Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,84 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
|
|
87 |
|
88 |
-
|
|
|
89 |
|
90 |
-
|
91 |
|
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- function calling
|
5 |
+
- laser
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- jtatman/glaive_function_calling_v2_filtered_10k
|
9 |
---
|
10 |
|
11 |
+
# Model Card
|
12 |
|
13 |
+
This is a laser fine tuning of Aloobun's [great 1.5b param reyna mini model](https://huggingface.co/aloobun/Reyna-Mini-1.8B-v0.2).
|
|
|
|
|
|
|
|
|
14 |
|
15 |
### Model Description
|
16 |
|
17 |
+
This model is quite conversational - even a bit more so after laser tuning even using Peft. The function calling is mediocre, but will be improved in future versions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
## Uses
|
20 |
|
21 |
+
As Aloobun's model is well performing and impressive on it's own, I decided to add some function calling while practicing the LaserRMT technique.
|
22 |
|
23 |
### Direct Use
|
24 |
|
25 |
+
Chat
|
26 |
+
Conversational
|
27 |
+
Text Generation
|
28 |
+
Function Calling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## Bias, Risks, and Limitations
|
31 |
|
32 |
+
This model will take over your house, borrow your car, talk badly to your family, and generally make everything incrementally worse. If you use it for nefarious purposes.
|
|
|
|
|
33 |
|
34 |
### Recommendations
|
35 |
|
36 |
+
Use at your own risk. It's a great small model, owing to the base model before tuning.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
## Training Details
|
39 |
|
40 |
### Training Data
|
41 |
|
42 |
+
{
|
43 |
+
"eval/loss": 2.1797242164611816,
|
44 |
+
"_timestamp": 1708624900.2239263,
|
45 |
+
"_runtime": 20945.370138406754,
|
46 |
+
"train/train_loss": 2.515587423102269,
|
47 |
+
"train/global_step": 918,
|
48 |
+
"train/train_steps_per_second": 0.044,
|
49 |
+
"train/loss": 2.2062,
|
50 |
+
"train/learning_rate": 0,
|
51 |
+
"train/train_samples_per_second": 1.403,
|
52 |
+
"train/train_runtime": 20945.6359,
|
53 |
+
"eval/steps_per_second": 4.867,
|
54 |
+
"eval/samples_per_second": 4.867,
|
55 |
+
"_step": 923,
|
56 |
+
"train/epoch": 2.98,
|
57 |
+
"eval/runtime": 41.0972,
|
58 |
+
"train/grad_norm": 0.2638521194458008,
|
59 |
+
"train/total_flos": 141790931224363000
|
60 |
+
}
|
61 |
|
62 |
### Training Procedure
|
63 |
|
64 |
+
[LaserRMT](https://github.com/cognitivecomputations/laserRMT) was used to refine the weights, using the 16 highest scored weights specifically by noise-to-ratio analysis.
|
65 |
+
This technique avoids training unnecessarily low-performng weights that can turn to garbage. By pruning these weights, the model size is decreased slightly.
|
66 |
|
67 |
+

|
68 |
+
Axolotl was used for training and dataset tokenization.
|
69 |
|
70 |
+
#### Preprocessing [optional]
|
71 |
|
72 |
+
Dataset was formatted in ShareGpt format for the purposes of using with Axolotl, in conversational format.
|
73 |
|
74 |
#### Training Hyperparameters
|
75 |
|
76 |
+
lora_r: 64
|
77 |
+
lora_alpha: 16
|
78 |
+
lora_dropout: 0.05
|
79 |
+
gradient_accumulation_steps: 4
|
80 |
+
micro_batch_size: 1
|
81 |
+
num_epochs: 3
|
82 |
+
optimizer: adamw_bnb_8bit
|
83 |
+
lr_scheduler: cosine
|
84 |
+
learning_rate: 0.00025
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|