ndcg_at_100": 0.04043,
20
+ "ndcg_at_1000": 0.05205,
21
+ "ndcg_at_3": 0.02063,
22
+ "ndcg_at_5": 0.02387,
23
+ "precision_at_1": 0.01375,
24
+ "precision_at_10": 0.00496,
25
+ "precision_at_100": 0.00114,
26
+ "precision_at_1000": 0.00022,
27
+ "precision_at_3": 0.00898,
28
+ "precision_at_5": 0.00705,
29
+ "recall_at_1": 0.0134,
30
+ "recall_at_10": 0.04787,
31
+ "recall_at_100": 0.10759,
32
+ "recall_at_1000": 0.20362,
33
+ "recall_at_3": 0.02603,
34
+ "recall_at_5": 0.03398
35
+ },
36
+ "mteb_dataset_name": "MSMARCO",
37
+ "mteb_version": "1.1.1"
38
+ }
mean_pooling/MassiveIntentClassification.json ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7",
3
+ "mteb_dataset_name": "MassiveIntentClassification",
4
+ "mteb_version": "1.1.1",
5
+ "test": {
6
+ "af": {
7
+ "accuracy": 0.27347007397444517,
8
+ "accuracy_stderr": 0.016128000841000932,
9
+ "f1": 0.2550355191625284,
10
+ "f1_stderr": 0.016088946046718993,
11
+ "main_score": 0.27347007397444517
12
+ },
13
+ "am": {
14
+ "accuracy": 0.10655682582380632,
15
+ "accuracy_stderr": 0.010686588128898462,
16
+ "f1": 0.09141696317946997,
17
+ "f1_stderr": 0.009005648578088152,
18
+ "main_score": 0.10655682582380632
19
+ },
20
+ "ar": {
21
+ "accuracy": 0.1734700739744452,
22
+ "accuracy_stderr": 0.01123534608450046,
23
+ "f1": 0.15345346511499533,
24
+ "f1_stderr": 0.009574013909382766,
25
+ "main_score": 0.1734700739744452
26
+ },
27
+ "az": {
28
+ "accuracy": 0.20390047074646941,
29
+ "accuracy_stderr": 0.015597824298743462,
30
+ "f1": 0.21129515472610239,
31
+ "f1_stderr": 0.012699840590535529,
32
+ "main_score": 0.20390047074646941
33
+ },
34
+ "bn": {
35
+ "accuracy": 0.14082044384667114,
36
+ "accuracy_stderr": 0.010656233784801052,
37
+ "f1": 0.12169922201279884,
38
+ "f1_stderr": 0.00957451063279757,
39
+ "main_score": 0.14082044384667114
40
+ },
41
+ "cy": {
42
+ "accuracy": 0.2710827168796234,
43
+ "accuracy_stderr": 0.019516725914961192,
44
+ "f1": 0.2544922244403006,
45
+ "f1_stderr": 0.01623441230927587,
46
+ "main_score": 0.2710827168796234
47
+ },
48
+ "da": {
49
+ "accuracy": 0.27780766644250166,
50
+ "accuracy_stderr": 0.014484267495825457,
51
+ "f1": 0.2696237025531764,
52
+ "f1_stderr": 0.010821089391535837,
53
+ "main_score": 0.27780766644250166
54
+ },
55
+ "de": {
56
+ "accuracy": 0.21768661735036984,
57
+ "accuracy_stderr": 0.013917721396912315,
58
+ "f1": 0.22377462868662262,
59
+ "f1_stderr": 0.010993391873705134,
60
+ "main_score": 0.21768661735036984
61
+ },
62
+ "el": {
63
+ "accuracy": 0.21967047747141896,
64
+ "accuracy_stderr": 0.014556875283759737,
65
+ "f1": 0.22427583602797058,
66
+ "f1_stderr": 0.011618987999626771,
67
+ "main_score": 0.21967047747141896
68
+ },
69
+ "en": {
70
+ "accuracy": 0.33221250840618693,
71
+ "accuracy_stderr": 0.020155785658632,
72
+ "f1": 0.32627621011904495,
73
+ "f1_stderr": 0.016365282624155555,
74
+ "main_score": 0.33221250840618693
75
+ },
76
+ "es": {
77
+ "accuracy": 0.2704774714189643,
78
+ "accuracy_stderr": 0.01658024006292214,
79
+ "f1": 0.25244455827652784,
80
+ "f1_stderr": 0.007406811213078085,
81
+ "main_score": 0.2704774714189643
82
+ },
83
+ "evaluation_time": 131.41,
84
+ "fa": {
85
+ "accuracy": 0.18850033624747814,
86
+ "accuracy_stderr": 0.01266827713571537,
87
+ "f1": 0.16532690247057452,
88
+ "f1_stderr": 0.011364461370733442,
89
+ "main_score": 0.18850033624747814
90
+ },
91
+ "fi": {
92
+ "accuracy": 0.2593476798924008,
93
+ "accuracy_stderr": 0.02024368999096525,
94
+ "f1": 0.2412697491234186,
95
+ "f1_stderr": 0.016920746748146247,
96
+ "main_score": 0.2593476798924008
97
+ },
98
+ "fr": {
99
+ "accuracy": 0.25591795561533287,
100
+ "accuracy_stderr": 0.014491798206505743,
101
+ "f1": 0.23976861730458382,
102
+ "f1_stderr": 0.009956686190445204,
103
+ "main_score": 0.25591795561533287
104
+ },
105
+ "he": {
106
+ "accuracy": 0.17683254875588433,
107
+ "accuracy_stderr": 0.013275985560545845,
108
+ "f1": 0.15217082232778534,
109
+ "f1_stderr": 0.012702549956571814,
110
+ "main_score": 0.17683254875588433
111
+ },
112
+ "hi": {
113
+ "accuracy": 0.14277067921990588,
114
+ "accuracy_stderr": 0.01126825452940497,
115
+ "f1": 0.1306156794974721,
116
+ "f1_stderr": 0.0068170198109071605,
117
+ "main_score": 0.14277067921990588
118
+ },
119
+ "hu": {
120
+ "accuracy": 0.25817081371889716,
121
+ "accuracy_stderr": 0.021028671037123154,
122
+ "f1": 0.24794435268772488,
123
+ "f1_stderr": 0.015711909808467518,
124
+ "main_score": 0.25817081371889716
125
+ },
126
+ "hy": {
127
+ "accuracy": 0.12326832548755884,
128
+ "accuracy_stderr": 0.017495987360368538,
129
+ "f1": 0.10850963544530287,
130
+ "f1_stderr": 0.015231543036697468,
131
+ "main_score": 0.12326832548755884
132
+ },
133
+ "id": {
134
+ "accuracy": 0.28244788164088763,
135
+ "accuracy_stderr": 0.015158758319623931,
136
+ "f1": 0.27442212153664336,
137
+ "f1_stderr": 0.009848059495204738,
138
+ "main_score": 0.28244788164088763
139
+ },
140
+ "is": {
141
+ "accuracy": 0.26039004707464697,
142
+ "accuracy_stderr": 0.011139082707097882,
143
+ "f1": 0.2429180485465988,
144
+ "f1_stderr": 0.01044577332498688,
145
+ "main_score": 0.26039004707464697
146
+ },
147
+ "it": {
148
+ "accuracy": 0.26099529253530596,
149
+ "accuracy_stderr": 0.01289788523979756,
150
+ "f1": 0.2647963496597501,
151
+ "f1_stderr": 0.010358552015224782,
152
+ "main_score": 0.26099529253530596
153
+ },
154
+ "ja": {
155
+ "accuracy": 0.25383322125084057,
156
+ "accuracy_stderr": 0.0111210517557597,
157
+ "f1": 0.2724527274982159,
158
+ "f1_stderr": 0.017380763708285306,
159
+ "main_score": 0.25383322125084057
160
+ },
161
+ "jv": {
162
+ "accuracy": 0.26970410221923335,
163
+ "accuracy_stderr": 0.013419981857916152,
164
+ "f1": 0.24710215925904627,
165
+ "f1_stderr": 0.013856093072114278,
166
+ "main_score": 0.26970410221923335
167
+ },
168
+ "ka": {
169
+ "accuracy": 0.14159381304640214,
170
+ "accuracy_stderr": 0.012321944709633425,
171
+ "f1": 0.12262797179154113,
172
+ "f1_stderr": 0.012386173944165885,
173
+ "main_score": 0.14159381304640214
174
+ },
175
+ "km": {
176
+ "accuracy": 0.12078009414929387,
177
+ "accuracy_stderr": 0.010655172734546527,
178
+ "f1": 0.10853886985799321,
179
+ "f1_stderr": 0.005187083660832209,
180
+ "main_score": 0.12078009414929387
181
+ },
182
+ "kn": {
183
+ "accuracy": 0.10144586415601883,
184
+ "accuracy_stderr": 0.016630522893108093,
185
+ "f1": 0.08629316498328535,
186
+ "f1_stderr": 0.011136959604318427,
187
+ "main_score": 0.10144586415601883
188
+ },
189
+ "ko": {
190
+ "accuracy": 0.23799596503026227,
191
+ "accuracy_stderr": 0.012487237222953968,
192
+ "f1": 0.21483977434283802,
193
+ "f1_stderr": 0.011263633263736639,
194
+ "main_score": 0.23799596503026227
195
+ },
196
+ "lv": {
197
+ "accuracy": 0.27047747141896433,
198
+ "accuracy_stderr": 0.019046690836812475,
199
+ "f1": 0.2586288514660441,
200
+ "f1_stderr": 0.01918841737445303,
201
+ "main_score": 0.27047747141896433
202
+ },
203
+ "ml": {
204
+ "accuracy": 0.10823806321452589,
205
+ "accuracy_stderr": 0.013372719041442079,
206
+ "f1": 0.0956831903025781,
207
+ "f1_stderr": 0.010876457400211457,
208
+ "main_score": 0.10823806321452589
209
+ },
210
+ "mn": {
211
+ "accuracy": 0.14435104236718224,
212
+ "accuracy_stderr": 0.009787112320379458,
213
+ "f1": 0.14861584951252121,
214
+ "f1_stderr": 0.011028588805344698,
215
+ "main_score": 0.14435104236718224
216
+ },
217
+ "ms": {
218
+ "accuracy": 0.2683254875588433,
219
+ "accuracy_stderr": 0.014785715808739976,
220
+ "f1": 0.2608474943919197,
221
+ "f1_stderr": 0.01577798431823313,
222
+ "main_score": 0.2683254875588433
223
+ },
224
+ "my": {
225
+ "accuracy": 0.1379287155346335,
226
+ "accuracy_stderr": 0.015098073418812856,
227
+ "f1": 0.11496310101617802,
228
+ "f1_stderr": 0.01113023387276534,
229
+ "main_score": 0.1379287155346335
230
+ },
231
+ "nb": {
232
+ "accuracy": 0.2529253530598521,
233
+ "accuracy_stderr": 0.02192725467381842,
234
+ "f1": 0.2409811847728251,
235
+ "f1_stderr": 0.018335164031557032,
236
+ "main_score": 0.2529253530598521
237
+ },
238
+ "nl": {
239
+ "accuracy": 0.2624075319435104,
240
+ "accuracy_stderr": 0.016494781034623495,
241
+ "f1": 0.25259998680849816,
242
+ "f1_stderr": 0.011822721077804391,
243
+ "main_score": 0.2624075319435104
244
+ },
245
+ "pl": {
246
+ "accuracy": 0.2490921318090115,
247
+ "accuracy_stderr": 0.01391170861467293,
248
+ "f1": 0.23684726718537474,
249
+ "f1_stderr": 0.010038508781153537,
250
+ "main_score": 0.2490921318090115
251
+ },
252
+ "pt": {
253
+ "accuracy": 0.27310020174848687,
254
+ "accuracy_stderr": 0.012410948622250844,
255
+ "f1": 0.2628728556240871,
256
+ "f1_stderr": 0.011369661369276283,
257
+ "main_score": 0.27310020174848687
258
+ },
259
+ "ro": {
260
+ "accuracy": 0.21930060524546063,
261
+ "accuracy_stderr": 0.015842787989000313,
262
+ "f1": 0.21993435727293242,
263
+ "f1_stderr": 0.013793031984742025,
264
+ "main_score": 0.21930060524546063
265
+ },
266
+ "ru": {
267
+ "accuracy": 0.25773369199731,
268
+ "accuracy_stderr": 0.01568820616393382,
269
+ "f1": 0.2385773912094263,
270
+ "f1_stderr": 0.01425853200605966,
271
+ "main_score": 0.25773369199731
272
+ },
273
+ "sl": {
274
+ "accuracy": 0.29256893073301954,
275
+ "accuracy_stderr": 0.020871978199526527,
276
+ "f1": 0.266824726822139,
277
+ "f1_stderr": 0.015432442287329618,
278
+ "main_score": 0.29256893073301954
279
+ },
280
+ "sq": {
281
+ "accuracy": 0.17673167451244115,
282
+ "accuracy_stderr": 0.014965997148414185,
283
+ "f1": 0.1874169530134767,
284
+ "f1_stderr": 0.012519990193997124,
285
+ "main_score": 0.17673167451244115
286
+ },
287
+ "sv": {
288
+ "accuracy": 0.26190316072629455,
289
+ "accuracy_stderr": 0.01813209654427075,
290
+ "f1": 0.26000111409348475,
291
+ "f1_stderr": 0.013012923916693933,
292
+ "main_score": 0.26190316072629455
293
+ },
294
+ "sw": {
295
+ "accuracy": 0.2890383322125084,
296
+ "accuracy_stderr": 0.014872024877456985,
297
+ "f1": 0.2716695883514315,
298
+ "f1_stderr": 0.009966097116440113,
299
+ "main_score": 0.2890383322125084
300
+ },
301
+ "ta": {
302
+ "accuracy": 0.13517148621385341,
303
+ "accuracy_stderr": 0.010585121882109751,
304
+ "f1": 0.10124568781522633,
305
+ "f1_stderr": 0.009485791249151044,
306
+ "main_score": 0.13517148621385341
307
+ },
308
+ "te": {
309
+ "accuracy": 0.12414256893073303,
310
+ "accuracy_stderr": 0.013528519375366168,
311
+ "f1": 0.1072905194223371,
312
+ "f1_stderr": 0.011040476001329725,
313
+ "main_score": 0.12414256893073303
314
+ },
315
+ "th": {
316
+ "accuracy": 0.17330195023537326,
317
+ "accuracy_stderr": 0.016822592724954483,
318
+ "f1": 0.17262535319973024,
319
+ "f1_stderr": 0.018638781100031133,
320
+ "main_score": 0.17330195023537326
321
+ },
322
+ "tl": {
323
+ "accuracy": 0.22310020174848688,
324
+ "accuracy_stderr": 0.01591004963438819,
325
+ "f1": 0.2277017596643771,
326
+ "f1_stderr": 0.014061398424045453,
327
+ "main_score": 0.22310020174848688
328
+ },
329
+ "tr": {
330
+ "accuracy": 0.23066577000672495,
331
+ "accuracy_stderr": 0.014424977622637898,
332
+ "f1": 0.2250576183714979,
333
+ "f1_stderr": 0.013217916991158374,
334
+ "main_score": 0.23066577000672495
335
+ },
336
+ "ur": {
337
+ "accuracy": 0.12501681237390722,
338
+ "accuracy_stderr": 0.008628925316661974,
339
+ "f1": 0.11803223778323549,
340
+ "f1_stderr": 0.007147317301295282,
341
+ "main_score": 0.12501681237390722
342
+ },
343
+ "vi": {
344
+ "accuracy": 0.2276059179556153,
345
+ "accuracy_stderr": 0.012455189381569469,
346
+ "f1": 0.21556310396949008,
347
+ "f1_stderr": 0.010334699551825161,
348
+ "main_score": 0.2276059179556153
349
+ },
350
+ "zh-CN": {
351
+ "accuracy": 0.3492602555480834,
352
+ "accuracy_stderr": 0.01870216211586065,
353
+ "f1": 0.3372797417177343,
354
+ "f1_stderr": 0.01139600455982931,
355
+ "main_score": 0.3492602555480834
356
+ },
357
+ "zh-TW": {
358
+ "accuracy": 0.2836583725622058,
359
+ "accuracy_stderr": 0.011393977873276777,
360
+ "f1": 0.28510022067424706,
361
+ "f1_stderr": 0.00933112485049988,
362
+ "main_score": 0.2836583725622058
363
+ }
364
+ }
365
+ }
mean_pooling/MassiveScenarioClassification.json ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "7d571f92784cd94a019292a1f45445077d0ef634",
3
+ "mteb_dataset_name": "MassiveScenarioClassification",
4
+ "mteb_version": "1.1.1",
5
+ "test": {
6
+ "af": {
7
+ "accuracy": 0.36028917283120376,
8
+ "accuracy_stderr": 0.020886490567978682,
9
+ "f1": 0.3137050291209066,
10
+ "f1_stderr": 0.022537688020998856,
11
+ "main_score": 0.36028917283120376
12
+ },
13
+ "am": {
14
+ "accuracy": 0.1933086751849361,
15
+ "accuracy_stderr": 0.02283239223864356,
16
+ "f1": 0.1590055477686407,
17
+ "f1_stderr": 0.013935127381527872,
18
+ "main_score": 0.1933086751849361
19
+ },
20
+ "ar": {
21
+ "accuracy": 0.23880295897780765,
22
+ "accuracy_stderr": 0.021550709196053692,
23
+ "f1": 0.2169558689754628,
24
+ "f1_stderr": 0.0204399607001084,
25
+ "main_score": 0.23880295897780765
26
+ },
27
+ "az": {
28
+ "accuracy": 0.28853396099529255,
29
+ "accuracy_stderr": 0.03707651080095728,
30
+ "f1": 0.26709933198206504,
31
+ "f1_stderr": 0.03130524907329002,
32
+ "main_score": 0.28853396099529255
33
+ },
34
+ "bn": {
35
+ "accuracy": 0.18382649630127773,
36
+ "accuracy_stderr": 0.01723677514691048,
37
+ "f1": 0.16772353498005438,
38
+ "f1_stderr": 0.01481328757620055,
39
+ "main_score": 0.18382649630127773
40
+ },
41
+ "cy": {
42
+ "accuracy": 0.3540685944855414,
43
+ "accuracy_stderr": 0.013893980159096653,
44
+ "f1": 0.31488014251203256,
45
+ "f1_stderr": 0.009843904769997955,
46
+ "main_score": 0.3540685944855414
47
+ },
48
+ "da": {
49
+ "accuracy": 0.34475453934095496,
50
+ "accuracy_stderr": 0.01657331722800284,
51
+ "f1": 0.31226537880607297,
52
+ "f1_stderr": 0.013690885206849407,
53
+ "main_score": 0.34475453934095496
54
+ },
55
+ "de": {
56
+ "accuracy": 0.3,
57
+ "accuracy_stderr": 0.026370378633190784,
58
+ "f1": 0.2808153376359271,
59
+ "f1_stderr": 0.02199698204026743,
60
+ "main_score": 0.3
61
+ },
62
+ "el": {
63
+ "accuracy": 0.2687962340282448,
64
+ "accuracy_stderr": 0.020183365160538702,
65
+ "f1": 0.24773267596830473,
66
+ "f1_stderr": 0.016260145830922133,
67
+ "main_score": 0.2687962340282448
68
+ },
69
+ "en": {
70
+ "accuracy": 0.4377605917955615,
71
+ "accuracy_stderr": 0.030195866016467707,
72
+ "f1": 0.4160519309254586,
73
+ "f1_stderr": 0.0285031791741231,
74
+ "main_score": 0.4377605917955615
75
+ },
76
+ "es": {
77
+ "accuracy": 0.3280766644250169,
78
+ "accuracy_stderr": 0.021019663333640054,
79
+ "f1": 0.3025035008255447,
80
+ "f1_stderr": 0.018385344062269507,
81
+ "main_score": 0.3280766644250169
82
+ },
83
+ "evaluation_time": 81.05,
84
+ "fa": {
85
+ "accuracy": 0.24515803631472766,
86
+ "accuracy_stderr": 0.027835300630002634,
87
+ "f1": 0.21726717236406928,
88
+ "f1_stderr": 0.021536607731664367,
89
+ "main_score": 0.24515803631472766
90
+ },
91
+ "fi": {
92
+ "accuracy": 0.3331540013449899,
93
+ "accuracy_stderr": 0.018238628577628934,
94
+ "f1": 0.29353644700383935,
95
+ "f1_stderr": 0.01170716493423995,
96
+ "main_score": 0.3331540013449899
97
+ },
98
+ "fr": {
99
+ "accuracy": 0.3242434431741762,
100
+ "accuracy_stderr": 0.03480154901247634,
101
+ "f1": 0.2987668403274445,
102
+ "f1_stderr": 0.029511724262027892,
103
+ "main_score": 0.3242434431741762
104
+ },
105
+ "he": {
106
+ "accuracy": 0.24401479488903838,
107
+ "accuracy_stderr": 0.025245916568530903,
108
+ "f1": 0.21429656257015556,
109
+ "f1_stderr": 0.018644802102533106,
110
+ "main_score": 0.24401479488903838
111
+ },
112
+ "hi": {
113
+ "accuracy": 0.2143577673167451,
114
+ "accuracy_stderr": 0.02410369120931473,
115
+ "f1": 0.18344740043506685,
116
+ "f1_stderr": 0.015750165983010513,
117
+ "main_score": 0.2143577673167451
118
+ },
119
+ "hu": {
120
+ "accuracy": 0.3153328850033625,
121
+ "accuracy_stderr": 0.020250251381445077,
122
+ "f1": 0.29185785763469296,
123
+ "f1_stderr": 0.018877820656201503,
124
+ "main_score": 0.3153328850033625
125
+ },
126
+ "hy": {
127
+ "accuracy": 0.19983187626092802,
128
+ "accuracy_stderr": 0.023493594694878057,
129
+ "f1": 0.17088318438817676,
130
+ "f1_stderr": 0.015627620315522263,
131
+ "main_score": 0.19983187626092802
132
+ },
133
+ "id": {
134
+ "accuracy": 0.32733691997310016,
135
+ "accuracy_stderr": 0.02881122933709865,
136
+ "f1": 0.3137876294000571,
137
+ "f1_stderr": 0.023998064464835975,
138
+ "main_score": 0.32733691997310016
139
+ },
140
+ "is": {
141
+ "accuracy": 0.31503026227303293,
142
+ "accuracy_stderr": 0.02055429430786041,
143
+ "f1": 0.28944584739759727,
144
+ "f1_stderr": 0.01067996912064206,
145
+ "main_score": 0.31503026227303293
146
+ },
147
+ "it": {
148
+ "accuracy": 0.31116341627437794,
149
+ "accuracy_stderr": 0.024149124398237676,
150
+ "f1": 0.29410419968584234,
151
+ "f1_stderr": 0.02122587264236695,
152
+ "main_score": 0.31116341627437794
153
+ },
154
+ "ja": {
155
+ "accuracy": 0.31136516476126425,
156
+ "accuracy_stderr": 0.021111950678360036,
157
+ "f1": 0.296719090248999,
158
+ "f1_stderr": 0.01710265227320577,
159
+ "main_score": 0.31136516476126425
160
+ },
161
+ "jv": {
162
+ "accuracy": 0.343813046402152,
163
+ "accuracy_stderr": 0.029728251673394785,
164
+ "f1": 0.3148137403543144,
165
+ "f1_stderr": 0.024921519074675536,
166
+ "main_score": 0.343813046402152
167
+ },
168
+ "ka": {
169
+ "accuracy": 0.183591123066577,
170
+ "accuracy_stderr": 0.016855358634194025,
171
+ "f1": 0.16158113168004945,
172
+ "f1_stderr": 0.016067468774995444,
173
+ "main_score": 0.183591123066577
174
+ },
175
+ "km": {
176
+ "accuracy": 0.19250168123739073,
177
+ "accuracy_stderr": 0.01647286656468353,
178
+ "f1": 0.16728590019294526,
179
+ "f1_stderr": 0.016752508710513803,
180
+ "main_score": 0.19250168123739073
181
+ },
182
+ "kn": {
183
+ "accuracy": 0.1604236718224613,
184
+ "accuracy_stderr": 0.024421592069461574,
185
+ "f1": 0.14304518042661318,
186
+ "f1_stderr": 0.018877079513601795,
187
+ "main_score": 0.1604236718224613
188
+ },
189
+ "ko": {
190
+ "accuracy": 0.28954270342972427,
191
+ "accuracy_stderr": 0.019105515429040258,
192
+ "f1": 0.2614194694048272,
193
+ "f1_stderr": 0.016750617590205023,
194
+ "main_score": 0.28954270342972427
195
+ },
196
+ "lv": {
197
+ "accuracy": 0.3228648285137861,
198
+ "accuracy_stderr": 0.019874359393773237,
199
+ "f1": 0.2942600336423284,
200
+ "f1_stderr": 0.01601582290721286,
201
+ "main_score": 0.3228648285137861
202
+ },
203
+ "ml": {
204
+ "accuracy": 0.18762609280430395,
205
+ "accuracy_stderr": 0.020738593066723977,
206
+ "f1": 0.15764539982254006,
207
+ "f1_stderr": 0.014771977910111181,
208
+ "main_score": 0.18762609280430395
209
+ },
210
+ "mn": {
211
+ "accuracy": 0.21570275722932078,
212
+ "accuracy_stderr": 0.027219124319134883,
213
+ "f1": 0.1898517402487539,
214
+ "f1_stderr": 0.02640138202202358,
215
+ "main_score": 0.21570275722932078
216
+ },
217
+ "ms": {
218
+ "accuracy": 0.3595158036314728,
219
+ "accuracy_stderr": 0.026062021234739854,
220
+ "f1": 0.33458533277257285,
221
+ "f1_stderr": 0.021026748542514302,
222
+ "main_score": 0.3595158036314728
223
+ },
224
+ "my": {
225
+ "accuracy": 0.2003026227303295,
226
+ "accuracy_stderr": 0.01798219950339644,
227
+ "f1": 0.16864192363299615,
228
+ "f1_stderr": 0.01594740452626996,
229
+ "main_score": 0.2003026227303295
230
+ },
231
+ "nb": {
232
+ "accuracy": 0.3289172831203766,
233
+ "accuracy_stderr": 0.021176010855405224,
234
+ "f1": 0.2990554132334421,
235
+ "f1_stderr": 0.01836052491494201,
236
+ "main_score": 0.3289172831203766
237
+ },
238
+ "nl": {
239
+ "accuracy": 0.3236381977135171,
240
+ "accuracy_stderr": 0.028009334197584248,
241
+ "f1": 0.2957501043505274,
242
+ "f1_stderr": 0.012846209069565424,
243
+ "main_score": 0.3236381977135171
244
+ },
245
+ "pl": {
246
+ "accuracy": 0.31856086079354407,
247
+ "accuracy_stderr": 0.02512612514658827,
248
+ "f1": 0.3024275881944355,
249
+ "f1_stderr": 0.023934697043335035,
250
+ "main_score": 0.31856086079354407
251
+ },
252
+ "pt": {
253
+ "accuracy": 0.31694687289845325,
254
+ "accuracy_stderr": 0.024157082217185412,
255
+ "f1": 0.29495870419371684,
256
+ "f1_stderr": 0.01707790080358615,
257
+ "main_score": 0.31694687289845325
258
+ },
259
+ "ro": {
260
+ "accuracy": 0.2701412239408204,
261
+ "accuracy_stderr": 0.01663946049973496,
262
+ "f1": 0.2644782204477556,
263
+ "f1_stderr": 0.01698244767624393,
264
+ "main_score": 0.2701412239408204
265
+ },
266
+ "ru": {
267
+ "accuracy": 0.3055480833893746,
268
+ "accuracy_stderr": 0.031261270003082424,
269
+ "f1": 0.2793696283146029,
270
+ "f1_stderr": 0.026155944419436417,
271
+ "main_score": 0.3055480833893746
272
+ },
273
+ "sl": {
274
+ "accuracy": 0.35813718897108276,
275
+ "accuracy_stderr": 0.03372159891683901,
276
+ "f1": 0.33021495683147284,
277
+ "f1_stderr": 0.022847569620226906,
278
+ "main_score": 0.35813718897108276
279
+ },
280
+ "sq": {
281
+ "accuracy": 0.22992602555480834,
282
+ "accuracy_stderr": 0.02556091315605778,
283
+ "f1": 0.21524928515996447,
284
+ "f1_stderr": 0.022419827659728348,
285
+ "main_score": 0.22992602555480834
286
+ },
287
+ "sv": {
288
+ "accuracy": 0.347074646940148,
289
+ "accuracy_stderr": 0.022102894910012768,
290
+ "f1": 0.3154759971873104,
291
+ "f1_stderr": 0.015570917225314567,
292
+ "main_score": 0.347074646940148
293
+ },
294
+ "sw": {
295
+ "accuracy": 0.3624075319435104,
296
+ "accuracy_stderr": 0.01976082688360606,
297
+ "f1": 0.33343978818160824,
298
+ "f1_stderr": 0.01885062497033148,
299
+ "main_score": 0.3624075319435104
300
+ },
301
+ "ta": {
302
+ "accuracy": 0.19741089441829185,
303
+ "accuracy_stderr": 0.022245483621730178,
304
+ "f1": 0.16129268723975768,
305
+ "f1_stderr": 0.01796286205867304,
306
+ "main_score": 0.19741089441829185
307
+ },
308
+ "te": {
309
+ "accuracy": 0.1754203093476799,
310
+ "accuracy_stderr": 0.024895964012172724,
311
+ "f1": 0.1553738138389406,
312
+ "f1_stderr": 0.017103954736130998,
313
+ "main_score": 0.1754203093476799
314
+ },
315
+ "th": {
316
+ "accuracy": 0.22817753866846,
317
+ "accuracy_stderr": 0.02705871016607919,
318
+ "f1": 0.20722454859904277,
319
+ "f1_stderr": 0.017308265065482564,
320
+ "main_score": 0.22817753866846
321
+ },
322
+ "tl": {
323
+ "accuracy": 0.2858439811701412,
324
+ "accuracy_stderr": 0.013371027993939882,
325
+ "f1": 0.2688190194852028,
326
+ "f1_stderr": 0.010297065422356548,
327
+ "main_score": 0.2858439811701412
328
+ },
329
+ "tr": {
330
+ "accuracy": 0.2860457296570275,
331
+ "accuracy_stderr": 0.018553458217986867,
332
+ "f1": 0.2698989368733863,
333
+ "f1_stderr": 0.01840904720687564,
334
+ "main_score": 0.2860457296570275
335
+ },
336
+ "ur": {
337
+ "accuracy": 0.23345662407531945,
338
+ "accuracy_stderr": 0.033218477023455165,
339
+ "f1": 0.1975032390408514,
340
+ "f1_stderr": 0.02110974460048037,
341
+ "main_score": 0.23345662407531945
342
+ },
343
+ "vi": {
344
+ "accuracy": 0.2971082716879624,
345
+ "accuracy_stderr": 0.010212406641330548,
346
+ "f1": 0.2667592046024078,
347
+ "f1_stderr": 0.008746481574257298,
348
+ "main_score": 0.2971082716879624
349
+ },
350
+ "zh-CN": {
351
+ "accuracy": 0.4409549428379288,
352
+ "accuracy_stderr": 0.028089527474795855,
353
+ "f1": 0.41275350430825675,
354
+ "f1_stderr": 0.021552994416472702,
355
+ "main_score": 0.4409549428379288
356
+ },
357
+ "zh-TW": {
358
+ "accuracy": 0.3724277067921991,
359
+ "accuracy_stderr": 0.02357437759675858,
360
+ "f1": 0.3565629114113254,
361
+ "f1_stderr": 0.018330511829508813,
362
+ "main_score": 0.3724277067921991
363
+ }
364
+ }
365
+ }
mean_pooling/MindSmallReranking.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69",
3
+ "mteb_dataset_name": "MindSmallReranking",
4
+ "mteb_version": "1.1.1",
5
+ "test": {
6
+ "evaluation_time": 2604.74,
7
+ "map": 0.26730268595233925,
8
+ "mrr": 0.27065185919114704
9
+ }
10
+ }
mean_pooling/NQ.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": null,
3
+ "mteb_dataset_name": "NQ",
4
+ "mteb_version": "1.1.1",
5
+ "test": {
6
+ "evaluation_time": 1781.55,
7
+ "map_at_1": 0.01214,
8
+ "map_at_10": 0.02067,
9
+ "map_at_100": 0.0224,
10
+ "map_at_1000": 0.02269,
11
+ "map_at_3": 0.01691,
12
+ "map_at_5": 0.01916,
13
+ "mrr_at_1": 0.01506,
14
+ "mrr_at_10": 0.02413,
15
+ "mrr_at_100": 0.02587,
16
+ "mrr_at_1000": 0.02616,
17
+ "mrr_at_3": 0.02023,
18
+ "mrr_at_5": 0.02246,
19
+ "ndcg_at_1": 0.01506,
20
+ "ndcg_at_10": 0.02703,
21
+ "ndcg_at_100": 0.0366,
22
+ "ndcg_at_1000": 0.046,
23
+ "ndcg_at_3": 0.0193,
24
+ "ndcg_at_5": 0.0233,
25
+ "precision_at_1": 0.01506,
26
+ "precision_at_10": 0.00539,
27
+ "precision_at_100": 0.0011,
28
+ "precision_at_1000": 0.0002,
29
+ "precision_at_3": 0.00937,
30
+ "precision_at_5": 0.00794,
31
+ "recall_at_1": 0.01214,
32
+ "recall_at_10": 0.0434,
33
+ "recall_at_100": 0.08905,
34
+ "recall_at_1000": 0.16416,
35
+ "recall_at_3": 0.02301,
36
+ "recall_at_5": 0.03249
37
+ }
38
+ }
mean_pooling/README.md ADDED
@@ -0,0 +1,2772 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: pythia-14m_mean
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 70.73134328358208
18
+ - type: ap
19
+ value: 32.35996836729783
20
+ - type: f1
21
+ value: 64.2137087561157
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_counterfactual
26
+ name: MTEB AmazonCounterfactualClassification (de)
27
+ config: de
28
+ split: test
29
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
30
+ metrics:
31
+ - type: accuracy
32
+ value: 62.291220556745174
33
+ - type: ap
34
+ value: 76.5427302441011
35
+ - type: f1
36
+ value: 60.37703210343267
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_counterfactual
41
+ name: MTEB AmazonCounterfactualClassification (en-ext)
42
+ config: en-ext
43
+ split: test
44
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
45
+ metrics:
46
+ - type: accuracy
47
+ value: 67.57871064467767
48
+ - type: ap
49
+ value: 17.03033311712744
50
+ - type: f1
51
+ value: 54.821750631894986
52
+ - task:
53
+ type: Classification
54
+ dataset:
55
+ type: mteb/amazon_counterfactual
56
+ name: MTEB AmazonCounterfactualClassification (ja)
57
+ config: ja
58
+ split: test
59
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
60
+ metrics:
61
+ - type: accuracy
62
+ value: 62.51605995717344
63
+ - type: ap
64
+ value: 14.367489440317666
65
+ - type: f1
66
+ value: 50.48473578289779
67
+ - task:
68
+ type: Classification
69
+ dataset:
70
+ type: mteb/amazon_reviews_multi
71
+ name: MTEB AmazonReviewsClassification (en)
72
+ config: en
73
+ split: test
74
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
75
+ metrics:
76
+ - type: accuracy
77
+ value: 29.172000000000004
78
+ - type: f1
79
+ value: 28.264998641170465
80
+ - task:
81
+ type: Classification
82
+ dataset:
83
+ type: mteb/amazon_reviews_multi
84
+ name: MTEB AmazonReviewsClassification (de)
85
+ config: de
86
+ split: test
87
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
88
+ metrics:
89
+ - type: accuracy
90
+ value: 25.157999999999998
91
+ - type: f1
92
+ value: 23.033533062569987
93
+ - task:
94
+ type: Classification
95
+ dataset:
96
+ type: mteb/amazon_reviews_multi
97
+ name: MTEB AmazonReviewsClassification (es)
98
+ config: es
99
+ split: test
100
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
101
+ metrics:
102
+ - type: accuracy
103
+ value: 26.840000000000003
104
+ - type: f1
105
+ value: 25.693413738086402
106
+ - task:
107
+ type: Classification
108
+ dataset:
109
+ type: mteb/amazon_reviews_multi
110
+ name: MTEB AmazonReviewsClassification (fr)
111
+ config: fr
112
+ split: test
113
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
114
+ metrics:
115
+ - type: accuracy
116
+ value: 26.491999999999997
117
+ - type: f1
118
+ value: 25.6252880863665
119
+ - task:
120
+ type: Classification
121
+ dataset:
122
+ type: mteb/amazon_reviews_multi
123
+ name: MTEB AmazonReviewsClassification (ja)
124
+ config: ja
125
+ split: test
126
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
127
+ metrics:
128
+ - type: accuracy
129
+ value: 24.448000000000004
130
+ - type: f1
131
+ value: 23.86460242225935
132
+ - task:
133
+ type: Classification
134
+ dataset:
135
+ type: mteb/amazon_reviews_multi
136
+ name: MTEB AmazonReviewsClassification (zh)
137
+ config: zh
138
+ split: test
139
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
140
+ metrics:
141
+ - type: accuracy
142
+ value: 26.412000000000003
143
+ - type: f1
144
+ value: 25.779710231390755
145
+ - task:
146
+ type: Retrieval
147
+ dataset:
148
+ type: arguana
149
+ name: MTEB ArguAna
150
+ config: default
151
+ split: test
152
+ revision: None
153
+ metrics:
154
+ - type: map_at_1
155
+ value: 5.761
156
+ - type: map_at_10
157
+ value: 10.267
158
+ - type: map_at_100
159
+ value: 11.065999999999999
160
+ - type: map_at_1000
161
+ value: 11.16
162
+ - type: map_at_3
163
+ value: 8.642
164
+ - type: map_at_5
165
+ value: 9.474
166
+ - type: mrr_at_1
167
+ value: 6.046
168
+ - type: mrr_at_10
169
+ value: 10.365
170
+ - type: mrr_at_100
171
+ value: 11.178
172
+ - type: mrr_at_1000
173
+ value: 11.272
174
+ - type: mrr_at_3
175
+ value: 8.713
176
+ - type: mrr_at_5
177
+ value: 9.587
178
+ - type: ndcg_at_1
179
+ value: 5.761
180
+ - type: ndcg_at_10
181
+ value: 13.055
182
+ - type: ndcg_at_100
183
+ value: 17.526
184
+ - type: ndcg_at_1000
185
+ value: 20.578
186
+ - type: ndcg_at_3
187
+ value: 9.616
188
+ - type: ndcg_at_5
189
+ value: 11.128
190
+ - type: precision_at_1
191
+ value: 5.761
192
+ - type: precision_at_10
193
+ value: 2.212
194
+ - type: precision_at_100
195
+ value: 0.44400000000000006
196
+ - type: precision_at_1000
197
+ value: 0.06999999999999999
198
+ - type: precision_at_3
199
+ value: 4.149
200
+ - type: precision_at_5
201
+ value: 3.229
202
+ - type: recall_at_1
203
+ value: 5.761
204
+ - type: recall_at_10
205
+ value: 22.119
206
+ - type: recall_at_100
207
+ value: 44.381
208
+ - type: recall_at_1000
209
+ value: 69.70100000000001
210
+ - type: recall_at_3
211
+ value: 12.447
212
+ - type: recall_at_5
213
+ value: 16.145
214
+ - task:
215
+ type: Clustering
216
+ dataset:
217
+ type: mteb/arxiv-clustering-s2s
218
+ name: MTEB ArxivClusteringS2S
219
+ config: default
220
+ split: test
221
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
222
+ metrics:
223
+ - type: v_measure
224
+ value: 13.902183567893395
225
+ - task:
226
+ type: Reranking
227
+ dataset:
228
+ type: mteb/askubuntudupquestions-reranking
229
+ name: MTEB AskUbuntuDupQuestions
230
+ config: default
231
+ split: test
232
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
233
+ metrics:
234
+ - type: map
235
+ value: 47.93210378051478
236
+ - type: mrr
237
+ value: 60.70318339708921
238
+ - task:
239
+ type: STS
240
+ dataset:
241
+ type: mteb/biosses-sts
242
+ name: MTEB BIOSSES
243
+ config: default
244
+ split: test
245
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
246
+ metrics:
247
+ - type: cos_sim_pearson
248
+ value: 49.57650220181508
249
+ - type: cos_sim_spearman
250
+ value: 51.842145113866636
251
+ - type: euclidean_pearson
252
+ value: 41.2188173176347
253
+ - type: euclidean_spearman
254
+ value: 41.16840792962046
255
+ - type: manhattan_pearson
256
+ value: 42.73893519020435
257
+ - type: manhattan_spearman
258
+ value: 44.384746276312534
259
+ - task:
260
+ type: Classification
261
+ dataset:
262
+ type: mteb/banking77
263
+ name: MTEB Banking77Classification
264
+ config: default
265
+ split: test
266
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
267
+ metrics:
268
+ - type: accuracy
269
+ value: 46.03896103896104
270
+ - type: f1
271
+ value: 44.54083818845286
272
+ - task:
273
+ type: Clustering
274
+ dataset:
275
+ type: mteb/biorxiv-clustering-p2p
276
+ name: MTEB BiorxivClusteringP2P
277
+ config: default
278
+ split: test
279
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
280
+ metrics:
281
+ - type: v_measure
282
+ value: 23.113393015706908
283
+ - task:
284
+ type: Clustering
285
+ dataset:
286
+ type: mteb/biorxiv-clustering-s2s
287
+ name: MTEB BiorxivClusteringS2S
288
+ config: default
289
+ split: test
290
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
291
+ metrics:
292
+ - type: v_measure
293
+ value: 12.624675113307488
294
+ - task:
295
+ type: Retrieval
296
+ dataset:
297
+ type: BeIR/cqadupstack
298
+ name: MTEB CQADupstackAndroidRetrieval
299
+ config: default
300
+ split: test
301
+ revision: None
302
+ metrics:
303
+ - type: map_at_1
304
+ value: 10.105
305
+ - type: map_at_10
306
+ value: 13.364
307
+ - type: map_at_100
308
+ value: 13.987
309
+ - type: map_at_1000
310
+ value: 14.08
311
+ - type: map_at_3
312
+ value: 12.447
313
+ - type: map_at_5
314
+ value: 12.992999999999999
315
+ - type: mrr_at_1
316
+ value: 12.876000000000001
317
+ - type: mrr_at_10
318
+ value: 16.252
319
+ - type: mrr_at_100
320
+ value: 16.926
321
+ - type: mrr_at_1000
322
+ value: 17.004
323
+ - type: mrr_at_3
324
+ value: 15.235999999999999
325
+ - type: mrr_at_5
326
+ value: 15.744
327
+ - type: ndcg_at_1
328
+ value: 12.876000000000001
329
+ - type: ndcg_at_10
330
+ value: 15.634999999999998
331
+ - type: ndcg_at_100
332
+ value: 19.173000000000002
333
+ - type: ndcg_at_1000
334
+ value: 22.168
335
+ - type: ndcg_at_3
336
+ value: 14.116999999999999
337
+ - type: ndcg_at_5
338
+ value: 14.767
339
+ - type: precision_at_1
340
+ value: 12.876000000000001
341
+ - type: precision_at_10
342
+ value: 2.761
343
+ - type: precision_at_100
344
+ value: 0.5579999999999999
345
+ - type: precision_at_1000
346
+ value: 0.101
347
+ - type: precision_at_3
348
+ value: 6.676
349
+ - type: precision_at_5
350
+ value: 4.635
351
+ - type: recall_at_1
352
+ value: 10.105
353
+ - type: recall_at_10
354
+ value: 19.767000000000003
355
+ - type: recall_at_100
356
+ value: 36.448
357
+ - type: recall_at_1000
358
+ value: 58.623000000000005
359
+ - type: recall_at_3
360
+ value: 15.087
361
+ - type: recall_at_5
362
+ value: 17.076
363
+ - task:
364
+ type: Retrieval
365
+ dataset:
366
+ type: BeIR/cqadupstack
367
+ name: MTEB CQADupstackEnglishRetrieval
368
+ config: default
369
+ split: test
370
+ revision: None
371
+ metrics:
372
+ - type: map_at_1
373
+ value: 7.249999999999999
374
+ - type: map_at_10
375
+ value: 9.41
376
+ - type: map_at_100
377
+ value: 9.903
378
+ - type: map_at_1000
379
+ value: 9.993
380
+ - type: map_at_3
381
+ value: 8.693
382
+ - type: map_at_5
383
+ value: 9.052
384
+ - type: mrr_at_1
385
+ value: 9.299
386
+ - type: mrr_at_10
387
+ value: 11.907
388
+ - type: mrr_at_100
389
+ value: 12.424
390
+ - type: mrr_at_1000
391
+ value: 12.503
392
+ - type: mrr_at_3
393
+ value: 10.945
394
+ - type: mrr_at_5
395
+ value: 11.413
396
+ - type: ndcg_at_1
397
+ value: 9.299
398
+ - type: ndcg_at_10
399
+ value: 11.278
400
+ - type: ndcg_at_100
401
+ value: 13.904
402
+ - type: ndcg_at_1000
403
+ value: 16.642000000000003
404
+ - type: ndcg_at_3
405
+ value: 9.956
406
+ - type: ndcg_at_5
407
+ value: 10.488
408
+ - type: precision_at_1
409
+ value: 9.299
410
+ - type: precision_at_10
411
+ value: 2.166
412
+ - type: precision_at_100
413
+ value: 0.45399999999999996
414
+ - type: precision_at_1000
415
+ value: 0.089
416
+ - type: precision_at_3
417
+ value: 4.798
418
+ - type: precision_at_5
419
+ value: 3.427
420
+ - type: recall_at_1
421
+ value: 7.249999999999999
422
+ - type: recall_at_10
423
+ value: 14.285
424
+ - type: recall_at_100
425
+ value: 26.588
426
+ - type: recall_at_1000
427
+ value: 46.488
428
+ - type: recall_at_3
429
+ value: 10.309
430
+ - type: recall_at_5
431
+ value: 11.756
432
+ - task:
433
+ type: Retrieval
434
+ dataset:
435
+ type: BeIR/cqadupstack
436
+ name: MTEB CQADupstackGamingRetrieval
437
+ config: default
438
+ split: test
439
+ revision: None
440
+ metrics:
441
+ - type: map_at_1
442
+ value: 11.57
443
+ - type: map_at_10
444
+ value: 15.497
445
+ - type: map_at_100
446
+ value: 16.036
447
+ - type: map_at_1000
448
+ value: 16.122
449
+ - type: map_at_3
450
+ value: 14.309
451
+ - type: map_at_5
452
+ value: 14.895
453
+ - type: mrr_at_1
454
+ value: 13.354
455
+ - type: mrr_at_10
456
+ value: 17.408
457
+ - type: mrr_at_100
458
+ value: 17.936
459
+ - type: mrr_at_1000
460
+ value: 18.015
461
+ - type: mrr_at_3
462
+ value: 16.123
463
+ - type: mrr_at_5
464
+ value: 16.735
465
+ - type: ndcg_at_1
466
+ value: 13.354
467
+ - type: ndcg_at_10
468
+ value: 18.071
469
+ - type: ndcg_at_100
470
+ value: 21.017
471
+ - type: ndcg_at_1000
472
+ value: 23.669999999999998
473
+ - type: ndcg_at_3
474
+ value: 15.644
475
+ - type: ndcg_at_5
476
+ value: 16.618
477
+ - type: precision_at_1
478
+ value: 13.354
479
+ - type: precision_at_10
480
+ value: 2.94
481
+ - type: precision_at_100
482
+ value: 0.481
483
+ - type: precision_at_1000
484
+ value: 0.076
485
+ - type: precision_at_3
486
+ value: 7.001
487
+ - type: precision_at_5
488
+ value: 4.765
489
+ - type: recall_at_1
490
+ value: 11.57
491
+ - type: recall_at_10
492
+ value: 24.147
493
+ - type: recall_at_100
494
+ value: 38.045
495
+ - type: recall_at_1000
496
+ value: 58.648
497
+ - type: recall_at_3
498
+ value: 17.419999999999998
499
+ - type: recall_at_5
500
+ value: 19.875999999999998
501
+ - task:
502
+ type: Retrieval
503
+ dataset:
504
+ type: BeIR/cqadupstack
505
+ name: MTEB CQADupstackGisRetrieval
506
+ config: default
507
+ split: test
508
+ revision: None
509
+ metrics:
510
+ - type: map_at_1
511
+ value: 4.463
512
+ - type: map_at_10
513
+ value: 6.091
514
+ - type: map_at_100
515
+ value: 6.548
516
+ - type: map_at_1000
517
+ value: 6.622
518
+ - type: map_at_3
519
+ value: 5.461
520
+ - type: map_at_5
521
+ value: 5.768
522
+ - type: mrr_at_1
523
+ value: 4.746
524
+ - type: mrr_at_10
525
+ value: 6.431000000000001
526
+ - type: mrr_at_100
527
+ value: 6.941
528
+ - type: mrr_at_1000
529
+ value: 7.016
530
+ - type: mrr_at_3
531
+ value: 5.763
532
+ - type: mrr_at_5
533
+ value: 6.101999999999999
534
+ - type: ndcg_at_1
535
+ value: 4.746
536
+ - type: ndcg_at_10
537
+ value: 7.19
538
+ - type: ndcg_at_100
539
+ value: 9.604
540
+ - type: ndcg_at_1000
541
+ value: 12.086
542
+ - type: ndcg_at_3
543
+ value: 5.88
544
+ - type: ndcg_at_5
545
+ value: 6.429
546
+ - type: precision_at_1
547
+ value: 4.746
548
+ - type: precision_at_10
549
+ value: 1.141
550
+ - type: precision_at_100
551
+ value: 0.249
552
+ - type: precision_at_1000
553
+ value: 0.049
554
+ - type: precision_at_3
555
+ value: 2.448
556
+ - type: precision_at_5
557
+ value: 1.7850000000000001
558
+ - type: recall_at_1
559
+ value: 4.463
560
+ - type: recall_at_10
561
+ value: 10.33
562
+ - type: recall_at_100
563
+ value: 21.578
564
+ - type: recall_at_1000
565
+ value: 41.404
566
+ - type: recall_at_3
567
+ value: 6.816999999999999
568
+ - type: recall_at_5
569
+ value: 8.06
570
+ - task:
571
+ type: Retrieval
572
+ dataset:
573
+ type: BeIR/cqadupstack
574
+ name: MTEB CQADupstackMathematicaRetrieval
575
+ config: default
576
+ split: test
577
+ revision: None
578
+ metrics:
579
+ - type: map_at_1
580
+ value: 1.521
581
+ - type: map_at_10
582
+ value: 2.439
583
+ - type: map_at_100
584
+ value: 2.785
585
+ - type: map_at_1000
586
+ value: 2.858
587
+ - type: map_at_3
588
+ value: 2.091
589
+ - type: map_at_5
590
+ value: 2.2560000000000002
591
+ - type: mrr_at_1
592
+ value: 2.114
593
+ - type: mrr_at_10
594
+ value: 3.216
595
+ - type: mrr_at_100
596
+ value: 3.6319999999999997
597
+ - type: mrr_at_1000
598
+ value: 3.712
599
+ - type: mrr_at_3
600
+ value: 2.778
601
+ - type: mrr_at_5
602
+ value: 2.971
603
+ - type: ndcg_at_1
604
+ value: 2.114
605
+ - type: ndcg_at_10
606
+ value: 3.1910000000000003
607
+ - type: ndcg_at_100
608
+ value: 5.165
609
+ - type: ndcg_at_1000
610
+ value: 7.607
611
+ - type: ndcg_at_3
612
+ value: 2.456
613
+ - type: ndcg_at_5
614
+ value: 2.7439999999999998
615
+ - type: precision_at_1
616
+ value: 2.114
617
+ - type: precision_at_10
618
+ value: 0.634
619
+ - type: precision_at_100
620
+ value: 0.189
621
+ - type: precision_at_1000
622
+ value: 0.049
623
+ - type: precision_at_3
624
+ value: 1.202
625
+ - type: precision_at_5
626
+ value: 0.8959999999999999
627
+ - type: recall_at_1
628
+ value: 1.521
629
+ - type: recall_at_10
630
+ value: 4.8
631
+ - type: recall_at_100
632
+ value: 13.877
633
+ - type: recall_at_1000
634
+ value: 32.1
635
+ - type: recall_at_3
636
+ value: 2.806
637
+ - type: recall_at_5
638
+ value: 3.5520000000000005
639
+ - task:
640
+ type: Retrieval
641
+ dataset:
642
+ type: BeIR/cqadupstack
643
+ name: MTEB CQADupstackPhysicsRetrieval
644
+ config: default
645
+ split: test
646
+ revision: None
647
+ metrics:
648
+ - type: map_at_1
649
+ value: 7.449999999999999
650
+ - type: map_at_10
651
+ value: 10.065
652
+ - type: map_at_100
653
+ value: 10.507
654
+ - type: map_at_1000
655
+ value: 10.599
656
+ - type: map_at_3
657
+ value: 9.017
658
+ - type: map_at_5
659
+ value: 9.603
660
+ - type: mrr_at_1
661
+ value: 9.336
662
+ - type: mrr_at_10
663
+ value: 12.589
664
+ - type: mrr_at_100
665
+ value: 13.086
666
+ - type: mrr_at_1000
667
+ value: 13.161000000000001
668
+ - type: mrr_at_3
669
+ value: 11.373
670
+ - type: mrr_at_5
671
+ value: 12.084999999999999
672
+ - type: ndcg_at_1
673
+ value: 9.336
674
+ - type: ndcg_at_10
675
+ value: 12.299
676
+ - type: ndcg_at_100
677
+ value: 14.780999999999999
678
+ - type: ndcg_at_1000
679
+ value: 17.632
680
+ - type: ndcg_at_3
681
+ value: 10.302
682
+ - type: ndcg_at_5
683
+ value: 11.247
684
+ - type: precision_at_1
685
+ value: 9.336
686
+ - type: precision_at_10
687
+ value: 2.271
688
+ - type: precision_at_100
689
+ value: 0.42300000000000004
690
+ - type: precision_at_1000
691
+ value: 0.08099999999999999
692
+ - type: precision_at_3
693
+ value: 4.909
694
+ - type: precision_at_5
695
+ value: 3.5999999999999996
696
+ - type: recall_at_1
697
+ value: 7.449999999999999
698
+ - type: recall_at_10
699
+ value: 16.891000000000002
700
+ - type: recall_at_100
701
+ value: 28.050000000000004
702
+ - type: recall_at_1000
703
+ value: 49.267
704
+ - type: recall_at_3
705
+ value: 11.187999999999999
706
+ - type: recall_at_5
707
+ value: 13.587
708
+ - task:
709
+ type: Retrieval
710
+ dataset:
711
+ type: BeIR/cqadupstack
712
+ name: MTEB CQADupstackProgrammersRetrieval
713
+ config: default
714
+ split: test
715
+ revision: None
716
+ metrics:
717
+ - type: map_at_1
718
+ value: 4.734
719
+ - type: map_at_10
720
+ value: 7.045999999999999
721
+ - type: map_at_100
722
+ value: 7.564
723
+ - type: map_at_1000
724
+ value: 7.6499999999999995
725
+ - type: map_at_3
726
+ value: 6.21
727
+ - type: map_at_5
728
+ value: 6.617000000000001
729
+ - type: mrr_at_1
730
+ value: 5.936
731
+ - type: mrr_at_10
732
+ value: 8.624
733
+ - type: mrr_at_100
734
+ value: 9.193
735
+ - type: mrr_at_1000
736
+ value: 9.28
737
+ - type: mrr_at_3
738
+ value: 7.725
739
+ - type: mrr_at_5
740
+ value: 8.147
741
+ - type: ndcg_at_1
742
+ value: 5.936
743
+ - type: ndcg_at_10
744
+ value: 8.81
745
+ - type: ndcg_at_100
746
+ value: 11.694
747
+ - type: ndcg_at_1000
748
+ value: 14.526
749
+ - type: ndcg_at_3
750
+ value: 7.140000000000001
751
+ - type: ndcg_at_5
752
+ value: 7.8020000000000005
753
+ - type: precision_at_1
754
+ value: 5.936
755
+ - type: precision_at_10
756
+ value: 1.701
757
+ - type: precision_at_100
758
+ value: 0.366
759
+ - type: precision_at_1000
760
+ value: 0.07200000000000001
761
+ - type: precision_at_3
762
+ value: 3.463
763
+ - type: precision_at_5
764
+ value: 2.557
765
+ - type: recall_at_1
766
+ value: 4.734
767
+ - type: recall_at_10
768
+ value: 12.733
769
+ - type: recall_at_100
770
+ value: 25.982
771
+ - type: recall_at_1000
772
+ value: 47.233999999999995
773
+ - type: recall_at_3
774
+ value: 8.018
775
+ - type: recall_at_5
776
+ value: 9.762
777
+ - task:
778
+ type: Retrieval
779
+ dataset:
780
+ type: BeIR/cqadupstack
781
+ name: MTEB CQADupstackStatsRetrieval
782
+ config: default
783
+ split: test
784
+ revision: None
785
+ metrics:
786
+ - type: map_at_1
787
+ value: 4.293
788
+ - type: map_at_10
789
+ value: 6.146999999999999
790
+ - type: map_at_100
791
+ value: 6.487
792
+ - type: map_at_1000
793
+ value: 6.544999999999999
794
+ - type: map_at_3
795
+ value: 5.6930000000000005
796
+ - type: map_at_5
797
+ value: 5.869
798
+ - type: mrr_at_1
799
+ value: 5.061
800
+ - type: mrr_at_10
801
+ value: 7.1690000000000005
802
+ - type: mrr_at_100
803
+ value: 7.542
804
+ - type: mrr_at_1000
805
+ value: 7.5969999999999995
806
+ - type: mrr_at_3
807
+ value: 6.646000000000001
808
+ - type: mrr_at_5
809
+ value: 6.8229999999999995
810
+ - type: ndcg_at_1
811
+ value: 5.061
812
+ - type: ndcg_at_10
813
+ value: 7.396
814
+ - type: ndcg_at_100
815
+ value: 9.41
816
+ - type: ndcg_at_1000
817
+ value: 11.386000000000001
818
+ - type: ndcg_at_3
819
+ value: 6.454
820
+ - type: ndcg_at_5
821
+ value: 6.718
822
+ - type: precision_at_1
823
+ value: 5.061
824
+ - type: precision_at_10
825
+ value: 1.319
826
+ - type: precision_at_100
827
+ value: 0.262
828
+ - type: precision_at_1000
829
+ value: 0.047
830
+ - type: precision_at_3
831
+ value: 3.0669999999999997
832
+ - type: precision_at_5
833
+ value: 1.994
834
+ - type: recall_at_1
835
+ value: 4.293
836
+ - type: recall_at_10
837
+ value: 10.221
838
+ - type: recall_at_100
839
+ value: 19.744999999999997
840
+ - type: recall_at_1000
841
+ value: 35.399
842
+ - type: recall_at_3
843
+ value: 7.507999999999999
844
+ - type: recall_at_5
845
+ value: 8.275
846
+ - task:
847
+ type: Retrieval
848
+ dataset:
849
+ type: BeIR/cqadupstack
850
+ name: MTEB CQADupstackTexRetrieval
851
+ config: default
852
+ split: test
853
+ revision: None
854
+ metrics:
855
+ - type: map_at_1
856
+ value: 3.519
857
+ - type: map_at_10
858
+ value: 4.768
859
+ - type: map_at_100
860
+ value: 5.034000000000001
861
+ - type: map_at_1000
862
+ value: 5.087
863
+ - type: map_at_3
864
+ value: 4.308
865
+ - type: map_at_5
866
+ value: 4.565
867
+ - type: mrr_at_1
868
+ value: 4.474
869
+ - type: mrr_at_10
870
+ value: 6.045
871
+ - type: mrr_at_100
872
+ value: 6.361999999999999
873
+ - type: mrr_at_1000
874
+ value: 6.417000000000001
875
+ - type: mrr_at_3
876
+ value: 5.483
877
+ - type: mrr_at_5
878
+ value: 5.81
879
+ - type: ndcg_at_1
880
+ value: 4.474
881
+ - type: ndcg_at_10
882
+ value: 5.799
883
+ - type: ndcg_at_100
884
+ value: 7.344
885
+ - type: ndcg_at_1000
886
+ value: 9.141
887
+ - type: ndcg_at_3
888
+ value: 4.893
889
+ - type: ndcg_at_5
890
+ value: 5.309
891
+ - type: precision_at_1
892
+ value: 4.474
893
+ - type: precision_at_10
894
+ value: 1.06
895
+ - type: precision_at_100
896
+ value: 0.217
897
+ - type: precision_at_1000
898
+ value: 0.045
899
+ - type: precision_at_3
900
+ value: 2.306
901
+ - type: precision_at_5
902
+ value: 1.7000000000000002
903
+ - type: recall_at_1
904
+ value: 3.519
905
+ - type: recall_at_10
906
+ value: 7.75
907
+ - type: recall_at_100
908
+ value: 15.049999999999999
909
+ - type: recall_at_1000
910
+ value: 28.779
911
+ - type: recall_at_3
912
+ value: 5.18
913
+ - type: recall_at_5
914
+ value: 6.245
915
+ - task:
916
+ type: Retrieval
917
+ dataset:
918
+ type: BeIR/cqadupstack
919
+ name: MTEB CQADupstackUnixRetrieval
920
+ config: default
921
+ split: test
922
+ revision: None
923
+ metrics:
924
+ - type: map_at_1
925
+ value: 6.098
926
+ - type: map_at_10
927
+ value: 7.918
928
+ - type: map_at_100
929
+ value: 8.229000000000001
930
+ - type: map_at_1000
931
+ value: 8.293000000000001
932
+ - type: map_at_3
933
+ value: 7.138999999999999
934
+ - type: map_at_5
935
+ value: 7.646
936
+ - type: mrr_at_1
937
+ value: 7.090000000000001
938
+ - type: mrr_at_10
939
+ value: 9.293
940
+ - type: mrr_at_100
941
+ value: 9.669
942
+ - type: mrr_at_1000
943
+ value: 9.734
944
+ - type: mrr_at_3
945
+ value: 8.364
946
+ - type: mrr_at_5
947
+ value: 8.956999999999999
948
+ - type: ndcg_at_1
949
+ value: 7.090000000000001
950
+ - type: ndcg_at_10
951
+ value: 9.411999999999999
952
+ - type: ndcg_at_100
953
+ value: 11.318999999999999
954
+ - type: ndcg_at_1000
955
+ value: 13.478000000000002
956
+ - type: ndcg_at_3
957
+ value: 7.837
958
+ - type: ndcg_at_5
959
+ value: 8.73
960
+ - type: precision_at_1
961
+ value: 7.090000000000001
962
+ - type: precision_at_10
963
+ value: 1.558
964
+ - type: precision_at_100
965
+ value: 0.28400000000000003
966
+ - type: precision_at_1000
967
+ value: 0.053
968
+ - type: precision_at_3
969
+ value: 3.42
970
+ - type: precision_at_5
971
+ value: 2.5749999999999997
972
+ - type: recall_at_1
973
+ value: 6.098
974
+ - type: recall_at_10
975
+ value: 12.764000000000001
976
+ - type: recall_at_100
977
+ value: 21.747
978
+ - type: recall_at_1000
979
+ value: 38.279999999999994
980
+ - type: recall_at_3
981
+ value: 8.476
982
+ - type: recall_at_5
983
+ value: 10.707
984
+ - task:
985
+ type: Retrieval
986
+ dataset:
987
+ type: BeIR/cqadupstack
988
+ name: MTEB CQADupstackWebmastersRetrieval
989
+ config: default
990
+ split: test
991
+ revision: None
992
+ metrics:
993
+ - type: map_at_1
994
+ value: 8.607
995
+ - type: map_at_10
996
+ value: 10.835
997
+ - type: map_at_100
998
+ value: 11.285
999
+ - type: map_at_1000
1000
+ value: 11.383000000000001
1001
+ - type: map_at_3
1002
+ value: 10.111
1003
+ - type: map_at_5
1004
+ value: 10.334999999999999
1005
+ - type: mrr_at_1
1006
+ value: 10.671999999999999
1007
+ - type: mrr_at_10
1008
+ value: 13.269
1009
+ - type: mrr_at_100
1010
+ value: 13.729
1011
+ - type: mrr_at_1000
1012
+ value: 13.813
1013
+ - type: mrr_at_3
1014
+ value: 12.385
1015
+ - type: mrr_at_5
1016
+ value: 12.701
1017
+ - type: ndcg_at_1
1018
+ value: 10.671999999999999
1019
+ - type: ndcg_at_10
1020
+ value: 12.728
1021
+ - type: ndcg_at_100
1022
+ value: 15.312999999999999
1023
+ - type: ndcg_at_1000
1024
+ value: 18.160999999999998
1025
+ - type: ndcg_at_3
1026
+ value: 11.355
1027
+ - type: ndcg_at_5
1028
+ value: 11.605
1029
+ - type: precision_at_1
1030
+ value: 10.671999999999999
1031
+ - type: precision_at_10
1032
+ value: 2.154
1033
+ - type: precision_at_100
1034
+ value: 0.455
1035
+ - type: precision_at_1000
1036
+ value: 0.098
1037
+ - type: precision_at_3
1038
+ value: 4.941
1039
+ - type: precision_at_5
1040
+ value: 3.2809999999999997
1041
+ - type: recall_at_1
1042
+ value: 8.607
1043
+ - type: recall_at_10
1044
+ value: 16.398
1045
+ - type: recall_at_100
1046
+ value: 28.92
1047
+ - type: recall_at_1000
1048
+ value: 49.761
1049
+ - type: recall_at_3
1050
+ value: 11.844000000000001
1051
+ - type: recall_at_5
1052
+ value: 12.792
1053
+ - task:
1054
+ type: Retrieval
1055
+ dataset:
1056
+ type: BeIR/cqadupstack
1057
+ name: MTEB CQADupstackWordpressRetrieval
1058
+ config: default
1059
+ split: test
1060
+ revision: None
1061
+ metrics:
1062
+ - type: map_at_1
1063
+ value: 3.826
1064
+ - type: map_at_10
1065
+ value: 5.6419999999999995
1066
+ - type: map_at_100
1067
+ value: 5.943
1068
+ - type: map_at_1000
1069
+ value: 6.005
1070
+ - type: map_at_3
1071
+ value: 5.1049999999999995
1072
+ - type: map_at_5
1073
+ value: 5.437
1074
+ - type: mrr_at_1
1075
+ value: 4.436
1076
+ - type: mrr_at_10
1077
+ value: 6.413
1078
+ - type: mrr_at_100
1079
+ value: 6.752
1080
+ - type: mrr_at_1000
1081
+ value: 6.819999999999999
1082
+ - type: mrr_at_3
1083
+ value: 5.884
1084
+ - type: mrr_at_5
1085
+ value: 6.18
1086
+ - type: ndcg_at_1
1087
+ value: 4.436
1088
+ - type: ndcg_at_10
1089
+ value: 6.7989999999999995
1090
+ - type: ndcg_at_100
1091
+ value: 8.619
1092
+ - type: ndcg_at_1000
1093
+ value: 10.842
1094
+ - type: ndcg_at_3
1095
+ value: 5.739
1096
+ - type: ndcg_at_5
1097
+ value: 6.292000000000001
1098
+ - type: precision_at_1
1099
+ value: 4.436
1100
+ - type: precision_at_10
1101
+ value: 1.109
1102
+ - type: precision_at_100
1103
+ value: 0.214
1104
+ - type: precision_at_1000
1105
+ value: 0.043
1106
+ - type: precision_at_3
1107
+ value: 2.588
1108
+ - type: precision_at_5
1109
+ value: 1.848
1110
+ - type: recall_at_1
1111
+ value: 3.826
1112
+ - type: recall_at_10
1113
+ value: 9.655
1114
+ - type: recall_at_100
1115
+ value: 18.611
1116
+ - type: recall_at_1000
1117
+ value: 36.733
1118
+ - type: recall_at_3
1119
+ value: 6.784
1120
+ - type: recall_at_5
1121
+ value: 8.17
1122
+ - task:
1123
+ type: Classification
1124
+ dataset:
1125
+ type: mteb/emotion
1126
+ name: MTEB EmotionClassification
1127
+ config: default
1128
+ split: test
1129
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1130
+ metrics:
1131
+ - type: accuracy
1132
+ value: 23.279999999999998
1133
+ - type: f1
1134
+ value: 19.87865985032945
1135
+ - task:
1136
+ type: Retrieval
1137
+ dataset:
1138
+ type: fiqa
1139
+ name: MTEB FiQA2018
1140
+ config: default
1141
+ split: test
1142
+ revision: None
1143
+ metrics:
1144
+ - type: map_at_1
1145
+ value: 1.166
1146
+ - type: map_at_10
1147
+ value: 2.283
1148
+ - type: map_at_100
1149
+ value: 2.564
1150
+ - type: map_at_1000
1151
+ value: 2.6519999999999997
1152
+ - type: map_at_3
1153
+ value: 1.867
1154
+ - type: map_at_5
1155
+ value: 2.0500000000000003
1156
+ - type: mrr_at_1
1157
+ value: 2.932
1158
+ - type: mrr_at_10
1159
+ value: 4.852
1160
+ - type: mrr_at_100
1161
+ value: 5.306
1162
+ - type: mrr_at_1000
1163
+ value: 5.4
1164
+ - type: mrr_at_3
1165
+ value: 4.141
1166
+ - type: mrr_at_5
1167
+ value: 4.457
1168
+ - type: ndcg_at_1
1169
+ value: 2.932
1170
+ - type: ndcg_at_10
1171
+ value: 3.5709999999999997
1172
+ - type: ndcg_at_100
1173
+ value: 5.489
1174
+ - type: ndcg_at_1000
1175
+ value: 8.309999999999999
1176
+ - type: ndcg_at_3
1177
+ value: 2.773
1178
+ - type: ndcg_at_5
1179
+ value: 2.979
1180
+ - type: precision_at_1
1181
+ value: 2.932
1182
+ - type: precision_at_10
1183
+ value: 1.049
1184
+ - type: precision_at_100
1185
+ value: 0.306
1186
+ - type: precision_at_1000
1187
+ value: 0.077
1188
+ - type: precision_at_3
1189
+ value: 1.8519999999999999
1190
+ - type: precision_at_5
1191
+ value: 1.389
1192
+ - type: recall_at_1
1193
+ value: 1.166
1194
+ - type: recall_at_10
1195
+ value: 5.178
1196
+ - type: recall_at_100
1197
+ value: 13.056999999999999
1198
+ - type: recall_at_1000
1199
+ value: 31.708
1200
+ - type: recall_at_3
1201
+ value: 2.714
1202
+ - type: recall_at_5
1203
+ value: 3.4909999999999997
1204
+ - task:
1205
+ type: Classification
1206
+ dataset:
1207
+ type: mteb/imdb
1208
+ name: MTEB ImdbClassification
1209
+ config: default
1210
+ split: test
1211
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1212
+ metrics:
1213
+ - type: accuracy
1214
+ value: 56.96359999999999
1215
+ - type: ap
1216
+ value: 54.16760114570921
1217
+ - type: f1
1218
+ value: 56.193845361069116
1219
+ - task:
1220
+ type: Classification
1221
+ dataset:
1222
+ type: mteb/mtop_domain
1223
+ name: MTEB MTOPDomainClassification (en)
1224
+ config: en
1225
+ split: test
1226
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1227
+ metrics:
1228
+ - type: accuracy
1229
+ value: 64.39808481532147
1230
+ - type: f1
1231
+ value: 63.468270818712625
1232
+ - task:
1233
+ type: Classification
1234
+ dataset:
1235
+ type: mteb/mtop_domain
1236
+ name: MTEB MTOPDomainClassification (de)
1237
+ config: de
1238
+ split: test
1239
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1240
+ metrics:
1241
+ - type: accuracy
1242
+ value: 53.961679346294744
1243
+ - type: f1
1244
+ value: 51.6707117653683
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/mtop_domain
1249
+ name: MTEB MTOPDomainClassification (es)
1250
+ config: es
1251
+ split: test
1252
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 57.018012008005336
1256
+ - type: f1
1257
+ value: 54.23413458037234
1258
+ - task:
1259
+ type: Classification
1260
+ dataset:
1261
+ type: mteb/mtop_domain
1262
+ name: MTEB MTOPDomainClassification (fr)
1263
+ config: fr
1264
+ split: test
1265
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1266
+ metrics:
1267
+ - type: accuracy
1268
+ value: 48.84434700908236
1269
+ - type: f1
1270
+ value: 46.48494180527987
1271
+ - task:
1272
+ type: Classification
1273
+ dataset:
1274
+ type: mteb/mtop_domain
1275
+ name: MTEB MTOPDomainClassification (hi)
1276
+ config: hi
1277
+ split: test
1278
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1279
+ metrics:
1280
+ - type: accuracy
1281
+ value: 39.7669415561133
1282
+ - type: f1
1283
+ value: 35.50974325529877
1284
+ - task:
1285
+ type: Classification
1286
+ dataset:
1287
+ type: mteb/mtop_domain
1288
+ name: MTEB MTOPDomainClassification (th)
1289
+ config: th
1290
+ split: test
1291
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1292
+ metrics:
1293
+ - type: accuracy
1294
+ value: 42.589511754068724
1295
+ - type: f1
1296
+ value: 40.47244422785889
1297
+ - task:
1298
+ type: Classification
1299
+ dataset:
1300
+ type: mteb/mtop_intent
1301
+ name: MTEB MTOPIntentClassification (en)
1302
+ config: en
1303
+ split: test
1304
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1305
+ metrics:
1306
+ - type: accuracy
1307
+ value: 34.01276789785682
1308
+ - type: f1
1309
+ value: 21.256775922291286
1310
+ - task:
1311
+ type: Classification
1312
+ dataset:
1313
+ type: mteb/mtop_intent
1314
+ name: MTEB MTOPIntentClassification (de)
1315
+ config: de
1316
+ split: test
1317
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1318
+ metrics:
1319
+ - type: accuracy
1320
+ value: 33.285432516201745
1321
+ - type: f1
1322
+ value: 19.841703666811565
1323
+ - task:
1324
+ type: Classification
1325
+ dataset:
1326
+ type: mteb/mtop_intent
1327
+ name: MTEB MTOPIntentClassification (es)
1328
+ config: es
1329
+ split: test
1330
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1331
+ metrics:
1332
+ - type: accuracy
1333
+ value: 32.121414276184126
1334
+ - type: f1
1335
+ value: 19.34706868150749
1336
+ - task:
1337
+ type: Classification
1338
+ dataset:
1339
+ type: mteb/mtop_intent
1340
+ name: MTEB MTOPIntentClassification (fr)
1341
+ config: fr
1342
+ split: test
1343
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1344
+ metrics:
1345
+ - type: accuracy
1346
+ value: 26.088318196053866
1347
+ - type: f1
1348
+ value: 17.22608011891254
1349
+ - task:
1350
+ type: Classification
1351
+ dataset:
1352
+ type: mteb/mtop_intent
1353
+ name: MTEB MTOPIntentClassification (hi)
1354
+ config: hi
1355
+ split: test
1356
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1357
+ metrics:
1358
+ - type: accuracy
1359
+ value: 15.320903549659375
1360
+ - type: f1
1361
+ value: 9.62002916015258
1362
+ - task:
1363
+ type: Classification
1364
+ dataset:
1365
+ type: mteb/mtop_intent
1366
+ name: MTEB MTOPIntentClassification (th)
1367
+ config: th
1368
+ split: test
1369
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1370
+ metrics:
1371
+ - type: accuracy
1372
+ value: 16.426763110307412
1373
+ - type: f1
1374
+ value: 11.023799171137183
1375
+ - task:
1376
+ type: Clustering
1377
+ dataset:
1378
+ type: mteb/medrxiv-clustering-p2p
1379
+ name: MTEB MedrxivClusteringP2P
1380
+ config: default
1381
+ split: test
1382
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1383
+ metrics:
1384
+ - type: v_measure
1385
+ value: 22.08508717069763
1386
+ - task:
1387
+ type: Clustering
1388
+ dataset:
1389
+ type: mteb/medrxiv-clustering-s2s
1390
+ name: MTEB MedrxivClusteringS2S
1391
+ config: default
1392
+ split: test
1393
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1394
+ metrics:
1395
+ - type: v_measure
1396
+ value: 16.58582885790446
1397
+ - task:
1398
+ type: Retrieval
1399
+ dataset:
1400
+ type: nfcorpus
1401
+ name: MTEB NFCorpus
1402
+ config: default
1403
+ split: test
1404
+ revision: None
1405
+ metrics:
1406
+ - type: map_at_1
1407
+ value: 1.2
1408
+ - type: map_at_10
1409
+ value: 1.6400000000000001
1410
+ - type: map_at_100
1411
+ value: 1.9789999999999999
1412
+ - type: map_at_1000
1413
+ value: 2.554
1414
+ - type: map_at_3
1415
+ value: 1.4449999999999998
1416
+ - type: map_at_5
1417
+ value: 1.533
1418
+ - type: mrr_at_1
1419
+ value: 6.811
1420
+ - type: mrr_at_10
1421
+ value: 11.068999999999999
1422
+ - type: mrr_at_100
1423
+ value: 12.454
1424
+ - type: mrr_at_1000
1425
+ value: 12.590000000000002
1426
+ - type: mrr_at_3
1427
+ value: 9.751999999999999
1428
+ - type: mrr_at_5
1429
+ value: 10.31
1430
+ - type: ndcg_at_1
1431
+ value: 6.3469999999999995
1432
+ - type: ndcg_at_10
1433
+ value: 4.941
1434
+ - type: ndcg_at_100
1435
+ value: 6.524000000000001
1436
+ - type: ndcg_at_1000
1437
+ value: 15.918
1438
+ - type: ndcg_at_3
1439
+ value: 5.959
1440
+ - type: ndcg_at_5
1441
+ value: 5.395
1442
+ - type: precision_at_1
1443
+ value: 6.811
1444
+ - type: precision_at_10
1445
+ value: 3.375
1446
+ - type: precision_at_100
1447
+ value: 2.0709999999999997
1448
+ - type: precision_at_1000
1449
+ value: 1.313
1450
+ - type: precision_at_3
1451
+ value: 5.47
1452
+ - type: precision_at_5
1453
+ value: 4.396
1454
+ - type: recall_at_1
1455
+ value: 1.2
1456
+ - type: recall_at_10
1457
+ value: 2.5909999999999997
1458
+ - type: recall_at_100
1459
+ value: 9.443999999999999
1460
+ - type: recall_at_1000
1461
+ value: 41.542
1462
+ - type: recall_at_3
1463
+ value: 1.702
1464
+ - type: recall_at_5
1465
+ value: 1.9879999999999998
1466
+ - task:
1467
+ type: Retrieval
1468
+ dataset:
1469
+ type: quora
1470
+ name: MTEB QuoraRetrieval
1471
+ config: default
1472
+ split: test
1473
+ revision: None
1474
+ metrics:
1475
+ - type: map_at_1
1476
+ value: 45.708
1477
+ - type: map_at_10
1478
+ value: 55.131
1479
+ - type: map_at_100
1480
+ value: 55.935
1481
+ - type: map_at_1000
1482
+ value: 55.993
1483
+ - type: map_at_3
1484
+ value: 52.749
1485
+ - type: map_at_5
1486
+ value: 54.166000000000004
1487
+ - type: mrr_at_1
1488
+ value: 52.44
1489
+ - type: mrr_at_10
1490
+ value: 59.99
1491
+ - type: mrr_at_100
1492
+ value: 60.492999999999995
1493
+ - type: mrr_at_1000
1494
+ value: 60.522
1495
+ - type: mrr_at_3
1496
+ value: 58.285
1497
+ - type: mrr_at_5
1498
+ value: 59.305
1499
+ - type: ndcg_at_1
1500
+ value: 52.43
1501
+ - type: ndcg_at_10
1502
+ value: 59.873
1503
+ - type: ndcg_at_100
1504
+ value: 63.086
1505
+ - type: ndcg_at_1000
1506
+ value: 64.291
1507
+ - type: ndcg_at_3
1508
+ value: 56.291000000000004
1509
+ - type: ndcg_at_5
1510
+ value: 58.071
1511
+ - type: precision_at_1
1512
+ value: 52.43
1513
+ - type: precision_at_10
1514
+ value: 8.973
1515
+ - type: precision_at_100
1516
+ value: 1.161
1517
+ - type: precision_at_1000
1518
+ value: 0.134
1519
+ - type: precision_at_3
1520
+ value: 24.177
1521
+ - type: precision_at_5
1522
+ value: 16.073999999999998
1523
+ - type: recall_at_1
1524
+ value: 45.708
1525
+ - type: recall_at_10
1526
+ value: 69.195
1527
+ - type: recall_at_100
1528
+ value: 82.812
1529
+ - type: recall_at_1000
1530
+ value: 91.136
1531
+ - type: recall_at_3
1532
+ value: 58.938
1533
+ - type: recall_at_5
1534
+ value: 63.787000000000006
1535
+ - task:
1536
+ type: Clustering
1537
+ dataset:
1538
+ type: mteb/reddit-clustering
1539
+ name: MTEB RedditClustering
1540
+ config: default
1541
+ split: test
1542
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1543
+ metrics:
1544
+ - type: v_measure
1545
+ value: 13.142048230676806
1546
+ - task:
1547
+ type: Clustering
1548
+ dataset:
1549
+ type: mteb/reddit-clustering-p2p
1550
+ name: MTEB RedditClusteringP2P
1551
+ config: default
1552
+ split: test
1553
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1554
+ metrics:
1555
+ - type: v_measure
1556
+ value: 26.06687178917052
1557
+ - task:
1558
+ type: Retrieval
1559
+ dataset:
1560
+ type: scidocs
1561
+ name: MTEB SCIDOCS
1562
+ config: default
1563
+ split: test
1564
+ revision: None
1565
+ metrics:
1566
+ - type: map_at_1
1567
+ value: 0.46499999999999997
1568
+ - type: map_at_10
1569
+ value: 0.906
1570
+ - type: map_at_100
1571
+ value: 1.127
1572
+ - type: map_at_1000
1573
+ value: 1.203
1574
+ - type: map_at_3
1575
+ value: 0.72
1576
+ - type: map_at_5
1577
+ value: 0.814
1578
+ - type: mrr_at_1
1579
+ value: 2.3
1580
+ - type: mrr_at_10
1581
+ value: 3.733
1582
+ - type: mrr_at_100
1583
+ value: 4.295999999999999
1584
+ - type: mrr_at_1000
1585
+ value: 4.412
1586
+ - type: mrr_at_3
1587
+ value: 3.183
1588
+ - type: mrr_at_5
1589
+ value: 3.458
1590
+ - type: ndcg_at_1
1591
+ value: 2.3
1592
+ - type: ndcg_at_10
1593
+ value: 1.797
1594
+ - type: ndcg_at_100
1595
+ value: 3.376
1596
+ - type: ndcg_at_1000
1597
+ value: 6.143
1598
+ - type: ndcg_at_3
1599
+ value: 1.763
1600
+ - type: ndcg_at_5
1601
+ value: 1.5070000000000001
1602
+ - type: precision_at_1
1603
+ value: 2.3
1604
+ - type: precision_at_10
1605
+ value: 0.91
1606
+ - type: precision_at_100
1607
+ value: 0.32399999999999995
1608
+ - type: precision_at_1000
1609
+ value: 0.101
1610
+ - type: precision_at_3
1611
+ value: 1.633
1612
+ - type: precision_at_5
1613
+ value: 1.3
1614
+ - type: recall_at_1
1615
+ value: 0.46499999999999997
1616
+ - type: recall_at_10
1617
+ value: 1.8499999999999999
1618
+ - type: recall_at_100
1619
+ value: 6.625
1620
+ - type: recall_at_1000
1621
+ value: 20.587
1622
+ - type: recall_at_3
1623
+ value: 0.9900000000000001
1624
+ - type: recall_at_5
1625
+ value: 1.315
1626
+ - task:
1627
+ type: STS
1628
+ dataset:
1629
+ type: mteb/sickr-sts
1630
+ name: MTEB SICK-R
1631
+ config: default
1632
+ split: test
1633
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1634
+ metrics:
1635
+ - type: cos_sim_pearson
1636
+ value: 60.78961481918511
1637
+ - type: cos_sim_spearman
1638
+ value: 54.92014630234372
1639
+ - type: euclidean_pearson
1640
+ value: 54.91456364340953
1641
+ - type: euclidean_spearman
1642
+ value: 50.95537043206628
1643
+ - type: manhattan_pearson
1644
+ value: 55.0450005071106
1645
+ - type: manhattan_spearman
1646
+ value: 51.227579527791654
1647
+ - task:
1648
+ type: STS
1649
+ dataset:
1650
+ type: mteb/sts12-sts
1651
+ name: MTEB STS12
1652
+ config: default
1653
+ split: test
1654
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1655
+ metrics:
1656
+ - type: cos_sim_pearson
1657
+ value: 43.73124494569395
1658
+ - type: cos_sim_spearman
1659
+ value: 43.07629933550637
1660
+ - type: euclidean_pearson
1661
+ value: 37.2529484210563
1662
+ - type: euclidean_spearman
1663
+ value: 36.68421330216546
1664
+ - type: manhattan_pearson
1665
+ value: 37.41673219009712
1666
+ - type: manhattan_spearman
1667
+ value: 36.92073705702668
1668
+ - task:
1669
+ type: STS
1670
+ dataset:
1671
+ type: mteb/sts13-sts
1672
+ name: MTEB STS13
1673
+ config: default
1674
+ split: test
1675
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1676
+ metrics:
1677
+ - type: cos_sim_pearson
1678
+ value: 57.17534157059787
1679
+ - type: cos_sim_spearman
1680
+ value: 56.86679858348438
1681
+ - type: euclidean_pearson
1682
+ value: 54.51552371857776
1683
+ - type: euclidean_spearman
1684
+ value: 53.80989851917749
1685
+ - type: manhattan_pearson
1686
+ value: 54.44486043632584
1687
+ - type: manhattan_spearman
1688
+ value: 53.83487353949481
1689
+ - task:
1690
+ type: STS
1691
+ dataset:
1692
+ type: mteb/sts14-sts
1693
+ name: MTEB STS14
1694
+ config: default
1695
+ split: test
1696
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1697
+ metrics:
1698
+ - type: cos_sim_pearson
1699
+ value: 52.319034960820375
1700
+ - type: cos_sim_spearman
1701
+ value: 50.89512224974754
1702
+ - type: euclidean_pearson
1703
+ value: 49.19308209408045
1704
+ - type: euclidean_spearman
1705
+ value: 47.45736923614355
1706
+ - type: manhattan_pearson
1707
+ value: 48.82127080055118
1708
+ - type: manhattan_spearman
1709
+ value: 47.20185686489298
1710
+ - task:
1711
+ type: STS
1712
+ dataset:
1713
+ type: mteb/sts15-sts
1714
+ name: MTEB STS15
1715
+ config: default
1716
+ split: test
1717
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1718
+ metrics:
1719
+ - type: cos_sim_pearson
1720
+ value: 61.57602956458427
1721
+ - type: cos_sim_spearman
1722
+ value: 62.894640061838956
1723
+ - type: euclidean_pearson
1724
+ value: 53.86893407586029
1725
+ - type: euclidean_spearman
1726
+ value: 54.68528520514299
1727
+ - type: manhattan_pearson
1728
+ value: 53.689614981956815
1729
+ - type: manhattan_spearman
1730
+ value: 54.51172839699876
1731
+ - task:
1732
+ type: STS
1733
+ dataset:
1734
+ type: mteb/sts16-sts
1735
+ name: MTEB STS16
1736
+ config: default
1737
+ split: test
1738
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1739
+ metrics:
1740
+ - type: cos_sim_pearson
1741
+ value: 56.2305694109318
1742
+ - type: cos_sim_spearman
1743
+ value: 57.885939000786045
1744
+ - type: euclidean_pearson
1745
+ value: 50.486043353701994
1746
+ - type: euclidean_spearman
1747
+ value: 50.4463227974027
1748
+ - type: manhattan_pearson
1749
+ value: 50.73317560427465
1750
+ - type: manhattan_spearman
1751
+ value: 50.81397877006027
1752
+ - task:
1753
+ type: STS
1754
+ dataset:
1755
+ type: mteb/sts17-crosslingual-sts
1756
+ name: MTEB STS17 (ko-ko)
1757
+ config: ko-ko
1758
+ split: test
1759
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1760
+ metrics:
1761
+ - type: cos_sim_pearson
1762
+ value: 55.52162058025664
1763
+ - type: cos_sim_spearman
1764
+ value: 59.02220327783535
1765
+ - type: euclidean_pearson
1766
+ value: 55.66332330866701
1767
+ - type: euclidean_spearman
1768
+ value: 56.829076266662206
1769
+ - type: manhattan_pearson
1770
+ value: 55.39181385186973
1771
+ - type: manhattan_spearman
1772
+ value: 56.607432176121144
1773
+ - task:
1774
+ type: STS
1775
+ dataset:
1776
+ type: mteb/sts17-crosslingual-sts
1777
+ name: MTEB STS17 (ar-ar)
1778
+ config: ar-ar
1779
+ split: test
1780
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1781
+ metrics:
1782
+ - type: cos_sim_pearson
1783
+ value: 46.312186899914906
1784
+ - type: cos_sim_spearman
1785
+ value: 48.07172073934163
1786
+ - type: euclidean_pearson
1787
+ value: 46.957276350776695
1788
+ - type: euclidean_spearman
1789
+ value: 43.98800593212707
1790
+ - type: manhattan_pearson
1791
+ value: 46.910805787619914
1792
+ - type: manhattan_spearman
1793
+ value: 43.96662723946553
1794
+ - task:
1795
+ type: STS
1796
+ dataset:
1797
+ type: mteb/sts17-crosslingual-sts
1798
+ name: MTEB STS17 (en-ar)
1799
+ config: en-ar
1800
+ split: test
1801
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1802
+ metrics:
1803
+ - type: cos_sim_pearson
1804
+ value: 16.222172523403835
1805
+ - type: cos_sim_spearman
1806
+ value: 17.230258645779042
1807
+ - type: euclidean_pearson
1808
+ value: -6.781460243147299
1809
+ - type: euclidean_spearman
1810
+ value: -6.884123336780775
1811
+ - type: manhattan_pearson
1812
+ value: -4.369061881907372
1813
+ - type: manhattan_spearman
1814
+ value: -4.235845433380353
1815
+ - task:
1816
+ type: STS
1817
+ dataset:
1818
+ type: mteb/sts17-crosslingual-sts
1819
+ name: MTEB STS17 (en-de)
1820
+ config: en-de
1821
+ split: test
1822
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1823
+ metrics:
1824
+ - type: cos_sim_pearson
1825
+ value: 7.462476431657987
1826
+ - type: cos_sim_spearman
1827
+ value: 5.875270645234161
1828
+ - type: euclidean_pearson
1829
+ value: -10.79494346180473
1830
+ - type: euclidean_spearman
1831
+ value: -11.704529023304776
1832
+ - type: manhattan_pearson
1833
+ value: -11.465867974964997
1834
+ - type: manhattan_spearman
1835
+ value: -12.428424608287173
1836
+ - task:
1837
+ type: STS
1838
+ dataset:
1839
+ type: mteb/sts17-crosslingual-sts
1840
+ name: MTEB STS17 (en-en)
1841
+ config: en-en
1842
+ split: test
1843
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1844
+ metrics:
1845
+ - type: cos_sim_pearson
1846
+ value: 61.46601840758559
1847
+ - type: cos_sim_spearman
1848
+ value: 65.69667638887147
1849
+ - type: euclidean_pearson
1850
+ value: 49.531065525619866
1851
+ - type: euclidean_spearman
1852
+ value: 53.880480167479725
1853
+ - type: manhattan_pearson
1854
+ value: 50.25462221374689
1855
+ - type: manhattan_spearman
1856
+ value: 54.22205494276401
1857
+ - task:
1858
+ type: STS
1859
+ dataset:
1860
+ type: mteb/sts17-crosslingual-sts
1861
+ name: MTEB STS17 (en-tr)
1862
+ config: en-tr
1863
+ split: test
1864
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1865
+ metrics:
1866
+ - type: cos_sim_pearson
1867
+ value: -12.769479370624031
1868
+ - type: cos_sim_spearman
1869
+ value: -12.161427312728382
1870
+ - type: euclidean_pearson
1871
+ value: -27.950593491756536
1872
+ - type: euclidean_spearman
1873
+ value: -24.925281959398585
1874
+ - type: manhattan_pearson
1875
+ value: -25.98778888167475
1876
+ - type: manhattan_spearman
1877
+ value: -22.861942388867234
1878
+ - task:
1879
+ type: STS
1880
+ dataset:
1881
+ type: mteb/sts17-crosslingual-sts
1882
+ name: MTEB STS17 (es-en)
1883
+ config: es-en
1884
+ split: test
1885
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1886
+ metrics:
1887
+ - type: cos_sim_pearson
1888
+ value: 2.1575763564561727
1889
+ - type: cos_sim_spearman
1890
+ value: 1.182204089411577
1891
+ - type: euclidean_pearson
1892
+ value: -10.389249806317189
1893
+ - type: euclidean_spearman
1894
+ value: -16.078659904264605
1895
+ - type: manhattan_pearson
1896
+ value: -9.674301846448607
1897
+ - type: manhattan_spearman
1898
+ value: -16.976576817518577
1899
+ - task:
1900
+ type: STS
1901
+ dataset:
1902
+ type: mteb/sts17-crosslingual-sts
1903
+ name: MTEB STS17 (es-es)
1904
+ config: es-es
1905
+ split: test
1906
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1907
+ metrics:
1908
+ - type: cos_sim_pearson
1909
+ value: 66.16718583059163
1910
+ - type: cos_sim_spearman
1911
+ value: 69.95156267898052
1912
+ - type: euclidean_pearson
1913
+ value: 64.93174777029739
1914
+ - type: euclidean_spearman
1915
+ value: 66.21292533974568
1916
+ - type: manhattan_pearson
1917
+ value: 65.2578109632889
1918
+ - type: manhattan_spearman
1919
+ value: 66.21830865759128
1920
+ - task:
1921
+ type: STS
1922
+ dataset:
1923
+ type: mteb/sts17-crosslingual-sts
1924
+ name: MTEB STS17 (fr-en)
1925
+ config: fr-en
1926
+ split: test
1927
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1928
+ metrics:
1929
+ - type: cos_sim_pearson
1930
+ value: 0.1540829683540524
1931
+ - type: cos_sim_spearman
1932
+ value: -2.4072834011003987
1933
+ - type: euclidean_pearson
1934
+ value: -18.951775877513473
1935
+ - type: euclidean_spearman
1936
+ value: -18.393605606817527
1937
+ - type: manhattan_pearson
1938
+ value: -19.609633839454542
1939
+ - type: manhattan_spearman
1940
+ value: -19.276064769117912
1941
+ - task:
1942
+ type: STS
1943
+ dataset:
1944
+ type: mteb/sts17-crosslingual-sts
1945
+ name: MTEB STS17 (it-en)
1946
+ config: it-en
1947
+ split: test
1948
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1949
+ metrics:
1950
+ - type: cos_sim_pearson
1951
+ value: -4.22497246932717
1952
+ - type: cos_sim_spearman
1953
+ value: -5.747420352346977
1954
+ - type: euclidean_pearson
1955
+ value: -16.86351349130112
1956
+ - type: euclidean_spearman
1957
+ value: -16.555536618547382
1958
+ - type: manhattan_pearson
1959
+ value: -17.45445643482646
1960
+ - type: manhattan_spearman
1961
+ value: -17.97322953856309
1962
+ - task:
1963
+ type: STS
1964
+ dataset:
1965
+ type: mteb/sts17-crosslingual-sts
1966
+ name: MTEB STS17 (nl-en)
1967
+ config: nl-en
1968
+ split: test
1969
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1970
+ metrics:
1971
+ - type: cos_sim_pearson
1972
+ value: 8.559184021676034
1973
+ - type: cos_sim_spearman
1974
+ value: 5.600273352595882
1975
+ - type: euclidean_pearson
1976
+ value: -10.76482859283058
1977
+ - type: euclidean_spearman
1978
+ value: -9.575202768285926
1979
+ - type: manhattan_pearson
1980
+ value: -9.48508597350615
1981
+ - type: manhattan_spearman
1982
+ value: -9.33387861352172
1983
+ - task:
1984
+ type: STS
1985
+ dataset:
1986
+ type: mteb/sts22-crosslingual-sts
1987
+ name: MTEB STS22 (en)
1988
+ config: en
1989
+ split: test
1990
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1991
+ metrics:
1992
+ - type: cos_sim_pearson
1993
+ value: 30.260087169228978
1994
+ - type: cos_sim_spearman
1995
+ value: 43.264174903196015
1996
+ - type: euclidean_pearson
1997
+ value: 35.07785877281954
1998
+ - type: euclidean_spearman
1999
+ value: 43.41294719372452
2000
+ - type: manhattan_pearson
2001
+ value: 36.74996284702431
2002
+ - type: manhattan_spearman
2003
+ value: 43.53522851890142
2004
+ - task:
2005
+ type: STS
2006
+ dataset:
2007
+ type: mteb/sts22-crosslingual-sts
2008
+ name: MTEB STS22 (de)
2009
+ config: de
2010
+ split: test
2011
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2012
+ metrics:
2013
+ - type: cos_sim_pearson
2014
+ value: 5.58694979115026
2015
+ - type: cos_sim_spearman
2016
+ value: 32.80692337371332
2017
+ - type: euclidean_pearson
2018
+ value: 10.53180875461474
2019
+ - type: euclidean_spearman
2020
+ value: 31.105269938654033
2021
+ - type: manhattan_pearson
2022
+ value: 10.559778015974826
2023
+ - type: manhattan_spearman
2024
+ value: 31.452204563072044
2025
+ - task:
2026
+ type: STS
2027
+ dataset:
2028
+ type: mteb/sts22-crosslingual-sts
2029
+ name: MTEB STS22 (es)
2030
+ config: es
2031
+ split: test
2032
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2033
+ metrics:
2034
+ - type: cos_sim_pearson
2035
+ value: 10.593783873928478
2036
+ - type: cos_sim_spearman
2037
+ value: 50.397542574042006
2038
+ - type: euclidean_pearson
2039
+ value: 28.122179063209714
2040
+ - type: euclidean_spearman
2041
+ value: 50.72847867996529
2042
+ - type: manhattan_pearson
2043
+ value: 28.730690148465005
2044
+ - type: manhattan_spearman
2045
+ value: 51.019761292483366
2046
+ - task:
2047
+ type: STS
2048
+ dataset:
2049
+ type: mteb/sts22-crosslingual-sts
2050
+ name: MTEB STS22 (pl)
2051
+ config: pl
2052
+ split: test
2053
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2054
+ metrics:
2055
+ - type: cos_sim_pearson
2056
+ value: -1.3049499265017876
2057
+ - type: cos_sim_spearman
2058
+ value: 16.347130048706084
2059
+ - type: euclidean_pearson
2060
+ value: 0.5710147274110128
2061
+ - type: euclidean_spearman
2062
+ value: 16.589843077857605
2063
+ - type: manhattan_pearson
2064
+ value: 1.1226404198336415
2065
+ - type: manhattan_spearman
2066
+ value: 16.410620108636557
2067
+ - task:
2068
+ type: STS
2069
+ dataset:
2070
+ type: mteb/sts22-crosslingual-sts
2071
+ name: MTEB STS22 (tr)
2072
+ config: tr
2073
+ split: test
2074
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2075
+ metrics:
2076
+ - type: cos_sim_pearson
2077
+ value: -10.96861909019159
2078
+ - type: cos_sim_spearman
2079
+ value: 24.536979219880724
2080
+ - type: euclidean_pearson
2081
+ value: -1.3040190807315306
2082
+ - type: euclidean_spearman
2083
+ value: 25.061584673761928
2084
+ - type: manhattan_pearson
2085
+ value: -0.06525719745037804
2086
+ - type: manhattan_spearman
2087
+ value: 25.979295538386893
2088
+ - task:
2089
+ type: STS
2090
+ dataset:
2091
+ type: mteb/sts22-crosslingual-sts
2092
+ name: MTEB STS22 (ar)
2093
+ config: ar
2094
+ split: test
2095
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2096
+ metrics:
2097
+ - type: cos_sim_pearson
2098
+ value: 1.0599417065503314
2099
+ - type: cos_sim_spearman
2100
+ value: 52.055853787103345
2101
+ - type: euclidean_pearson
2102
+ value: 23.666828441081776
2103
+ - type: euclidean_spearman
2104
+ value: 52.38656753170069
2105
+ - type: manhattan_pearson
2106
+ value: 23.398080463967215
2107
+ - type: manhattan_spearman
2108
+ value: 52.23849717509109
2109
+ - task:
2110
+ type: STS
2111
+ dataset:
2112
+ type: mteb/sts22-crosslingual-sts
2113
+ name: MTEB STS22 (ru)
2114
+ config: ru
2115
+ split: test
2116
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2117
+ metrics:
2118
+ - type: cos_sim_pearson
2119
+ value: -2.847646040977239
2120
+ - type: cos_sim_spearman
2121
+ value: 40.5826838357407
2122
+ - type: euclidean_pearson
2123
+ value: 9.242304983683113
2124
+ - type: euclidean_spearman
2125
+ value: 40.35906851022345
2126
+ - type: manhattan_pearson
2127
+ value: 9.645663412799504
2128
+ - type: manhattan_spearman
2129
+ value: 40.78106154950966
2130
+ - task:
2131
+ type: STS
2132
+ dataset:
2133
+ type: mteb/sts22-crosslingual-sts
2134
+ name: MTEB STS22 (zh)
2135
+ config: zh
2136
+ split: test
2137
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2138
+ metrics:
2139
+ - type: cos_sim_pearson
2140
+ value: 17.761397832130992
2141
+ - type: cos_sim_spearman
2142
+ value: 59.98756452345925
2143
+ - type: euclidean_pearson
2144
+ value: 37.03125109036693
2145
+ - type: euclidean_spearman
2146
+ value: 59.58469212715707
2147
+ - type: manhattan_pearson
2148
+ value: 36.828102137170724
2149
+ - type: manhattan_spearman
2150
+ value: 59.07036501478588
2151
+ - task:
2152
+ type: STS
2153
+ dataset:
2154
+ type: mteb/sts22-crosslingual-sts
2155
+ name: MTEB STS22 (fr)
2156
+ config: fr
2157
+ split: test
2158
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2159
+ metrics:
2160
+ - type: cos_sim_pearson
2161
+ value: 22.281212883400205
2162
+ - type: cos_sim_spearman
2163
+ value: 48.27687537627578
2164
+ - type: euclidean_pearson
2165
+ value: 30.531395629285324
2166
+ - type: euclidean_spearman
2167
+ value: 50.349143748970384
2168
+ - type: manhattan_pearson
2169
+ value: 30.48762081986554
2170
+ - type: manhattan_spearman
2171
+ value: 50.66037165529169
2172
+ - task:
2173
+ type: STS
2174
+ dataset:
2175
+ type: mteb/sts22-crosslingual-sts
2176
+ name: MTEB STS22 (de-en)
2177
+ config: de-en
2178
+ split: test
2179
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2180
+ metrics:
2181
+ - type: cos_sim_pearson
2182
+ value: 15.76679673990358
2183
+ - type: cos_sim_spearman
2184
+ value: 19.123349126370442
2185
+ - type: euclidean_pearson
2186
+ value: 19.21389203087116
2187
+ - type: euclidean_spearman
2188
+ value: 23.63276413160338
2189
+ - type: manhattan_pearson
2190
+ value: 18.789263824907053
2191
+ - type: manhattan_spearman
2192
+ value: 19.962703178974692
2193
+ - task:
2194
+ type: STS
2195
+ dataset:
2196
+ type: mteb/sts22-crosslingual-sts
2197
+ name: MTEB STS22 (es-en)
2198
+ config: es-en
2199
+ split: test
2200
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2201
+ metrics:
2202
+ - type: cos_sim_pearson
2203
+ value: 11.024970397289941
2204
+ - type: cos_sim_spearman
2205
+ value: 13.530951900755017
2206
+ - type: euclidean_pearson
2207
+ value: 13.473514585343645
2208
+ - type: euclidean_spearman
2209
+ value: 16.754702023734914
2210
+ - type: manhattan_pearson
2211
+ value: 13.72847275970385
2212
+ - type: manhattan_spearman
2213
+ value: 16.673001637012348
2214
+ - task:
2215
+ type: STS
2216
+ dataset:
2217
+ type: mteb/sts22-crosslingual-sts
2218
+ name: MTEB STS22 (it)
2219
+ config: it
2220
+ split: test
2221
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2222
+ metrics:
2223
+ - type: cos_sim_pearson
2224
+ value: 33.32761589409043
2225
+ - type: cos_sim_spearman
2226
+ value: 54.14305778960692
2227
+ - type: euclidean_pearson
2228
+ value: 45.30173241170555
2229
+ - type: euclidean_spearman
2230
+ value: 54.77422257007743
2231
+ - type: manhattan_pearson
2232
+ value: 45.41890064000217
2233
+ - type: manhattan_spearman
2234
+ value: 54.533788920795544
2235
+ - task:
2236
+ type: STS
2237
+ dataset:
2238
+ type: mteb/sts22-crosslingual-sts
2239
+ name: MTEB STS22 (pl-en)
2240
+ config: pl-en
2241
+ split: test
2242
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2243
+ metrics:
2244
+ - type: cos_sim_pearson
2245
+ value: 20.045210048995486
2246
+ - type: cos_sim_spearman
2247
+ value: 17.597101329633823
2248
+ - type: euclidean_pearson
2249
+ value: 32.531726142346145
2250
+ - type: euclidean_spearman
2251
+ value: 27.244772040848105
2252
+ - type: manhattan_pearson
2253
+ value: 32.74618458514601
2254
+ - type: manhattan_spearman
2255
+ value: 25.81220754539242
2256
+ - task:
2257
+ type: STS
2258
+ dataset:
2259
+ type: mteb/sts22-crosslingual-sts
2260
+ name: MTEB STS22 (zh-en)
2261
+ config: zh-en
2262
+ split: test
2263
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2264
+ metrics:
2265
+ - type: cos_sim_pearson
2266
+ value: -13.832846350193021
2267
+ - type: cos_sim_spearman
2268
+ value: -8.406778050457863
2269
+ - type: euclidean_pearson
2270
+ value: -6.557254855697437
2271
+ - type: euclidean_spearman
2272
+ value: -3.5112770921588563
2273
+ - type: manhattan_pearson
2274
+ value: -6.493730738275641
2275
+ - type: manhattan_spearman
2276
+ value: -2.5922348401468365
2277
+ - task:
2278
+ type: STS
2279
+ dataset:
2280
+ type: mteb/sts22-crosslingual-sts
2281
+ name: MTEB STS22 (es-it)
2282
+ config: es-it
2283
+ split: test
2284
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2285
+ metrics:
2286
+ - type: cos_sim_pearson
2287
+ value: 26.357929743436664
2288
+ - type: cos_sim_spearman
2289
+ value: 37.3417709718339
2290
+ - type: euclidean_pearson
2291
+ value: 30.930792572341293
2292
+ - type: euclidean_spearman
2293
+ value: 36.061866364725795
2294
+ - type: manhattan_pearson
2295
+ value: 31.56982745863155
2296
+ - type: manhattan_spearman
2297
+ value: 37.18529502311113
2298
+ - task:
2299
+ type: STS
2300
+ dataset:
2301
+ type: mteb/sts22-crosslingual-sts
2302
+ name: MTEB STS22 (de-fr)
2303
+ config: de-fr
2304
+ split: test
2305
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2306
+ metrics:
2307
+ - type: cos_sim_pearson
2308
+ value: 9.310102041071547
2309
+ - type: cos_sim_spearman
2310
+ value: 10.907002693108673
2311
+ - type: euclidean_pearson
2312
+ value: 7.361793742296021
2313
+ - type: euclidean_spearman
2314
+ value: 9.53967881391466
2315
+ - type: manhattan_pearson
2316
+ value: 8.017048631719996
2317
+ - type: manhattan_spearman
2318
+ value: 13.537860190039725
2319
+ - task:
2320
+ type: STS
2321
+ dataset:
2322
+ type: mteb/sts22-crosslingual-sts
2323
+ name: MTEB STS22 (de-pl)
2324
+ config: de-pl
2325
+ split: test
2326
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2327
+ metrics:
2328
+ - type: cos_sim_pearson
2329
+ value: -5.534456407419709
2330
+ - type: cos_sim_spearman
2331
+ value: 17.552638994787724
2332
+ - type: euclidean_pearson
2333
+ value: -10.136558594355556
2334
+ - type: euclidean_spearman
2335
+ value: 11.055083156366303
2336
+ - type: manhattan_pearson
2337
+ value: -11.799223055640773
2338
+ - type: manhattan_spearman
2339
+ value: 1.416528760982869
2340
+ - task:
2341
+ type: STS
2342
+ dataset:
2343
+ type: mteb/sts22-crosslingual-sts
2344
+ name: MTEB STS22 (fr-pl)
2345
+ config: fr-pl
2346
+ split: test
2347
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2348
+ metrics:
2349
+ - type: cos_sim_pearson
2350
+ value: 48.64639760720344
2351
+ - type: cos_sim_spearman
2352
+ value: 39.440531887330785
2353
+ - type: euclidean_pearson
2354
+ value: 37.75527464173489
2355
+ - type: euclidean_spearman
2356
+ value: 39.440531887330785
2357
+ - type: manhattan_pearson
2358
+ value: 32.324715276369474
2359
+ - type: manhattan_spearman
2360
+ value: 28.17180849095055
2361
+ - task:
2362
+ type: STS
2363
+ dataset:
2364
+ type: mteb/stsbenchmark-sts
2365
+ name: MTEB STSBenchmark
2366
+ config: default
2367
+ split: test
2368
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2369
+ metrics:
2370
+ - type: cos_sim_pearson
2371
+ value: 44.667456983937
2372
+ - type: cos_sim_spearman
2373
+ value: 46.04327333618551
2374
+ - type: euclidean_pearson
2375
+ value: 44.583522824155104
2376
+ - type: euclidean_spearman
2377
+ value: 44.77184813864239
2378
+ - type: manhattan_pearson
2379
+ value: 44.54496373721756
2380
+ - type: manhattan_spearman
2381
+ value: 44.830873857115996
2382
+ - task:
2383
+ type: Reranking
2384
+ dataset:
2385
+ type: mteb/scidocs-reranking
2386
+ name: MTEB SciDocsRR
2387
+ config: default
2388
+ split: test
2389
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2390
+ metrics:
2391
+ - type: map
2392
+ value: 49.756063724243
2393
+ - type: mrr
2394
+ value: 75.29077585450135
2395
+ - task:
2396
+ type: Retrieval
2397
+ dataset:
2398
+ type: scifact
2399
+ name: MTEB SciFact
2400
+ config: default
2401
+ split: test
2402
+ revision: None
2403
+ metrics:
2404
+ - type: map_at_1
2405
+ value: 14.194
2406
+ - type: map_at_10
2407
+ value: 18.756999999999998
2408
+ - type: map_at_100
2409
+ value: 19.743
2410
+ - type: map_at_1000
2411
+ value: 19.865
2412
+ - type: map_at_3
2413
+ value: 16.986
2414
+ - type: map_at_5
2415
+ value: 18.024
2416
+ - type: mrr_at_1
2417
+ value: 15.0
2418
+ - type: mrr_at_10
2419
+ value: 19.961000000000002
2420
+ - type: mrr_at_100
2421
+ value: 20.875
2422
+ - type: mrr_at_1000
2423
+ value: 20.982
2424
+ - type: mrr_at_3
2425
+ value: 18.056
2426
+ - type: mrr_at_5
2427
+ value: 19.406000000000002
2428
+ - type: ndcg_at_1
2429
+ value: 15.0
2430
+ - type: ndcg_at_10
2431
+ value: 21.775
2432
+ - type: ndcg_at_100
2433
+ value: 26.8
2434
+ - type: ndcg_at_1000
2435
+ value: 30.468
2436
+ - type: ndcg_at_3
2437
+ value: 18.199
2438
+ - type: ndcg_at_5
2439
+ value: 20.111
2440
+ - type: precision_at_1
2441
+ value: 15.0
2442
+ - type: precision_at_10
2443
+ value: 3.4000000000000004
2444
+ - type: precision_at_100
2445
+ value: 0.607
2446
+ - type: precision_at_1000
2447
+ value: 0.094
2448
+ - type: precision_at_3
2449
+ value: 7.444000000000001
2450
+ - type: precision_at_5
2451
+ value: 5.6000000000000005
2452
+ - type: recall_at_1
2453
+ value: 14.194
2454
+ - type: recall_at_10
2455
+ value: 30.0
2456
+ - type: recall_at_100
2457
+ value: 53.911
2458
+ - type: recall_at_1000
2459
+ value: 83.289
2460
+ - type: recall_at_3
2461
+ value: 20.556
2462
+ - type: recall_at_5
2463
+ value: 24.972
2464
+ - task:
2465
+ type: PairClassification
2466
+ dataset:
2467
+ type: mteb/sprintduplicatequestions-pairclassification
2468
+ name: MTEB SprintDuplicateQuestions
2469
+ config: default
2470
+ split: test
2471
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2472
+ metrics:
2473
+ - type: cos_sim_accuracy
2474
+ value: 99.35544554455446
2475
+ - type: cos_sim_ap
2476
+ value: 62.596006705300724
2477
+ - type: cos_sim_f1
2478
+ value: 60.80283353010627
2479
+ - type: cos_sim_precision
2480
+ value: 74.20749279538906
2481
+ - type: cos_sim_recall
2482
+ value: 51.5
2483
+ - type: dot_accuracy
2484
+ value: 99.13564356435643
2485
+ - type: dot_ap
2486
+ value: 43.87589686325114
2487
+ - type: dot_f1
2488
+ value: 46.99663623258049
2489
+ - type: dot_precision
2490
+ value: 45.235892691951896
2491
+ - type: dot_recall
2492
+ value: 48.9
2493
+ - type: euclidean_accuracy
2494
+ value: 99.2
2495
+ - type: euclidean_ap
2496
+ value: 43.44660755386079
2497
+ - type: euclidean_f1
2498
+ value: 45.9016393442623
2499
+ - type: euclidean_precision
2500
+ value: 52.79583875162549
2501
+ - type: euclidean_recall
2502
+ value: 40.6
2503
+ - type: manhattan_accuracy
2504
+ value: 99.2
2505
+ - type: manhattan_ap
2506
+ value: 43.11790011749347
2507
+ - type: manhattan_f1
2508
+ value: 45.11023176936122
2509
+ - type: manhattan_precision
2510
+ value: 51.88556566970091
2511
+ - type: manhattan_recall
2512
+ value: 39.900000000000006
2513
+ - type: max_accuracy
2514
+ value: 99.35544554455446
2515
+ - type: max_ap
2516
+ value: 62.596006705300724
2517
+ - type: max_f1
2518
+ value: 60.80283353010627
2519
+ - task:
2520
+ type: Clustering
2521
+ dataset:
2522
+ type: mteb/stackexchange-clustering
2523
+ name: MTEB StackExchangeClustering
2524
+ config: default
2525
+ split: test
2526
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2527
+ metrics:
2528
+ - type: v_measure
2529
+ value: 25.71674282500873
2530
+ - task:
2531
+ type: Clustering
2532
+ dataset:
2533
+ type: mteb/stackexchange-clustering-p2p
2534
+ name: MTEB StackExchangeClusteringP2P
2535
+ config: default
2536
+ split: test
2537
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2538
+ metrics:
2539
+ - type: v_measure
2540
+ value: 25.465780711520985
2541
+ - task:
2542
+ type: Reranking
2543
+ dataset:
2544
+ type: mteb/stackoverflowdupquestions-reranking
2545
+ name: MTEB StackOverflowDupQuestions
2546
+ config: default
2547
+ split: test
2548
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2549
+ metrics:
2550
+ - type: map
2551
+ value: 35.35656209427094
2552
+ - type: mrr
2553
+ value: 35.10693860877685
2554
+ - task:
2555
+ type: Retrieval
2556
+ dataset:
2557
+ type: trec-covid
2558
+ name: MTEB TRECCOVID
2559
+ config: default
2560
+ split: test
2561
+ revision: None
2562
+ metrics:
2563
+ - type: map_at_1
2564
+ value: 0.074
2565
+ - type: map_at_10
2566
+ value: 0.47400000000000003
2567
+ - type: map_at_100
2568
+ value: 1.825
2569
+ - type: map_at_1000
2570
+ value: 4.056
2571
+ - type: map_at_3
2572
+ value: 0.199
2573
+ - type: map_at_5
2574
+ value: 0.301
2575
+ - type: mrr_at_1
2576
+ value: 34.0
2577
+ - type: mrr_at_10
2578
+ value: 46.06
2579
+ - type: mrr_at_100
2580
+ value: 47.506
2581
+ - type: mrr_at_1000
2582
+ value: 47.522999999999996
2583
+ - type: mrr_at_3
2584
+ value: 44.0
2585
+ - type: mrr_at_5
2586
+ value: 44.4
2587
+ - type: ndcg_at_1
2588
+ value: 32.0
2589
+ - type: ndcg_at_10
2590
+ value: 28.633999999999997
2591
+ - type: ndcg_at_100
2592
+ value: 18.547
2593
+ - type: ndcg_at_1000
2594
+ value: 16.142
2595
+ - type: ndcg_at_3
2596
+ value: 32.48
2597
+ - type: ndcg_at_5
2598
+ value: 31.163999999999998
2599
+ - type: precision_at_1
2600
+ value: 34.0
2601
+ - type: precision_at_10
2602
+ value: 30.4
2603
+ - type: precision_at_100
2604
+ value: 18.54
2605
+ - type: precision_at_1000
2606
+ value: 7.942
2607
+ - type: precision_at_3
2608
+ value: 35.333
2609
+ - type: precision_at_5
2610
+ value: 34.0
2611
+ - type: recall_at_1
2612
+ value: 0.074
2613
+ - type: recall_at_10
2614
+ value: 0.641
2615
+ - type: recall_at_100
2616
+ value: 3.675
2617
+ - type: recall_at_1000
2618
+ value: 15.706000000000001
2619
+ - type: recall_at_3
2620
+ value: 0.231
2621
+ - type: recall_at_5
2622
+ value: 0.367
2623
+ - task:
2624
+ type: Classification
2625
+ dataset:
2626
+ type: mteb/toxic_conversations_50k
2627
+ name: MTEB ToxicConversationsClassification
2628
+ config: default
2629
+ split: test
2630
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2631
+ metrics:
2632
+ - type: accuracy
2633
+ value: 54.625600000000006
2634
+ - type: ap
2635
+ value: 9.425323874806459
2636
+ - type: f1
2637
+ value: 42.38724794017267
2638
+ - task:
2639
+ type: Classification
2640
+ dataset:
2641
+ type: mteb/tweet_sentiment_extraction
2642
+ name: MTEB TweetSentimentExtractionClassification
2643
+ config: default
2644
+ split: test
2645
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2646
+ metrics:
2647
+ - type: accuracy
2648
+ value: 42.8494623655914
2649
+ - type: f1
2650
+ value: 42.66062148844617
2651
+ - task:
2652
+ type: Clustering
2653
+ dataset:
2654
+ type: mteb/twentynewsgroups-clustering
2655
+ name: MTEB TwentyNewsgroupsClustering
2656
+ config: default
2657
+ split: test
2658
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2659
+ metrics:
2660
+ - type: v_measure
2661
+ value: 12.464890895237952
2662
+ - task:
2663
+ type: PairClassification
2664
+ dataset:
2665
+ type: mteb/twittersemeval2015-pairclassification
2666
+ name: MTEB TwitterSemEval2015
2667
+ config: default
2668
+ split: test
2669
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2670
+ metrics:
2671
+ - type: cos_sim_accuracy
2672
+ value: 79.97854205161829
2673
+ - type: cos_sim_ap
2674
+ value: 47.45175747605773
2675
+ - type: cos_sim_f1
2676
+ value: 46.55775962660444
2677
+ - type: cos_sim_precision
2678
+ value: 41.73640167364017
2679
+ - type: cos_sim_recall
2680
+ value: 52.638522427440634
2681
+ - type: dot_accuracy
2682
+ value: 77.76718126005842
2683
+ - type: dot_ap
2684
+ value: 35.97737653101504
2685
+ - type: dot_f1
2686
+ value: 41.1975475754439
2687
+ - type: dot_precision
2688
+ value: 29.50165355228646
2689
+ - type: dot_recall
2690
+ value: 68.25857519788919
2691
+ - type: euclidean_accuracy
2692
+ value: 79.34076414138403
2693
+ - type: euclidean_ap
2694
+ value: 45.309577778755134
2695
+ - type: euclidean_f1
2696
+ value: 45.09938313913639
2697
+ - type: euclidean_precision
2698
+ value: 39.76631748589847
2699
+ - type: euclidean_recall
2700
+ value: 52.0844327176781
2701
+ - type: manhattan_accuracy
2702
+ value: 79.31692197651546
2703
+ - type: manhattan_ap
2704
+ value: 45.2433373222626
2705
+ - type: manhattan_f1
2706
+ value: 45.04624986069319
2707
+ - type: manhattan_precision
2708
+ value: 38.99286127725256
2709
+ - type: manhattan_recall
2710
+ value: 53.324538258575195
2711
+ - type: max_accuracy
2712
+ value: 79.97854205161829
2713
+ - type: max_ap
2714
+ value: 47.45175747605773
2715
+ - type: max_f1
2716
+ value: 46.55775962660444
2717
+ - task:
2718
+ type: PairClassification
2719
+ dataset:
2720
+ type: mteb/twitterurlcorpus-pairclassification
2721
+ name: MTEB TwitterURLCorpus
2722
+ config: default
2723
+ split: test
2724
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2725
+ metrics:
2726
+ - type: cos_sim_accuracy
2727
+ value: 81.76737687740133
2728
+ - type: cos_sim_ap
2729
+ value: 64.59241956109807
2730
+ - type: cos_sim_f1
2731
+ value: 57.83203629255339
2732
+ - type: cos_sim_precision
2733
+ value: 55.50442477876106
2734
+ - type: cos_sim_recall
2735
+ value: 60.363412380659064
2736
+ - type: dot_accuracy
2737
+ value: 78.96922420149805
2738
+ - type: dot_ap
2739
+ value: 56.11775087282065
2740
+ - type: dot_f1
2741
+ value: 52.92134831460675
2742
+ - type: dot_precision
2743
+ value: 51.524212368728115
2744
+ - type: dot_recall
2745
+ value: 54.39636587619341
2746
+ - type: euclidean_accuracy
2747
+ value: 80.8611790274382
2748
+ - type: euclidean_ap
2749
+ value: 61.28070098354092
2750
+ - type: euclidean_f1
2751
+ value: 54.58334971882497
2752
+ - type: euclidean_precision
2753
+ value: 55.783297162607504
2754
+ - type: euclidean_recall
2755
+ value: 53.43393902063443
2756
+ - type: manhattan_accuracy
2757
+ value: 80.72534637326814
2758
+ - type: manhattan_ap
2759
+ value: 61.18048430787254
2760
+ - type: manhattan_f1
2761
+ value: 54.50978912822061
2762
+ - type: manhattan_precision
2763
+ value: 53.435396790178245
2764
+ - type: manhattan_recall
2765
+ value: 55.6282722513089
2766
+ - type: max_accuracy
2767
+ value: 81.76737687740133
2768
+ - type: max_ap
2769
+ value: 64.59241956109807
2770
+ - type: max_f1
2771
+ value: 57.83203629255339
2772
+ ---
mean_pooling/Touche2020.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": null,
3
+ "mteb_dataset_name": "Touche2020",
4
+ "mteb_version": "1.1.1",
5
+ "test": {
6
+ "evaluation_time": 570.16,
7
+ "map_at_1": 0.0068,
8
+ "map_at_10": 0.02142,
9
+ "map_at_100": 0.02888,
10
+ "map_at_1000": 0.03378,
11
+ "map_at_3": 0.01486,
12
+ "map_at_5": 0.01758,
13
+ "mrr_at_1": 0.12245,
14
+ "mrr_at_10": 0.2212,
15
+ "mrr_at_100": 0.23407,
16
+ "mrr_at_1000": 0.23484,
17
+ "mrr_at_3": 0.19048,
18
+ "mrr_at_5": 0.20986,
19
+ "ndcg_at_1": 0.10204,
20
+ "ndcg_at_10": 0.07374,
21
+ "ndcg_at_100": 0.10524,
22
+ "ndcg_at_1000": 0.184,
23
+ "ndcg_at_3": 0.09913,
24
+ "ndcg_at_5": 0.08938,
25
+ "precision_at_1": 0.12245,
26
+ "precision_at_10": 0.07143,
27
+ "precision_at_100": 0.02449,
28
+ "precision_at_1000": 0.00731,
29
+ "precision_at_3": 0.11565,
30
+ "precision_at_5": 0.09796,
31
+ "recall_at_1": 0.0068,
32
+ "recall_at_10": 0.04038,
33
+ "recall_at_100": 0.14151,
34
+ "recall_at_1000": 0.40112,
35
+ "recall_at_3": 0.01921,
36
+ "recall_at_5": 0.02604
37
+ }
38
+ }
mean_pooling/mteb_metadata.md CHANGED
@@ -64,6 +64,21 @@ model-index:
64
  value: 14.367489440317666
65
  - type: f1
66
  value: 50.48473578289779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  - task:
68
  type: Classification
69
  dataset:
@@ -211,6 +226,17 @@ model-index:
211
  value: 12.447
212
  - type: recall_at_5
213
  value: 16.145
 
 
 
 
 
 
 
 
 
 
 
214
  - task:
215
  type: Clustering
216
  dataset:
@@ -1119,259 +1145,1930 @@ model-index:
1119
  value: 6.784
1120
  - type: recall_at_5
1121
  value: 8.17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122
  - task:
1123
  type: Classification
1124
  dataset:
1125
- type: mteb/emotion
1126
- name: MTEB EmotionClassification
1127
- config: default
1128
  split: test
1129
- revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1130
  metrics:
1131
  - type: accuracy
1132
- value: 23.279999999999998
1133
  - type: f1
1134
- value: 19.87865985032945
1135
  - task:
1136
- type: Retrieval
1137
  dataset:
1138
- type: fiqa
1139
- name: MTEB FiQA2018
1140
- config: default
1141
  split: test
1142
- revision: None
1143
  metrics:
1144
- - type: map_at_1
1145
- value: 1.166
1146
- - type: map_at_10
1147
- value: 2.283
1148
- - type: map_at_100
1149
- value: 2.564
1150
- - type: map_at_1000
1151
- value: 2.6519999999999997
1152
- - type: map_at_3
1153
- value: 1.867
1154
- - type: map_at_5
1155
- value: 2.0500000000000003
1156
- - type: mrr_at_1
1157
- value: 2.932
1158
- - type: mrr_at_10
1159
- value: 4.852
1160
- - type: mrr_at_100
1161
- value: 5.306
1162
- - type: mrr_at_1000
1163
- value: 5.4
1164
- - type: mrr_at_3
1165
- value: 4.141
1166
- - type: mrr_at_5
1167
- value: 4.457
1168
- - type: ndcg_at_1
1169
- value: 2.932
1170
- - type: ndcg_at_10
1171
- value: 3.5709999999999997
1172
- - type: ndcg_at_100
1173
- value: 5.489
1174
- - type: ndcg_at_1000
1175
- value: 8.309999999999999
1176
- - type: ndcg_at_3
1177
- value: 2.773
1178
- - type: ndcg_at_5
1179
- value: 2.979
1180
- - type: precision_at_1
1181
- value: 2.932
1182
- - type: precision_at_10
1183
- value: 1.049
1184
- - type: precision_at_100
1185
- value: 0.306
1186
- - type: precision_at_1000
1187
- value: 0.077
1188
- - type: precision_at_3
1189
- value: 1.8519999999999999
1190
- - type: precision_at_5
1191
- value: 1.389
1192
- - type: recall_at_1
1193
- value: 1.166
1194
- - type: recall_at_10
1195
- value: 5.178
1196
- - type: recall_at_100
1197
- value: 13.056999999999999
1198
- - type: recall_at_1000
1199
- value: 31.708
1200
- - type: recall_at_3
1201
- value: 2.714
1202
- - type: recall_at_5
1203
- value: 3.4909999999999997
1204
  - task:
1205
  type: Classification
1206
  dataset:
1207
- type: mteb/imdb
1208
- name: MTEB ImdbClassification
1209
- config: default
1210
  split: test
1211
- revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1212
  metrics:
1213
  - type: accuracy
1214
- value: 56.96359999999999
1215
- - type: ap
1216
- value: 54.16760114570921
1217
  - type: f1
1218
- value: 56.193845361069116
1219
  - task:
1220
  type: Classification
1221
  dataset:
1222
- type: mteb/mtop_domain
1223
- name: MTEB MTOPDomainClassification (en)
1224
- config: en
1225
  split: test
1226
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1227
  metrics:
1228
  - type: accuracy
1229
- value: 64.39808481532147
1230
  - type: f1
1231
- value: 63.468270818712625
1232
  - task:
1233
  type: Classification
1234
  dataset:
1235
- type: mteb/mtop_domain
1236
- name: MTEB MTOPDomainClassification (de)
1237
- config: de
1238
  split: test
1239
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1240
  metrics:
1241
  - type: accuracy
1242
- value: 53.961679346294744
1243
  - type: f1
1244
- value: 51.6707117653683
1245
  - task:
1246
  type: Classification
1247
  dataset:
1248
- type: mteb/mtop_domain
1249
- name: MTEB MTOPDomainClassification (es)
1250
- config: es
1251
  split: test
1252
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1253
  metrics:
1254
  - type: accuracy
1255
- value: 57.018012008005336
1256
  - type: f1
1257
- value: 54.23413458037234
1258
  - task:
1259
  type: Classification
1260
  dataset:
1261
- type: mteb/mtop_domain
1262
- name: MTEB MTOPDomainClassification (fr)
1263
- config: fr
1264
  split: test
1265
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1266
  metrics:
1267
  - type: accuracy
1268
- value: 48.84434700908236
1269
  - type: f1
1270
- value: 46.48494180527987
1271
  - task:
1272
  type: Classification
1273
  dataset:
1274
- type: mteb/mtop_domain
1275
- name: MTEB MTOPDomainClassification (hi)
1276
- config: hi
1277
  split: test
1278
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1279
  metrics:
1280
  - type: accuracy
1281
- value: 39.7669415561133
1282
  - type: f1
1283
- value: 35.50974325529877
1284
  - task:
1285
  type: Classification
1286
  dataset:
1287
- type: mteb/mtop_domain
1288
- name: MTEB MTOPDomainClassification (th)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289
  config: th
1290
  split: test
1291
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1292
  metrics:
1293
  - type: accuracy
1294
- value: 42.589511754068724
1295
  - type: f1
1296
- value: 40.47244422785889
1297
  - task:
1298
  type: Classification
1299
  dataset:
1300
- type: mteb/mtop_intent
1301
- name: MTEB MTOPIntentClassification (en)
1302
- config: en
1303
  split: test
1304
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1305
  metrics:
1306
  - type: accuracy
1307
- value: 34.01276789785682
1308
  - type: f1
1309
- value: 21.256775922291286
1310
  - task:
1311
  type: Classification
1312
  dataset:
1313
- type: mteb/mtop_intent
1314
- name: MTEB MTOPIntentClassification (de)
1315
- config: de
1316
  split: test
1317
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1318
  metrics:
1319
  - type: accuracy
1320
- value: 33.285432516201745
1321
  - type: f1
1322
- value: 19.841703666811565
1323
  - task:
1324
  type: Classification
1325
  dataset:
1326
- type: mteb/mtop_intent
1327
- name: MTEB MTOPIntentClassification (es)
1328
- config: es
1329
  split: test
1330
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1331
  metrics:
1332
  - type: accuracy
1333
- value: 32.121414276184126
1334
  - type: f1
1335
- value: 19.34706868150749
1336
  - task:
1337
  type: Classification
1338
  dataset:
1339
- type: mteb/mtop_intent
1340
- name: MTEB MTOPIntentClassification (fr)
1341
- config: fr
1342
  split: test
1343
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1344
  metrics:
1345
  - type: accuracy
1346
- value: 26.088318196053866
1347
  - type: f1
1348
- value: 17.22608011891254
1349
  - task:
1350
  type: Classification
1351
  dataset:
1352
- type: mteb/mtop_intent
1353
- name: MTEB MTOPIntentClassification (hi)
1354
- config: hi
1355
  split: test
1356
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1357
  metrics:
1358
  - type: accuracy
1359
- value: 15.320903549659375
1360
  - type: f1
1361
- value: 9.62002916015258
1362
  - task:
1363
  type: Classification
1364
  dataset:
1365
- type: mteb/mtop_intent
1366
- name: MTEB MTOPIntentClassification (th)
1367
- config: th
1368
  split: test
1369
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1370
  metrics:
1371
  - type: accuracy
1372
- value: 16.426763110307412
1373
  - type: f1
1374
- value: 11.023799171137183
1375
  - task:
1376
  type: Clustering
1377
  dataset:
@@ -1394,6 +3091,19 @@ model-index:
1394
  metrics:
1395
  - type: v_measure
1396
  value: 16.58582885790446
 
 
 
 
 
 
 
 
 
 
 
 
 
1397
  - task:
1398
  type: Retrieval
1399
  dataset:
@@ -1463,6 +3173,75 @@ model-index:
1463
  value: 1.702
1464
  - type: recall_at_5
1465
  value: 1.9879999999999998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466
  - task:
1467
  type: Retrieval
1468
  dataset:
@@ -2620,6 +4399,75 @@ model-index:
2620
  value: 0.231
2621
  - type: recall_at_5
2622
  value: 0.367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2623
  - task:
2624
  type: Classification
2625
  dataset:
@@ -2768,5 +4616,4 @@ model-index:
2768
  - type: max_ap
2769
  value: 64.59241956109807
2770
  - type: max_f1
2771
- value: 57.83203629255339
2772
- ---
 
64
  value: 14.367489440317666
65
  - type: f1
66
  value: 50.48473578289779
67
+ - task:
68
+ type: Classification
69
+ dataset:
70
+ type: mteb/amazon_polarity
71
+ name: MTEB AmazonPolarityClassification
72
+ config: default
73
+ split: test
74
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
75
+ metrics:
76
+ - type: accuracy
77
+ value: 57.567425000000014
78
+ - type: ap
79
+ value: 54.53026421737829
80
+ - type: f1
81
+ value: 56.60093061259046
82
  - task:
83
  type: Classification
84
  dataset:
 
226
  value: 12.447
227
  - type: recall_at_5
228
  value: 16.145
229
+ - task:
230
+ type: Clustering
231
+ dataset:
232
+ type: mteb/arxiv-clustering-p2p
233
+ name: MTEB ArxivClusteringP2P
234
+ config: default
235
+ split: test
236
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
237
+ metrics:
238
+ - type: v_measure
239
+ value: 25.92658946113241
240
  - task:
241
  type: Clustering
242
  dataset:
 
1145
  value: 6.784
1146
  - type: recall_at_5
1147
  value: 8.17
1148
+ - task:
1149
+ type: Retrieval
1150
+ dataset:
1151
+ type: climate-fever
1152
+ name: MTEB ClimateFEVER
1153
+ config: default
1154
+ split: test
1155
+ revision: None
1156
+ metrics:
1157
+ - type: map_at_1
1158
+ value: 2.09
1159
+ - type: map_at_10
1160
+ value: 3.469
1161
+ - type: map_at_100
1162
+ value: 3.93
1163
+ - type: map_at_1000
1164
+ value: 4.018
1165
+ - type: map_at_3
1166
+ value: 2.8209999999999997
1167
+ - type: map_at_5
1168
+ value: 3.144
1169
+ - type: mrr_at_1
1170
+ value: 4.756
1171
+ - type: mrr_at_10
1172
+ value: 7.853000000000001
1173
+ - type: mrr_at_100
1174
+ value: 8.547
1175
+ - type: mrr_at_1000
1176
+ value: 8.631
1177
+ - type: mrr_at_3
1178
+ value: 6.569
1179
+ - type: mrr_at_5
1180
+ value: 7.249999999999999
1181
+ - type: ndcg_at_1
1182
+ value: 4.756
1183
+ - type: ndcg_at_10
1184
+ value: 5.494000000000001
1185
+ - type: ndcg_at_100
1186
+ value: 8.275
1187
+ - type: ndcg_at_1000
1188
+ value: 10.892
1189
+ - type: ndcg_at_3
1190
+ value: 4.091
1191
+ - type: ndcg_at_5
1192
+ value: 4.588
1193
+ - type: precision_at_1
1194
+ value: 4.756
1195
+ - type: precision_at_10
1196
+ value: 1.8370000000000002
1197
+ - type: precision_at_100
1198
+ value: 0.475
1199
+ - type: precision_at_1000
1200
+ value: 0.094
1201
+ - type: precision_at_3
1202
+ value: 3.018
1203
+ - type: precision_at_5
1204
+ value: 2.528
1205
+ - type: recall_at_1
1206
+ value: 2.09
1207
+ - type: recall_at_10
1208
+ value: 7.127
1209
+ - type: recall_at_100
1210
+ value: 17.483999999999998
1211
+ - type: recall_at_1000
1212
+ value: 33.353
1213
+ - type: recall_at_3
1214
+ value: 3.742
1215
+ - type: recall_at_5
1216
+ value: 5.041
1217
+ - task:
1218
+ type: Retrieval
1219
+ dataset:
1220
+ type: dbpedia-entity
1221
+ name: MTEB DBPedia
1222
+ config: default
1223
+ split: test
1224
+ revision: None
1225
+ metrics:
1226
+ - type: map_at_1
1227
+ value: 0.573
1228
+ - type: map_at_10
1229
+ value: 1.282
1230
+ - type: map_at_100
1231
+ value: 1.625
1232
+ - type: map_at_1000
1233
+ value: 1.71
1234
+ - type: map_at_3
1235
+ value: 1.0
1236
+ - type: map_at_5
1237
+ value: 1.135
1238
+ - type: mrr_at_1
1239
+ value: 7.000000000000001
1240
+ - type: mrr_at_10
1241
+ value: 11.084
1242
+ - type: mrr_at_100
1243
+ value: 11.634
1244
+ - type: mrr_at_1000
1245
+ value: 11.715
1246
+ - type: mrr_at_3
1247
+ value: 9.792
1248
+ - type: mrr_at_5
1249
+ value: 10.404
1250
+ - type: ndcg_at_1
1251
+ value: 4.375
1252
+ - type: ndcg_at_10
1253
+ value: 3.7800000000000002
1254
+ - type: ndcg_at_100
1255
+ value: 4.353
1256
+ - type: ndcg_at_1000
1257
+ value: 6.087
1258
+ - type: ndcg_at_3
1259
+ value: 4.258
1260
+ - type: ndcg_at_5
1261
+ value: 3.988
1262
+ - type: precision_at_1
1263
+ value: 7.000000000000001
1264
+ - type: precision_at_10
1265
+ value: 3.35
1266
+ - type: precision_at_100
1267
+ value: 1.057
1268
+ - type: precision_at_1000
1269
+ value: 0.243
1270
+ - type: precision_at_3
1271
+ value: 5.75
1272
+ - type: precision_at_5
1273
+ value: 4.6
1274
+ - type: recall_at_1
1275
+ value: 0.573
1276
+ - type: recall_at_10
1277
+ value: 2.464
1278
+ - type: recall_at_100
1279
+ value: 5.6770000000000005
1280
+ - type: recall_at_1000
1281
+ value: 12.516
1282
+ - type: recall_at_3
1283
+ value: 1.405
1284
+ - type: recall_at_5
1285
+ value: 1.807
1286
+ - task:
1287
+ type: Classification
1288
+ dataset:
1289
+ type: mteb/emotion
1290
+ name: MTEB EmotionClassification
1291
+ config: default
1292
+ split: test
1293
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1294
+ metrics:
1295
+ - type: accuracy
1296
+ value: 23.279999999999998
1297
+ - type: f1
1298
+ value: 19.87865985032945
1299
+ - task:
1300
+ type: Retrieval
1301
+ dataset:
1302
+ type: fever
1303
+ name: MTEB FEVER
1304
+ config: default
1305
+ split: test
1306
+ revision: None
1307
+ metrics:
1308
+ - type: map_at_1
1309
+ value: 3.145
1310
+ - type: map_at_10
1311
+ value: 4.721
1312
+ - type: map_at_100
1313
+ value: 5.086
1314
+ - type: map_at_1000
1315
+ value: 5.142
1316
+ - type: map_at_3
1317
+ value: 4.107
1318
+ - type: map_at_5
1319
+ value: 4.45
1320
+ - type: mrr_at_1
1321
+ value: 3.27
1322
+ - type: mrr_at_10
1323
+ value: 4.958
1324
+ - type: mrr_at_100
1325
+ value: 5.35
1326
+ - type: mrr_at_1000
1327
+ value: 5.409
1328
+ - type: mrr_at_3
1329
+ value: 4.303
1330
+ - type: mrr_at_5
1331
+ value: 4.6739999999999995
1332
+ - type: ndcg_at_1
1333
+ value: 3.27
1334
+ - type: ndcg_at_10
1335
+ value: 5.768
1336
+ - type: ndcg_at_100
1337
+ value: 7.854
1338
+ - type: ndcg_at_1000
1339
+ value: 9.729000000000001
1340
+ - type: ndcg_at_3
1341
+ value: 4.476
1342
+ - type: ndcg_at_5
1343
+ value: 5.102
1344
+ - type: precision_at_1
1345
+ value: 3.27
1346
+ - type: precision_at_10
1347
+ value: 0.942
1348
+ - type: precision_at_100
1349
+ value: 0.20600000000000002
1350
+ - type: precision_at_1000
1351
+ value: 0.038
1352
+ - type: precision_at_3
1353
+ value: 1.8849999999999998
1354
+ - type: precision_at_5
1355
+ value: 1.455
1356
+ - type: recall_at_1
1357
+ value: 3.145
1358
+ - type: recall_at_10
1359
+ value: 8.889
1360
+ - type: recall_at_100
1361
+ value: 19.092000000000002
1362
+ - type: recall_at_1000
1363
+ value: 34.35
1364
+ - type: recall_at_3
1365
+ value: 5.353
1366
+ - type: recall_at_5
1367
+ value: 6.836
1368
+ - task:
1369
+ type: Retrieval
1370
+ dataset:
1371
+ type: fiqa
1372
+ name: MTEB FiQA2018
1373
+ config: default
1374
+ split: test
1375
+ revision: None
1376
+ metrics:
1377
+ - type: map_at_1
1378
+ value: 1.166
1379
+ - type: map_at_10
1380
+ value: 2.283
1381
+ - type: map_at_100
1382
+ value: 2.564
1383
+ - type: map_at_1000
1384
+ value: 2.6519999999999997
1385
+ - type: map_at_3
1386
+ value: 1.867
1387
+ - type: map_at_5
1388
+ value: 2.0500000000000003
1389
+ - type: mrr_at_1
1390
+ value: 2.932
1391
+ - type: mrr_at_10
1392
+ value: 4.852
1393
+ - type: mrr_at_100
1394
+ value: 5.306
1395
+ - type: mrr_at_1000
1396
+ value: 5.4
1397
+ - type: mrr_at_3
1398
+ value: 4.141
1399
+ - type: mrr_at_5
1400
+ value: 4.457
1401
+ - type: ndcg_at_1
1402
+ value: 2.932
1403
+ - type: ndcg_at_10
1404
+ value: 3.5709999999999997
1405
+ - type: ndcg_at_100
1406
+ value: 5.489
1407
+ - type: ndcg_at_1000
1408
+ value: 8.309999999999999
1409
+ - type: ndcg_at_3
1410
+ value: 2.773
1411
+ - type: ndcg_at_5
1412
+ value: 2.979
1413
+ - type: precision_at_1
1414
+ value: 2.932
1415
+ - type: precision_at_10
1416
+ value: 1.049
1417
+ - type: precision_at_100
1418
+ value: 0.306
1419
+ - type: precision_at_1000
1420
+ value: 0.077
1421
+ - type: precision_at_3
1422
+ value: 1.8519999999999999
1423
+ - type: precision_at_5
1424
+ value: 1.389
1425
+ - type: recall_at_1
1426
+ value: 1.166
1427
+ - type: recall_at_10
1428
+ value: 5.178
1429
+ - type: recall_at_100
1430
+ value: 13.056999999999999
1431
+ - type: recall_at_1000
1432
+ value: 31.708
1433
+ - type: recall_at_3
1434
+ value: 2.714
1435
+ - type: recall_at_5
1436
+ value: 3.4909999999999997
1437
+ - task:
1438
+ type: Retrieval
1439
+ dataset:
1440
+ type: hotpotqa
1441
+ name: MTEB HotpotQA
1442
+ config: default
1443
+ split: test
1444
+ revision: None
1445
+ metrics:
1446
+ - type: map_at_1
1447
+ value: 6.138
1448
+ - type: map_at_10
1449
+ value: 8.212
1450
+ - type: map_at_100
1451
+ value: 8.548
1452
+ - type: map_at_1000
1453
+ value: 8.604000000000001
1454
+ - type: map_at_3
1455
+ value: 7.555000000000001
1456
+ - type: map_at_5
1457
+ value: 7.881
1458
+ - type: mrr_at_1
1459
+ value: 12.275
1460
+ - type: mrr_at_10
1461
+ value: 15.49
1462
+ - type: mrr_at_100
1463
+ value: 15.978
1464
+ - type: mrr_at_1000
1465
+ value: 16.043
1466
+ - type: mrr_at_3
1467
+ value: 14.488000000000001
1468
+ - type: mrr_at_5
1469
+ value: 14.975
1470
+ - type: ndcg_at_1
1471
+ value: 12.275
1472
+ - type: ndcg_at_10
1473
+ value: 11.078000000000001
1474
+ - type: ndcg_at_100
1475
+ value: 13.081999999999999
1476
+ - type: ndcg_at_1000
1477
+ value: 14.906
1478
+ - type: ndcg_at_3
1479
+ value: 9.574
1480
+ - type: ndcg_at_5
1481
+ value: 10.206999999999999
1482
+ - type: precision_at_1
1483
+ value: 12.275
1484
+ - type: precision_at_10
1485
+ value: 2.488
1486
+ - type: precision_at_100
1487
+ value: 0.41200000000000003
1488
+ - type: precision_at_1000
1489
+ value: 0.066
1490
+ - type: precision_at_3
1491
+ value: 5.991
1492
+ - type: precision_at_5
1493
+ value: 4.0969999999999995
1494
+ - type: recall_at_1
1495
+ value: 6.138
1496
+ - type: recall_at_10
1497
+ value: 12.438
1498
+ - type: recall_at_100
1499
+ value: 20.601
1500
+ - type: recall_at_1000
1501
+ value: 32.984
1502
+ - type: recall_at_3
1503
+ value: 8.987
1504
+ - type: recall_at_5
1505
+ value: 10.242999999999999
1506
+ - task:
1507
+ type: Classification
1508
+ dataset:
1509
+ type: mteb/imdb
1510
+ name: MTEB ImdbClassification
1511
+ config: default
1512
+ split: test
1513
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1514
+ metrics:
1515
+ - type: accuracy
1516
+ value: 56.96359999999999
1517
+ - type: ap
1518
+ value: 54.16760114570921
1519
+ - type: f1
1520
+ value: 56.193845361069116
1521
+ - task:
1522
+ type: Retrieval
1523
+ dataset:
1524
+ type: msmarco
1525
+ name: MTEB MSMARCO
1526
+ config: default
1527
+ split: dev
1528
+ revision: None
1529
+ metrics:
1530
+ - type: map_at_1
1531
+ value: 1.34
1532
+ - type: map_at_10
1533
+ value: 2.2190000000000003
1534
+ - type: map_at_100
1535
+ value: 2.427
1536
+ - type: map_at_1000
1537
+ value: 2.461
1538
+ - type: map_at_3
1539
+ value: 1.8610000000000002
1540
+ - type: map_at_5
1541
+ value: 2.0340000000000003
1542
+ - type: mrr_at_1
1543
+ value: 1.375
1544
+ - type: mrr_at_10
1545
+ value: 2.284
1546
+ - type: mrr_at_100
1547
+ value: 2.5
1548
+ - type: mrr_at_1000
1549
+ value: 2.535
1550
+ - type: mrr_at_3
1551
+ value: 1.913
1552
+ - type: mrr_at_5
1553
+ value: 2.094
1554
+ - type: ndcg_at_1
1555
+ value: 1.375
1556
+ - type: ndcg_at_10
1557
+ value: 2.838
1558
+ - type: ndcg_at_100
1559
+ value: 4.043
1560
+ - type: ndcg_at_1000
1561
+ value: 5.205
1562
+ - type: ndcg_at_3
1563
+ value: 2.0629999999999997
1564
+ - type: ndcg_at_5
1565
+ value: 2.387
1566
+ - type: precision_at_1
1567
+ value: 1.375
1568
+ - type: precision_at_10
1569
+ value: 0.496
1570
+ - type: precision_at_100
1571
+ value: 0.11399999999999999
1572
+ - type: precision_at_1000
1573
+ value: 0.022000000000000002
1574
+ - type: precision_at_3
1575
+ value: 0.898
1576
+ - type: precision_at_5
1577
+ value: 0.705
1578
+ - type: recall_at_1
1579
+ value: 1.34
1580
+ - type: recall_at_10
1581
+ value: 4.787
1582
+ - type: recall_at_100
1583
+ value: 10.759
1584
+ - type: recall_at_1000
1585
+ value: 20.362
1586
+ - type: recall_at_3
1587
+ value: 2.603
1588
+ - type: recall_at_5
1589
+ value: 3.398
1590
+ - task:
1591
+ type: Classification
1592
+ dataset:
1593
+ type: mteb/mtop_domain
1594
+ name: MTEB MTOPDomainClassification (en)
1595
+ config: en
1596
+ split: test
1597
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1598
+ metrics:
1599
+ - type: accuracy
1600
+ value: 64.39808481532147
1601
+ - type: f1
1602
+ value: 63.468270818712625
1603
+ - task:
1604
+ type: Classification
1605
+ dataset:
1606
+ type: mteb/mtop_domain
1607
+ name: MTEB MTOPDomainClassification (de)
1608
+ config: de
1609
+ split: test
1610
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1611
+ metrics:
1612
+ - type: accuracy
1613
+ value: 53.961679346294744
1614
+ - type: f1
1615
+ value: 51.6707117653683
1616
+ - task:
1617
+ type: Classification
1618
+ dataset:
1619
+ type: mteb/mtop_domain
1620
+ name: MTEB MTOPDomainClassification (es)
1621
+ config: es
1622
+ split: test
1623
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1624
+ metrics:
1625
+ - type: accuracy
1626
+ value: 57.018012008005336
1627
+ - type: f1
1628
+ value: 54.23413458037234
1629
+ - task:
1630
+ type: Classification
1631
+ dataset:
1632
+ type: mteb/mtop_domain
1633
+ name: MTEB MTOPDomainClassification (fr)
1634
+ config: fr
1635
+ split: test
1636
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1637
+ metrics:
1638
+ - type: accuracy
1639
+ value: 48.84434700908236
1640
+ - type: f1
1641
+ value: 46.48494180527987
1642
+ - task:
1643
+ type: Classification
1644
+ dataset:
1645
+ type: mteb/mtop_domain
1646
+ name: MTEB MTOPDomainClassification (hi)
1647
+ config: hi
1648
+ split: test
1649
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1650
+ metrics:
1651
+ - type: accuracy
1652
+ value: 39.7669415561133
1653
+ - type: f1
1654
+ value: 35.50974325529877
1655
+ - task:
1656
+ type: Classification
1657
+ dataset:
1658
+ type: mteb/mtop_domain
1659
+ name: MTEB MTOPDomainClassification (th)
1660
+ config: th
1661
+ split: test
1662
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1663
+ metrics:
1664
+ - type: accuracy
1665
+ value: 42.589511754068724
1666
+ - type: f1
1667
+ value: 40.47244422785889
1668
+ - task:
1669
+ type: Classification
1670
+ dataset:
1671
+ type: mteb/mtop_intent
1672
+ name: MTEB MTOPIntentClassification (en)
1673
+ config: en
1674
+ split: test
1675
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1676
+ metrics:
1677
+ - type: accuracy
1678
+ value: 34.01276789785682
1679
+ - type: f1
1680
+ value: 21.256775922291286
1681
+ - task:
1682
+ type: Classification
1683
+ dataset:
1684
+ type: mteb/mtop_intent
1685
+ name: MTEB MTOPIntentClassification (de)
1686
+ config: de
1687
+ split: test
1688
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1689
+ metrics:
1690
+ - type: accuracy
1691
+ value: 33.285432516201745
1692
+ - type: f1
1693
+ value: 19.841703666811565
1694
+ - task:
1695
+ type: Classification
1696
+ dataset:
1697
+ type: mteb/mtop_intent
1698
+ name: MTEB MTOPIntentClassification (es)
1699
+ config: es
1700
+ split: test
1701
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1702
+ metrics:
1703
+ - type: accuracy
1704
+ value: 32.121414276184126
1705
+ - type: f1
1706
+ value: 19.34706868150749
1707
+ - task:
1708
+ type: Classification
1709
+ dataset:
1710
+ type: mteb/mtop_intent
1711
+ name: MTEB MTOPIntentClassification (fr)
1712
+ config: fr
1713
+ split: test
1714
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1715
+ metrics:
1716
+ - type: accuracy
1717
+ value: 26.088318196053866
1718
+ - type: f1
1719
+ value: 17.22608011891254
1720
+ - task:
1721
+ type: Classification
1722
+ dataset:
1723
+ type: mteb/mtop_intent
1724
+ name: MTEB MTOPIntentClassification (hi)
1725
+ config: hi
1726
+ split: test
1727
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1728
+ metrics:
1729
+ - type: accuracy
1730
+ value: 15.320903549659375
1731
+ - type: f1
1732
+ value: 9.62002916015258
1733
+ - task:
1734
+ type: Classification
1735
+ dataset:
1736
+ type: mteb/mtop_intent
1737
+ name: MTEB MTOPIntentClassification (th)
1738
+ config: th
1739
+ split: test
1740
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1741
+ metrics:
1742
+ - type: accuracy
1743
+ value: 16.426763110307412
1744
+ - type: f1
1745
+ value: 11.023799171137183
1746
+ - task:
1747
+ type: Classification
1748
+ dataset:
1749
+ type: mteb/amazon_massive_intent
1750
+ name: MTEB MassiveIntentClassification (af)
1751
+ config: af
1752
+ split: test
1753
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1754
+ metrics:
1755
+ - type: accuracy
1756
+ value: 27.347007397444518
1757
+ - type: f1
1758
+ value: 25.503551916252842
1759
+ - task:
1760
+ type: Classification
1761
+ dataset:
1762
+ type: mteb/amazon_massive_intent
1763
+ name: MTEB MassiveIntentClassification (am)
1764
+ config: am
1765
+ split: test
1766
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1767
+ metrics:
1768
+ - type: accuracy
1769
+ value: 10.655682582380631
1770
+ - type: f1
1771
+ value: 9.141696317946996
1772
+ - task:
1773
+ type: Classification
1774
+ dataset:
1775
+ type: mteb/amazon_massive_intent
1776
+ name: MTEB MassiveIntentClassification (ar)
1777
+ config: ar
1778
+ split: test
1779
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1780
+ metrics:
1781
+ - type: accuracy
1782
+ value: 17.347007397444518
1783
+ - type: f1
1784
+ value: 15.345346511499534
1785
+ - task:
1786
+ type: Classification
1787
+ dataset:
1788
+ type: mteb/amazon_massive_intent
1789
+ name: MTEB MassiveIntentClassification (az)
1790
+ config: az
1791
+ split: test
1792
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1793
+ metrics:
1794
+ - type: accuracy
1795
+ value: 20.39004707464694
1796
+ - type: f1
1797
+ value: 21.129515472610237
1798
+ - task:
1799
+ type: Classification
1800
+ dataset:
1801
+ type: mteb/amazon_massive_intent
1802
+ name: MTEB MassiveIntentClassification (bn)
1803
+ config: bn
1804
+ split: test
1805
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1806
+ metrics:
1807
+ - type: accuracy
1808
+ value: 14.082044384667114
1809
+ - type: f1
1810
+ value: 12.169922201279885
1811
+ - task:
1812
+ type: Classification
1813
+ dataset:
1814
+ type: mteb/amazon_massive_intent
1815
+ name: MTEB MassiveIntentClassification (cy)
1816
+ config: cy
1817
+ split: test
1818
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1819
+ metrics:
1820
+ - type: accuracy
1821
+ value: 27.108271687962336
1822
+ - type: f1
1823
+ value: 25.449222444030063
1824
+ - task:
1825
+ type: Classification
1826
+ dataset:
1827
+ type: mteb/amazon_massive_intent
1828
+ name: MTEB MassiveIntentClassification (da)
1829
+ config: da
1830
+ split: test
1831
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1832
+ metrics:
1833
+ - type: accuracy
1834
+ value: 27.780766644250164
1835
+ - type: f1
1836
+ value: 26.96237025531764
1837
+ - task:
1838
+ type: Classification
1839
+ dataset:
1840
+ type: mteb/amazon_massive_intent
1841
+ name: MTEB MassiveIntentClassification (de)
1842
+ config: de
1843
+ split: test
1844
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1845
+ metrics:
1846
+ - type: accuracy
1847
+ value: 21.768661735036986
1848
+ - type: f1
1849
+ value: 22.377462868662263
1850
+ - task:
1851
+ type: Classification
1852
+ dataset:
1853
+ type: mteb/amazon_massive_intent
1854
+ name: MTEB MassiveIntentClassification (el)
1855
+ config: el
1856
+ split: test
1857
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1858
+ metrics:
1859
+ - type: accuracy
1860
+ value: 21.967047747141898
1861
+ - type: f1
1862
+ value: 22.427583602797057
1863
+ - task:
1864
+ type: Classification
1865
+ dataset:
1866
+ type: mteb/amazon_massive_intent
1867
+ name: MTEB MassiveIntentClassification (en)
1868
+ config: en
1869
+ split: test
1870
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1871
+ metrics:
1872
+ - type: accuracy
1873
+ value: 33.221250840618694
1874
+ - type: f1
1875
+ value: 32.627621011904495
1876
+ - task:
1877
+ type: Classification
1878
+ dataset:
1879
+ type: mteb/amazon_massive_intent
1880
+ name: MTEB MassiveIntentClassification (es)
1881
+ config: es
1882
+ split: test
1883
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1884
+ metrics:
1885
+ - type: accuracy
1886
+ value: 27.047747141896426
1887
+ - type: f1
1888
+ value: 25.244455827652786
1889
+ - task:
1890
+ type: Classification
1891
+ dataset:
1892
+ type: mteb/amazon_massive_intent
1893
+ name: MTEB MassiveIntentClassification (fa)
1894
+ config: fa
1895
+ split: test
1896
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1897
+ metrics:
1898
+ - type: accuracy
1899
+ value: 18.850033624747812
1900
+ - type: f1
1901
+ value: 16.532690247057452
1902
+ - task:
1903
+ type: Classification
1904
+ dataset:
1905
+ type: mteb/amazon_massive_intent
1906
+ name: MTEB MassiveIntentClassification (fi)
1907
+ config: fi
1908
+ split: test
1909
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1910
+ metrics:
1911
+ - type: accuracy
1912
+ value: 25.934767989240083
1913
+ - type: f1
1914
+ value: 24.126974912341858
1915
+ - task:
1916
+ type: Classification
1917
+ dataset:
1918
+ type: mteb/amazon_massive_intent
1919
+ name: MTEB MassiveIntentClassification (fr)
1920
+ config: fr
1921
+ split: test
1922
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1923
+ metrics:
1924
+ - type: accuracy
1925
+ value: 25.59179556153329
1926
+ - type: f1
1927
+ value: 23.97686173045838
1928
+ - task:
1929
+ type: Classification
1930
+ dataset:
1931
+ type: mteb/amazon_massive_intent
1932
+ name: MTEB MassiveIntentClassification (he)
1933
+ config: he
1934
+ split: test
1935
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1936
+ metrics:
1937
+ - type: accuracy
1938
+ value: 17.683254875588432
1939
+ - type: f1
1940
+ value: 15.217082232778534
1941
+ - task:
1942
+ type: Classification
1943
+ dataset:
1944
+ type: mteb/amazon_massive_intent
1945
+ name: MTEB MassiveIntentClassification (hi)
1946
+ config: hi
1947
+ split: test
1948
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1949
+ metrics:
1950
+ - type: accuracy
1951
+ value: 14.277067921990588
1952
+ - type: f1
1953
+ value: 13.06156794974721
1954
+ - task:
1955
+ type: Classification
1956
+ dataset:
1957
+ type: mteb/amazon_massive_intent
1958
+ name: MTEB MassiveIntentClassification (hu)
1959
+ config: hu
1960
+ split: test
1961
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1962
+ metrics:
1963
+ - type: accuracy
1964
+ value: 25.817081371889717
1965
+ - type: f1
1966
+ value: 24.79443526877249
1967
+ - task:
1968
+ type: Classification
1969
+ dataset:
1970
+ type: mteb/amazon_massive_intent
1971
+ name: MTEB MassiveIntentClassification (hy)
1972
+ config: hy
1973
+ split: test
1974
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1975
+ metrics:
1976
+ - type: accuracy
1977
+ value: 12.326832548755885
1978
+ - type: f1
1979
+ value: 10.850963544530288
1980
+ - task:
1981
+ type: Classification
1982
+ dataset:
1983
+ type: mteb/amazon_massive_intent
1984
+ name: MTEB MassiveIntentClassification (id)
1985
+ config: id
1986
+ split: test
1987
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1988
+ metrics:
1989
+ - type: accuracy
1990
+ value: 28.244788164088764
1991
+ - type: f1
1992
+ value: 27.442212153664336
1993
+ - task:
1994
+ type: Classification
1995
+ dataset:
1996
+ type: mteb/amazon_massive_intent
1997
+ name: MTEB MassiveIntentClassification (is)
1998
+ config: is
1999
+ split: test
2000
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2001
+ metrics:
2002
+ - type: accuracy
2003
+ value: 26.0390047074647
2004
+ - type: f1
2005
+ value: 24.29180485465988
2006
+ - task:
2007
+ type: Classification
2008
+ dataset:
2009
+ type: mteb/amazon_massive_intent
2010
+ name: MTEB MassiveIntentClassification (it)
2011
+ config: it
2012
+ split: test
2013
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2014
+ metrics:
2015
+ - type: accuracy
2016
+ value: 26.099529253530594
2017
+ - type: f1
2018
+ value: 26.47963496597501
2019
+ - task:
2020
+ type: Classification
2021
+ dataset:
2022
+ type: mteb/amazon_massive_intent
2023
+ name: MTEB MassiveIntentClassification (ja)
2024
+ config: ja
2025
+ split: test
2026
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2027
+ metrics:
2028
+ - type: accuracy
2029
+ value: 25.383322125084057
2030
+ - type: f1
2031
+ value: 27.24527274982159
2032
+ - task:
2033
+ type: Classification
2034
+ dataset:
2035
+ type: mteb/amazon_massive_intent
2036
+ name: MTEB MassiveIntentClassification (jv)
2037
+ config: jv
2038
+ split: test
2039
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2040
+ metrics:
2041
+ - type: accuracy
2042
+ value: 26.970410221923334
2043
+ - type: f1
2044
+ value: 24.710215925904627
2045
+ - task:
2046
+ type: Classification
2047
+ dataset:
2048
+ type: mteb/amazon_massive_intent
2049
+ name: MTEB MassiveIntentClassification (ka)
2050
+ config: ka
2051
+ split: test
2052
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2053
+ metrics:
2054
+ - type: accuracy
2055
+ value: 14.159381304640215
2056
+ - type: f1
2057
+ value: 12.262797179154113
2058
+ - task:
2059
+ type: Classification
2060
+ dataset:
2061
+ type: mteb/amazon_massive_intent
2062
+ name: MTEB MassiveIntentClassification (km)
2063
+ config: km
2064
+ split: test
2065
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2066
+ metrics:
2067
+ - type: accuracy
2068
+ value: 12.078009414929387
2069
+ - type: f1
2070
+ value: 10.85388698579932
2071
+ - task:
2072
+ type: Classification
2073
+ dataset:
2074
+ type: mteb/amazon_massive_intent
2075
+ name: MTEB MassiveIntentClassification (kn)
2076
+ config: kn
2077
+ split: test
2078
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2079
+ metrics:
2080
+ - type: accuracy
2081
+ value: 10.144586415601884
2082
+ - type: f1
2083
+ value: 8.629316498328535
2084
+ - task:
2085
+ type: Classification
2086
+ dataset:
2087
+ type: mteb/amazon_massive_intent
2088
+ name: MTEB MassiveIntentClassification (ko)
2089
+ config: ko
2090
+ split: test
2091
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2092
+ metrics:
2093
+ - type: accuracy
2094
+ value: 23.799596503026226
2095
+ - type: f1
2096
+ value: 21.4839774342838
2097
+ - task:
2098
+ type: Classification
2099
+ dataset:
2100
+ type: mteb/amazon_massive_intent
2101
+ name: MTEB MassiveIntentClassification (lv)
2102
+ config: lv
2103
+ split: test
2104
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2105
+ metrics:
2106
+ - type: accuracy
2107
+ value: 27.047747141896433
2108
+ - type: f1
2109
+ value: 25.86288514660441
2110
+ - task:
2111
+ type: Classification
2112
+ dataset:
2113
+ type: mteb/amazon_massive_intent
2114
+ name: MTEB MassiveIntentClassification (ml)
2115
+ config: ml
2116
+ split: test
2117
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2118
+ metrics:
2119
+ - type: accuracy
2120
+ value: 10.82380632145259
2121
+ - type: f1
2122
+ value: 9.568319030257811
2123
+ - task:
2124
+ type: Classification
2125
+ dataset:
2126
+ type: mteb/amazon_massive_intent
2127
+ name: MTEB MassiveIntentClassification (mn)
2128
+ config: mn
2129
+ split: test
2130
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2131
+ metrics:
2132
+ - type: accuracy
2133
+ value: 14.435104236718225
2134
+ - type: f1
2135
+ value: 14.861584951252121
2136
+ - task:
2137
+ type: Classification
2138
+ dataset:
2139
+ type: mteb/amazon_massive_intent
2140
+ name: MTEB MassiveIntentClassification (ms)
2141
+ config: ms
2142
+ split: test
2143
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2144
+ metrics:
2145
+ - type: accuracy
2146
+ value: 26.83254875588433
2147
+ - type: f1
2148
+ value: 26.084749439191967
2149
+ - task:
2150
+ type: Classification
2151
+ dataset:
2152
+ type: mteb/amazon_massive_intent
2153
+ name: MTEB MassiveIntentClassification (my)
2154
+ config: my
2155
+ split: test
2156
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2157
+ metrics:
2158
+ - type: accuracy
2159
+ value: 13.792871553463351
2160
+ - type: f1
2161
+ value: 11.496310101617802
2162
+ - task:
2163
+ type: Classification
2164
+ dataset:
2165
+ type: mteb/amazon_massive_intent
2166
+ name: MTEB MassiveIntentClassification (nb)
2167
+ config: nb
2168
+ split: test
2169
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2170
+ metrics:
2171
+ - type: accuracy
2172
+ value: 25.292535305985208
2173
+ - type: f1
2174
+ value: 24.098118477282508
2175
+ - task:
2176
+ type: Classification
2177
+ dataset:
2178
+ type: mteb/amazon_massive_intent
2179
+ name: MTEB MassiveIntentClassification (nl)
2180
+ config: nl
2181
+ split: test
2182
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2183
+ metrics:
2184
+ - type: accuracy
2185
+ value: 26.24075319435104
2186
+ - type: f1
2187
+ value: 25.259998680849815
2188
+ - task:
2189
+ type: Classification
2190
+ dataset:
2191
+ type: mteb/amazon_massive_intent
2192
+ name: MTEB MassiveIntentClassification (pl)
2193
+ config: pl
2194
+ split: test
2195
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2196
+ metrics:
2197
+ - type: accuracy
2198
+ value: 24.909213180901148
2199
+ - type: f1
2200
+ value: 23.684726718537476
2201
+ - task:
2202
+ type: Classification
2203
+ dataset:
2204
+ type: mteb/amazon_massive_intent
2205
+ name: MTEB MassiveIntentClassification (pt)
2206
+ config: pt
2207
+ split: test
2208
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2209
+ metrics:
2210
+ - type: accuracy
2211
+ value: 27.310020174848688
2212
+ - type: f1
2213
+ value: 26.28728556240871
2214
+ - task:
2215
+ type: Classification
2216
+ dataset:
2217
+ type: mteb/amazon_massive_intent
2218
+ name: MTEB MassiveIntentClassification (ro)
2219
+ config: ro
2220
+ split: test
2221
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2222
+ metrics:
2223
+ - type: accuracy
2224
+ value: 21.930060524546064
2225
+ - type: f1
2226
+ value: 21.993435727293242
2227
+ - task:
2228
+ type: Classification
2229
+ dataset:
2230
+ type: mteb/amazon_massive_intent
2231
+ name: MTEB MassiveIntentClassification (ru)
2232
+ config: ru
2233
+ split: test
2234
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2235
+ metrics:
2236
+ - type: accuracy
2237
+ value: 25.773369199731
2238
+ - type: f1
2239
+ value: 23.857739120942632
2240
+ - task:
2241
+ type: Classification
2242
+ dataset:
2243
+ type: mteb/amazon_massive_intent
2244
+ name: MTEB MassiveIntentClassification (sl)
2245
+ config: sl
2246
+ split: test
2247
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2248
+ metrics:
2249
+ - type: accuracy
2250
+ value: 29.256893073301953
2251
+ - type: f1
2252
+ value: 26.6824726822139
2253
+ - task:
2254
+ type: Classification
2255
+ dataset:
2256
+ type: mteb/amazon_massive_intent
2257
+ name: MTEB MassiveIntentClassification (sq)
2258
+ config: sq
2259
+ split: test
2260
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2261
+ metrics:
2262
+ - type: accuracy
2263
+ value: 17.673167451244115
2264
+ - type: f1
2265
+ value: 18.74169530134767
2266
+ - task:
2267
+ type: Classification
2268
+ dataset:
2269
+ type: mteb/amazon_massive_intent
2270
+ name: MTEB MassiveIntentClassification (sv)
2271
+ config: sv
2272
+ split: test
2273
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2274
+ metrics:
2275
+ - type: accuracy
2276
+ value: 26.190316072629454
2277
+ - type: f1
2278
+ value: 26.000111409348474
2279
+ - task:
2280
+ type: Classification
2281
+ dataset:
2282
+ type: mteb/amazon_massive_intent
2283
+ name: MTEB MassiveIntentClassification (sw)
2284
+ config: sw
2285
+ split: test
2286
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2287
+ metrics:
2288
+ - type: accuracy
2289
+ value: 28.903833221250842
2290
+ - type: f1
2291
+ value: 27.166958835143152
2292
+ - task:
2293
+ type: Classification
2294
+ dataset:
2295
+ type: mteb/amazon_massive_intent
2296
+ name: MTEB MassiveIntentClassification (ta)
2297
+ config: ta
2298
+ split: test
2299
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2300
+ metrics:
2301
+ - type: accuracy
2302
+ value: 13.517148621385342
2303
+ - type: f1
2304
+ value: 10.124568781522633
2305
+ - task:
2306
+ type: Classification
2307
+ dataset:
2308
+ type: mteb/amazon_massive_intent
2309
+ name: MTEB MassiveIntentClassification (te)
2310
+ config: te
2311
+ split: test
2312
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2313
+ metrics:
2314
+ - type: accuracy
2315
+ value: 12.414256893073302
2316
+ - type: f1
2317
+ value: 10.72905194223371
2318
+ - task:
2319
+ type: Classification
2320
+ dataset:
2321
+ type: mteb/amazon_massive_intent
2322
+ name: MTEB MassiveIntentClassification (th)
2323
+ config: th
2324
+ split: test
2325
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2326
+ metrics:
2327
+ - type: accuracy
2328
+ value: 17.330195023537325
2329
+ - type: f1
2330
+ value: 17.262535319973026
2331
+ - task:
2332
+ type: Classification
2333
+ dataset:
2334
+ type: mteb/amazon_massive_intent
2335
+ name: MTEB MassiveIntentClassification (tl)
2336
+ config: tl
2337
+ split: test
2338
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2339
+ metrics:
2340
+ - type: accuracy
2341
+ value: 22.310020174848688
2342
+ - type: f1
2343
+ value: 22.770175966437712
2344
+ - task:
2345
+ type: Classification
2346
+ dataset:
2347
+ type: mteb/amazon_massive_intent
2348
+ name: MTEB MassiveIntentClassification (tr)
2349
+ config: tr
2350
+ split: test
2351
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2352
+ metrics:
2353
+ - type: accuracy
2354
+ value: 23.066577000672496
2355
+ - type: f1
2356
+ value: 22.50576183714979
2357
+ - task:
2358
+ type: Classification
2359
+ dataset:
2360
+ type: mteb/amazon_massive_intent
2361
+ name: MTEB MassiveIntentClassification (ur)
2362
+ config: ur
2363
+ split: test
2364
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2365
+ metrics:
2366
+ - type: accuracy
2367
+ value: 12.501681237390722
2368
+ - type: f1
2369
+ value: 11.803223778323549
2370
+ - task:
2371
+ type: Classification
2372
+ dataset:
2373
+ type: mteb/amazon_massive_intent
2374
+ name: MTEB MassiveIntentClassification (vi)
2375
+ config: vi
2376
+ split: test
2377
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2378
+ metrics:
2379
+ - type: accuracy
2380
+ value: 22.76059179556153
2381
+ - type: f1
2382
+ value: 21.55631039694901
2383
+ - task:
2384
+ type: Classification
2385
+ dataset:
2386
+ type: mteb/amazon_massive_intent
2387
+ name: MTEB MassiveIntentClassification (zh-CN)
2388
+ config: zh-CN
2389
+ split: test
2390
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2391
+ metrics:
2392
+ - type: accuracy
2393
+ value: 34.92602555480834
2394
+ - type: f1
2395
+ value: 33.727974171773425
2396
+ - task:
2397
+ type: Classification
2398
+ dataset:
2399
+ type: mteb/amazon_massive_intent
2400
+ name: MTEB MassiveIntentClassification (zh-TW)
2401
+ config: zh-TW
2402
+ split: test
2403
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
2404
+ metrics:
2405
+ - type: accuracy
2406
+ value: 28.365837256220576
2407
+ - type: f1
2408
+ value: 28.510022067424707
2409
+ - task:
2410
+ type: Classification
2411
+ dataset:
2412
+ type: mteb/amazon_massive_scenario
2413
+ name: MTEB MassiveScenarioClassification (af)
2414
+ config: af
2415
+ split: test
2416
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2417
+ metrics:
2418
+ - type: accuracy
2419
+ value: 36.02891728312038
2420
+ - type: f1
2421
+ value: 31.370502912090657
2422
+ - task:
2423
+ type: Classification
2424
+ dataset:
2425
+ type: mteb/amazon_massive_scenario
2426
+ name: MTEB MassiveScenarioClassification (am)
2427
+ config: am
2428
+ split: test
2429
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2430
+ metrics:
2431
+ - type: accuracy
2432
+ value: 19.330867518493612
2433
+ - type: f1
2434
+ value: 15.90055477686407
2435
+ - task:
2436
+ type: Classification
2437
+ dataset:
2438
+ type: mteb/amazon_massive_scenario
2439
+ name: MTEB MassiveScenarioClassification (ar)
2440
+ config: ar
2441
+ split: test
2442
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2443
+ metrics:
2444
+ - type: accuracy
2445
+ value: 23.880295897780766
2446
+ - type: f1
2447
+ value: 21.695586897546278
2448
+ - task:
2449
+ type: Classification
2450
+ dataset:
2451
+ type: mteb/amazon_massive_scenario
2452
+ name: MTEB MassiveScenarioClassification (az)
2453
+ config: az
2454
+ split: test
2455
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2456
+ metrics:
2457
+ - type: accuracy
2458
+ value: 28.853396099529256
2459
+ - type: f1
2460
+ value: 26.709933198206503
2461
+ - task:
2462
+ type: Classification
2463
+ dataset:
2464
+ type: mteb/amazon_massive_scenario
2465
+ name: MTEB MassiveScenarioClassification (bn)
2466
+ config: bn
2467
+ split: test
2468
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2469
+ metrics:
2470
+ - type: accuracy
2471
+ value: 18.382649630127773
2472
+ - type: f1
2473
+ value: 16.772353498005437
2474
+ - task:
2475
+ type: Classification
2476
+ dataset:
2477
+ type: mteb/amazon_massive_scenario
2478
+ name: MTEB MassiveScenarioClassification (cy)
2479
+ config: cy
2480
+ split: test
2481
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2482
+ metrics:
2483
+ - type: accuracy
2484
+ value: 35.40685944855414
2485
+ - type: f1
2486
+ value: 31.488014251203257
2487
+ - task:
2488
+ type: Classification
2489
+ dataset:
2490
+ type: mteb/amazon_massive_scenario
2491
+ name: MTEB MassiveScenarioClassification (da)
2492
+ config: da
2493
+ split: test
2494
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2495
+ metrics:
2496
+ - type: accuracy
2497
+ value: 34.4754539340955
2498
+ - type: f1
2499
+ value: 31.226537880607296
2500
+ - task:
2501
+ type: Classification
2502
+ dataset:
2503
+ type: mteb/amazon_massive_scenario
2504
+ name: MTEB MassiveScenarioClassification (de)
2505
+ config: de
2506
+ split: test
2507
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2508
+ metrics:
2509
+ - type: accuracy
2510
+ value: 30.0
2511
+ - type: f1
2512
+ value: 28.08153376359271
2513
+ - task:
2514
+ type: Classification
2515
+ dataset:
2516
+ type: mteb/amazon_massive_scenario
2517
+ name: MTEB MassiveScenarioClassification (el)
2518
+ config: el
2519
+ split: test
2520
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2521
+ metrics:
2522
+ - type: accuracy
2523
+ value: 26.879623402824482
2524
+ - type: f1
2525
+ value: 24.773267596830472
2526
+ - task:
2527
+ type: Classification
2528
+ dataset:
2529
+ type: mteb/amazon_massive_scenario
2530
+ name: MTEB MassiveScenarioClassification (en)
2531
+ config: en
2532
+ split: test
2533
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2534
+ metrics:
2535
+ - type: accuracy
2536
+ value: 43.77605917955615
2537
+ - type: f1
2538
+ value: 41.60519309254586
2539
+ - task:
2540
+ type: Classification
2541
+ dataset:
2542
+ type: mteb/amazon_massive_scenario
2543
+ name: MTEB MassiveScenarioClassification (es)
2544
+ config: es
2545
+ split: test
2546
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2547
+ metrics:
2548
+ - type: accuracy
2549
+ value: 32.807666442501684
2550
+ - type: f1
2551
+ value: 30.250350082554473
2552
+ - task:
2553
+ type: Classification
2554
+ dataset:
2555
+ type: mteb/amazon_massive_scenario
2556
+ name: MTEB MassiveScenarioClassification (fa)
2557
+ config: fa
2558
+ split: test
2559
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2560
+ metrics:
2561
+ - type: accuracy
2562
+ value: 24.515803631472764
2563
+ - type: f1
2564
+ value: 21.726717236406927
2565
+ - task:
2566
+ type: Classification
2567
+ dataset:
2568
+ type: mteb/amazon_massive_scenario
2569
+ name: MTEB MassiveScenarioClassification (fi)
2570
+ config: fi
2571
+ split: test
2572
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2573
+ metrics:
2574
+ - type: accuracy
2575
+ value: 33.315400134498994
2576
+ - type: f1
2577
+ value: 29.353644700383935
2578
+ - task:
2579
+ type: Classification
2580
+ dataset:
2581
+ type: mteb/amazon_massive_scenario
2582
+ name: MTEB MassiveScenarioClassification (fr)
2583
+ config: fr
2584
+ split: test
2585
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2586
+ metrics:
2587
+ - type: accuracy
2588
+ value: 32.42434431741762
2589
+ - type: f1
2590
+ value: 29.87668403274445
2591
+ - task:
2592
+ type: Classification
2593
+ dataset:
2594
+ type: mteb/amazon_massive_scenario
2595
+ name: MTEB MassiveScenarioClassification (he)
2596
+ config: he
2597
+ split: test
2598
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2599
+ metrics:
2600
+ - type: accuracy
2601
+ value: 24.40147948890384
2602
+ - type: f1
2603
+ value: 21.429656257015555
2604
+ - task:
2605
+ type: Classification
2606
+ dataset:
2607
+ type: mteb/amazon_massive_scenario
2608
+ name: MTEB MassiveScenarioClassification (hi)
2609
+ config: hi
2610
+ split: test
2611
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2612
+ metrics:
2613
+ - type: accuracy
2614
+ value: 21.435776731674512
2615
+ - type: f1
2616
+ value: 18.344740043506686
2617
+ - task:
2618
+ type: Classification
2619
+ dataset:
2620
+ type: mteb/amazon_massive_scenario
2621
+ name: MTEB MassiveScenarioClassification (hu)
2622
+ config: hu
2623
+ split: test
2624
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2625
+ metrics:
2626
+ - type: accuracy
2627
+ value: 31.533288500336248
2628
+ - type: f1
2629
+ value: 29.185785763469298
2630
+ - task:
2631
+ type: Classification
2632
+ dataset:
2633
+ type: mteb/amazon_massive_scenario
2634
+ name: MTEB MassiveScenarioClassification (hy)
2635
+ config: hy
2636
+ split: test
2637
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2638
+ metrics:
2639
+ - type: accuracy
2640
+ value: 19.983187626092803
2641
+ - type: f1
2642
+ value: 17.088318438817677
2643
+ - task:
2644
+ type: Classification
2645
+ dataset:
2646
+ type: mteb/amazon_massive_scenario
2647
+ name: MTEB MassiveScenarioClassification (id)
2648
+ config: id
2649
+ split: test
2650
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2651
+ metrics:
2652
+ - type: accuracy
2653
+ value: 32.73369199731002
2654
+ - type: f1
2655
+ value: 31.37876294000571
2656
+ - task:
2657
+ type: Classification
2658
+ dataset:
2659
+ type: mteb/amazon_massive_scenario
2660
+ name: MTEB MassiveScenarioClassification (is)
2661
+ config: is
2662
+ split: test
2663
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2664
+ metrics:
2665
+ - type: accuracy
2666
+ value: 31.503026227303295
2667
+ - type: f1
2668
+ value: 28.944584739759726
2669
+ - task:
2670
+ type: Classification
2671
+ dataset:
2672
+ type: mteb/amazon_massive_scenario
2673
+ name: MTEB MassiveScenarioClassification (it)
2674
+ config: it
2675
+ split: test
2676
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2677
+ metrics:
2678
+ - type: accuracy
2679
+ value: 31.116341627437794
2680
+ - type: f1
2681
+ value: 29.410419968584232
2682
+ - task:
2683
+ type: Classification
2684
+ dataset:
2685
+ type: mteb/amazon_massive_scenario
2686
+ name: MTEB MassiveScenarioClassification (ja)
2687
+ config: ja
2688
+ split: test
2689
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2690
+ metrics:
2691
+ - type: accuracy
2692
+ value: 31.136516476126424
2693
+ - type: f1
2694
+ value: 29.6719090248999
2695
+ - task:
2696
+ type: Classification
2697
+ dataset:
2698
+ type: mteb/amazon_massive_scenario
2699
+ name: MTEB MassiveScenarioClassification (jv)
2700
+ config: jv
2701
+ split: test
2702
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2703
+ metrics:
2704
+ - type: accuracy
2705
+ value: 34.3813046402152
2706
+ - type: f1
2707
+ value: 31.481374035431443
2708
+ - task:
2709
+ type: Classification
2710
+ dataset:
2711
+ type: mteb/amazon_massive_scenario
2712
+ name: MTEB MassiveScenarioClassification (ka)
2713
+ config: ka
2714
+ split: test
2715
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2716
+ metrics:
2717
+ - type: accuracy
2718
+ value: 18.3591123066577
2719
+ - type: f1
2720
+ value: 16.158113168004945
2721
+ - task:
2722
+ type: Classification
2723
+ dataset:
2724
+ type: mteb/amazon_massive_scenario
2725
+ name: MTEB MassiveScenarioClassification (km)
2726
+ config: km
2727
+ split: test
2728
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2729
+ metrics:
2730
+ - type: accuracy
2731
+ value: 19.250168123739073
2732
+ - type: f1
2733
+ value: 16.728590019294526
2734
+ - task:
2735
+ type: Classification
2736
+ dataset:
2737
+ type: mteb/amazon_massive_scenario
2738
+ name: MTEB MassiveScenarioClassification (kn)
2739
+ config: kn
2740
+ split: test
2741
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2742
+ metrics:
2743
+ - type: accuracy
2744
+ value: 16.04236718224613
2745
+ - type: f1
2746
+ value: 14.304518042661318
2747
+ - task:
2748
+ type: Classification
2749
+ dataset:
2750
+ type: mteb/amazon_massive_scenario
2751
+ name: MTEB MassiveScenarioClassification (ko)
2752
+ config: ko
2753
+ split: test
2754
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2755
+ metrics:
2756
+ - type: accuracy
2757
+ value: 28.95427034297243
2758
+ - type: f1
2759
+ value: 26.14194694048272
2760
+ - task:
2761
+ type: Classification
2762
+ dataset:
2763
+ type: mteb/amazon_massive_scenario
2764
+ name: MTEB MassiveScenarioClassification (lv)
2765
+ config: lv
2766
+ split: test
2767
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2768
+ metrics:
2769
+ - type: accuracy
2770
+ value: 32.286482851378615
2771
+ - type: f1
2772
+ value: 29.426003364232837
2773
+ - task:
2774
+ type: Classification
2775
+ dataset:
2776
+ type: mteb/amazon_massive_scenario
2777
+ name: MTEB MassiveScenarioClassification (ml)
2778
+ config: ml
2779
+ split: test
2780
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2781
+ metrics:
2782
+ - type: accuracy
2783
+ value: 18.762609280430397
2784
+ - type: f1
2785
+ value: 15.764539982254005
2786
+ - task:
2787
+ type: Classification
2788
+ dataset:
2789
+ type: mteb/amazon_massive_scenario
2790
+ name: MTEB MassiveScenarioClassification (mn)
2791
+ config: mn
2792
+ split: test
2793
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2794
+ metrics:
2795
+ - type: accuracy
2796
+ value: 21.570275722932077
2797
+ - type: f1
2798
+ value: 18.98517402487539
2799
+ - task:
2800
+ type: Classification
2801
+ dataset:
2802
+ type: mteb/amazon_massive_scenario
2803
+ name: MTEB MassiveScenarioClassification (ms)
2804
+ config: ms
2805
+ split: test
2806
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2807
+ metrics:
2808
+ - type: accuracy
2809
+ value: 35.95158036314728
2810
+ - type: f1
2811
+ value: 33.45853327725729
2812
+ - task:
2813
+ type: Classification
2814
+ dataset:
2815
+ type: mteb/amazon_massive_scenario
2816
+ name: MTEB MassiveScenarioClassification (my)
2817
+ config: my
2818
+ split: test
2819
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2820
+ metrics:
2821
+ - type: accuracy
2822
+ value: 20.03026227303295
2823
+ - type: f1
2824
+ value: 16.864192363299615
2825
+ - task:
2826
+ type: Classification
2827
+ dataset:
2828
+ type: mteb/amazon_massive_scenario
2829
+ name: MTEB MassiveScenarioClassification (nb)
2830
+ config: nb
2831
+ split: test
2832
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2833
+ metrics:
2834
+ - type: accuracy
2835
+ value: 32.89172831203766
2836
+ - type: f1
2837
+ value: 29.90554132334421
2838
+ - task:
2839
+ type: Classification
2840
+ dataset:
2841
+ type: mteb/amazon_massive_scenario
2842
+ name: MTEB MassiveScenarioClassification (nl)
2843
+ config: nl
2844
+ split: test
2845
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2846
+ metrics:
2847
+ - type: accuracy
2848
+ value: 32.36381977135171
2849
+ - type: f1
2850
+ value: 29.57501043505274
2851
  - task:
2852
  type: Classification
2853
  dataset:
2854
+ type: mteb/amazon_massive_scenario
2855
+ name: MTEB MassiveScenarioClassification (pl)
2856
+ config: pl
2857
  split: test
2858
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2859
  metrics:
2860
  - type: accuracy
2861
+ value: 31.856086079354405
2862
  - type: f1
2863
+ value: 30.242758819443548
2864
  - task:
2865
+ type: Classification
2866
  dataset:
2867
+ type: mteb/amazon_massive_scenario
2868
+ name: MTEB MassiveScenarioClassification (pt)
2869
+ config: pt
2870
  split: test
2871
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2872
  metrics:
2873
+ - type: accuracy
2874
+ value: 31.694687289845326
2875
+ - type: f1
2876
+ value: 29.495870419371684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877
  - task:
2878
  type: Classification
2879
  dataset:
2880
+ type: mteb/amazon_massive_scenario
2881
+ name: MTEB MassiveScenarioClassification (ro)
2882
+ config: ro
2883
  split: test
2884
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2885
  metrics:
2886
  - type: accuracy
2887
+ value: 27.01412239408204
 
 
2888
  - type: f1
2889
+ value: 26.44782204477556
2890
  - task:
2891
  type: Classification
2892
  dataset:
2893
+ type: mteb/amazon_massive_scenario
2894
+ name: MTEB MassiveScenarioClassification (ru)
2895
+ config: ru
2896
  split: test
2897
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2898
  metrics:
2899
  - type: accuracy
2900
+ value: 30.554808338937463
2901
  - type: f1
2902
+ value: 27.93696283146029
2903
  - task:
2904
  type: Classification
2905
  dataset:
2906
+ type: mteb/amazon_massive_scenario
2907
+ name: MTEB MassiveScenarioClassification (sl)
2908
+ config: sl
2909
  split: test
2910
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2911
  metrics:
2912
  - type: accuracy
2913
+ value: 35.813718897108274
2914
  - type: f1
2915
+ value: 33.021495683147286
2916
  - task:
2917
  type: Classification
2918
  dataset:
2919
+ type: mteb/amazon_massive_scenario
2920
+ name: MTEB MassiveScenarioClassification (sq)
2921
+ config: sq
2922
  split: test
2923
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2924
  metrics:
2925
  - type: accuracy
2926
+ value: 22.992602555480836
2927
  - type: f1
2928
+ value: 21.524928515996447
2929
  - task:
2930
  type: Classification
2931
  dataset:
2932
+ type: mteb/amazon_massive_scenario
2933
+ name: MTEB MassiveScenarioClassification (sv)
2934
+ config: sv
2935
  split: test
2936
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2937
  metrics:
2938
  - type: accuracy
2939
+ value: 34.7074646940148
2940
  - type: f1
2941
+ value: 31.54759971873104
2942
  - task:
2943
  type: Classification
2944
  dataset:
2945
+ type: mteb/amazon_massive_scenario
2946
+ name: MTEB MassiveScenarioClassification (sw)
2947
+ config: sw
2948
  split: test
2949
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2950
  metrics:
2951
  - type: accuracy
2952
+ value: 36.240753194351036
2953
  - type: f1
2954
+ value: 33.34397881816082
2955
  - task:
2956
  type: Classification
2957
  dataset:
2958
+ type: mteb/amazon_massive_scenario
2959
+ name: MTEB MassiveScenarioClassification (ta)
2960
+ config: ta
2961
+ split: test
2962
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2963
+ metrics:
2964
+ - type: accuracy
2965
+ value: 19.741089441829185
2966
+ - type: f1
2967
+ value: 16.129268723975766
2968
+ - task:
2969
+ type: Classification
2970
+ dataset:
2971
+ type: mteb/amazon_massive_scenario
2972
+ name: MTEB MassiveScenarioClassification (te)
2973
+ config: te
2974
+ split: test
2975
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2976
+ metrics:
2977
+ - type: accuracy
2978
+ value: 17.54203093476799
2979
+ - type: f1
2980
+ value: 15.537381383894061
2981
+ - task:
2982
+ type: Classification
2983
+ dataset:
2984
+ type: mteb/amazon_massive_scenario
2985
+ name: MTEB MassiveScenarioClassification (th)
2986
  config: th
2987
  split: test
2988
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
2989
  metrics:
2990
  - type: accuracy
2991
+ value: 22.817753866846
2992
  - type: f1
2993
+ value: 20.72245485990428
2994
  - task:
2995
  type: Classification
2996
  dataset:
2997
+ type: mteb/amazon_massive_scenario
2998
+ name: MTEB MassiveScenarioClassification (tl)
2999
+ config: tl
3000
  split: test
3001
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
3002
  metrics:
3003
  - type: accuracy
3004
+ value: 28.58439811701412
3005
  - type: f1
3006
+ value: 26.88190194852028
3007
  - task:
3008
  type: Classification
3009
  dataset:
3010
+ type: mteb/amazon_massive_scenario
3011
+ name: MTEB MassiveScenarioClassification (tr)
3012
+ config: tr
3013
  split: test
3014
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
3015
  metrics:
3016
  - type: accuracy
3017
+ value: 28.60457296570275
3018
  - type: f1
3019
+ value: 26.98989368733863
3020
  - task:
3021
  type: Classification
3022
  dataset:
3023
+ type: mteb/amazon_massive_scenario
3024
+ name: MTEB MassiveScenarioClassification (ur)
3025
+ config: ur
3026
  split: test
3027
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
3028
  metrics:
3029
  - type: accuracy
3030
+ value: 23.345662407531943
3031
  - type: f1
3032
+ value: 19.75032390408514
3033
  - task:
3034
  type: Classification
3035
  dataset:
3036
+ type: mteb/amazon_massive_scenario
3037
+ name: MTEB MassiveScenarioClassification (vi)
3038
+ config: vi
3039
  split: test
3040
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
3041
  metrics:
3042
  - type: accuracy
3043
+ value: 29.71082716879624
3044
  - type: f1
3045
+ value: 26.675920460240782
3046
  - task:
3047
  type: Classification
3048
  dataset:
3049
+ type: mteb/amazon_massive_scenario
3050
+ name: MTEB MassiveScenarioClassification (zh-CN)
3051
+ config: zh-CN
3052
  split: test
3053
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
3054
  metrics:
3055
  - type: accuracy
3056
+ value: 44.09549428379288
3057
  - type: f1
3058
+ value: 41.275350430825675
3059
  - task:
3060
  type: Classification
3061
  dataset:
3062
+ type: mteb/amazon_massive_scenario
3063
+ name: MTEB MassiveScenarioClassification (zh-TW)
3064
+ config: zh-TW
3065
  split: test
3066
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
3067
  metrics:
3068
  - type: accuracy
3069
+ value: 37.24277067921991
3070
  - type: f1
3071
+ value: 35.65629114113254
3072
  - task:
3073
  type: Clustering
3074
  dataset:
 
3091
  metrics:
3092
  - type: v_measure
3093
  value: 16.58582885790446
3094
+ - task:
3095
+ type: Reranking
3096
+ dataset:
3097
+ type: mteb/mind_small
3098
+ name: MTEB MindSmallReranking
3099
+ config: default
3100
+ split: test
3101
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
3102
+ metrics:
3103
+ - type: map
3104
+ value: 26.730268595233923
3105
+ - type: mrr
3106
+ value: 27.065185919114704
3107
  - task:
3108
  type: Retrieval
3109
  dataset:
 
3173
  value: 1.702
3174
  - type: recall_at_5
3175
  value: 1.9879999999999998
3176
+ - task:
3177
+ type: Retrieval
3178
+ dataset:
3179
+ type: nq
3180
+ name: MTEB NQ
3181
+ config: default
3182
+ split: test
3183
+ revision: None
3184
+ metrics:
3185
+ - type: map_at_1
3186
+ value: 1.214
3187
+ - type: map_at_10
3188
+ value: 2.067
3189
+ - type: map_at_100
3190
+ value: 2.2399999999999998
3191
+ - type: map_at_1000
3192
+ value: 2.2689999999999997
3193
+ - type: map_at_3
3194
+ value: 1.691
3195
+ - type: map_at_5
3196
+ value: 1.916
3197
+ - type: mrr_at_1
3198
+ value: 1.506
3199
+ - type: mrr_at_10
3200
+ value: 2.413
3201
+ - type: mrr_at_100
3202
+ value: 2.587
3203
+ - type: mrr_at_1000
3204
+ value: 2.616
3205
+ - type: mrr_at_3
3206
+ value: 2.023
3207
+ - type: mrr_at_5
3208
+ value: 2.246
3209
+ - type: ndcg_at_1
3210
+ value: 1.506
3211
+ - type: ndcg_at_10
3212
+ value: 2.703
3213
+ - type: ndcg_at_100
3214
+ value: 3.66
3215
+ - type: ndcg_at_1000
3216
+ value: 4.6
3217
+ - type: ndcg_at_3
3218
+ value: 1.9300000000000002
3219
+ - type: ndcg_at_5
3220
+ value: 2.33
3221
+ - type: precision_at_1
3222
+ value: 1.506
3223
+ - type: precision_at_10
3224
+ value: 0.539
3225
+ - type: precision_at_100
3226
+ value: 0.11
3227
+ - type: precision_at_1000
3228
+ value: 0.02
3229
+ - type: precision_at_3
3230
+ value: 0.9369999999999999
3231
+ - type: precision_at_5
3232
+ value: 0.7939999999999999
3233
+ - type: recall_at_1
3234
+ value: 1.214
3235
+ - type: recall_at_10
3236
+ value: 4.34
3237
+ - type: recall_at_100
3238
+ value: 8.905000000000001
3239
+ - type: recall_at_1000
3240
+ value: 16.416
3241
+ - type: recall_at_3
3242
+ value: 2.3009999999999997
3243
+ - type: recall_at_5
3244
+ value: 3.2489999999999997
3245
  - task:
3246
  type: Retrieval
3247
  dataset:
 
4399
  value: 0.231
4400
  - type: recall_at_5
4401
  value: 0.367
4402
+ - task:
4403
+ type: Retrieval
4404
+ dataset:
4405
+ type: webis-touche2020
4406
+ name: MTEB Touche2020
4407
+ config: default
4408
+ split: test
4409
+ revision: None
4410
+ metrics:
4411
+ - type: map_at_1
4412
+ value: 0.6799999999999999
4413
+ - type: map_at_10
4414
+ value: 2.1420000000000003
4415
+ - type: map_at_100
4416
+ value: 2.888
4417
+ - type: map_at_1000
4418
+ value: 3.3779999999999997
4419
+ - type: map_at_3
4420
+ value: 1.486
4421
+ - type: map_at_5
4422
+ value: 1.7579999999999998
4423
+ - type: mrr_at_1
4424
+ value: 12.245000000000001
4425
+ - type: mrr_at_10
4426
+ value: 22.12
4427
+ - type: mrr_at_100
4428
+ value: 23.407
4429
+ - type: mrr_at_1000
4430
+ value: 23.483999999999998
4431
+ - type: mrr_at_3
4432
+ value: 19.048000000000002
4433
+ - type: mrr_at_5
4434
+ value: 20.986
4435
+ - type: ndcg_at_1
4436
+ value: 10.204
4437
+ - type: ndcg_at_10
4438
+ value: 7.374
4439
+ - type: ndcg_at_100
4440
+ value: 10.524000000000001
4441
+ - type: ndcg_at_1000
4442
+ value: 18.4
4443
+ - type: ndcg_at_3
4444
+ value: 9.913
4445
+ - type: ndcg_at_5
4446
+ value: 8.938
4447
+ - type: precision_at_1
4448
+ value: 12.245000000000001
4449
+ - type: precision_at_10
4450
+ value: 7.142999999999999
4451
+ - type: precision_at_100
4452
+ value: 2.4490000000000003
4453
+ - type: precision_at_1000
4454
+ value: 0.731
4455
+ - type: precision_at_3
4456
+ value: 11.565
4457
+ - type: precision_at_5
4458
+ value: 9.796000000000001
4459
+ - type: recall_at_1
4460
+ value: 0.6799999999999999
4461
+ - type: recall_at_10
4462
+ value: 4.038
4463
+ - type: recall_at_100
4464
+ value: 14.151
4465
+ - type: recall_at_1000
4466
+ value: 40.111999999999995
4467
+ - type: recall_at_3
4468
+ value: 1.921
4469
+ - type: recall_at_5
4470
+ value: 2.604
4471
  - task:
4472
  type: Classification
4473
  dataset:
 
4616
  - type: max_ap
4617
  value: 64.59241956109807
4618
  - type: max_f1
4619
+ value: 57.83203629255339