k1h0 commited on
Commit
7bc029d
·
verified ·
1 Parent(s): 12ffb67

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: infly/OpenCoder-8B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - freeze
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: opencoder-nlx-330k
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # opencoder-nlx-330k
18
+
19
+ This model is a fine-tuned version of [infly/OpenCoder-8B-Instruct](https://huggingface.co/infly/OpenCoder-8B-Instruct) on the codes3_query_filtered_330k_nlx dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 4
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 512
46
+ - total_eval_batch_size: 32
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - num_epochs: 1.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.48.2
58
+ - Pytorch 2.5.1+cu124
59
+ - Datasets 3.2.0
60
+ - Tokenizers 0.21.0
added_tokens.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<code_to_intermediate>": 96521,
3
+ "<empty_output>": 96520,
4
+ "<file_sep>": 96511,
5
+ "<fim_middle>": 96508,
6
+ "<fim_prefix>": 96507,
7
+ "<fim_suffix>": 96509,
8
+ "<intermediate_to_code>": 96522,
9
+ "<issue_closed>": 96514,
10
+ "<issue_comment>": 96513,
11
+ "<issue_start>": 96512,
12
+ "<jupyter_code>": 96517,
13
+ "<jupyter_output>": 96518,
14
+ "<jupyter_script>": 96519,
15
+ "<jupyter_start>": 96515,
16
+ "<jupyter_text>": 96516,
17
+ "<pr>": 96523,
18
+ "<pr_base>": 96526,
19
+ "<pr_base_code>": 96528,
20
+ "<pr_comment>": 96531,
21
+ "<pr_diff>": 96529,
22
+ "<pr_diff_hunk>": 96530,
23
+ "<pr_diff_hunk_comment_line>": 96538,
24
+ "<pr_event_id>": 96532,
25
+ "<pr_file>": 96527,
26
+ "<pr_in_reply_to_comment_id>": 96537,
27
+ "<pr_in_reply_to_review_id>": 96536,
28
+ "<pr_is_merged>": 96525,
29
+ "<pr_review>": 96533,
30
+ "<pr_review_comment>": 96535,
31
+ "<pr_review_state>": 96534,
32
+ "<pr_status>": 96524,
33
+ "<repo_name>": 96510,
34
+ "<|endoftext|>": 96506,
35
+ "<|end|>": 96500,
36
+ "<|im_end|>": 96539,
37
+ "<|im_start|>": 96540,
38
+ "<|message|>": 96501,
39
+ "<|pad|>": 96505,
40
+ "<|start|>": 96499,
41
+ "<|tool_end|>": 96504,
42
+ "<|tool_excute|>": 96503,
43
+ "<|tool_start|>": 96502
44
+ }
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9865470852017937,
3
+ "num_input_tokens_seen": 115343360,
4
+ "total_flos": 5.104238176512246e+18,
5
+ "train_loss": 0.6637221011248502,
6
+ "train_runtime": 9208.1472,
7
+ "train_samples_per_second": 3.097,
8
+ "train_steps_per_second": 0.006
9
+ }
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "infly/OpenCoder-8B-Instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 96540,
9
+ "eos_token_id": 96539,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 14336,
15
+ "max_position_embeddings": 8192,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "num_key_value_heads": 8,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 1.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.48.2",
34
+ "use_cache": false,
35
+ "vocab_size": 96640
36
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 96540,
4
+ "eos_token_id": 96539,
5
+ "transformers_version": "4.48.2"
6
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: liger_kernel
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: freeze
4
+ top.model_name: OpenCoder-8B-Instruct
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: llama3
8
+ top.template: opencoder
9
+ train.additional_target: ''
10
+ train.apollo_rank: 256
11
+ train.apollo_scale: 1
12
+ train.apollo_target: all
13
+ train.apollo_update_interval: 200
14
+ train.badam_mode: layer
15
+ train.badam_switch_interval: 50
16
+ train.badam_switch_mode: ascending
17
+ train.badam_update_ratio: 0.05
18
+ train.batch_size: 16
19
+ train.compute_type: bf16
20
+ train.create_new_adapter: false
21
+ train.cutoff_len: 4096
22
+ train.dataset:
23
+ - codes3_query_filtered_330k_nlx
24
+ train.dataset_dir: data
25
+ train.ds_offload: false
26
+ train.ds_stage: none
27
+ train.extra_args: '{}'
28
+ train.freeze_extra_modules: ''
29
+ train.freeze_trainable_layers: 2
30
+ train.freeze_trainable_modules: all
31
+ train.galore_rank: 16
32
+ train.galore_scale: 2
33
+ train.galore_target: all
34
+ train.galore_update_interval: 200
35
+ train.gradient_accumulation_steps: 8
36
+ train.learning_rate: 5e-5
37
+ train.logging_steps: 1
38
+ train.lora_alpha: 16
39
+ train.lora_dropout: 0
40
+ train.lora_rank: 8
41
+ train.lora_target: ''
42
+ train.loraplus_lr_ratio: 0
43
+ train.lr_scheduler_type: cosine
44
+ train.mask_history: false
45
+ train.max_grad_norm: '1.0'
46
+ train.max_samples: '50000000'
47
+ train.neat_packing: true
48
+ train.neftune_alpha: 0
49
+ train.num_train_epochs: '1'
50
+ train.packing: true
51
+ train.ppo_score_norm: false
52
+ train.ppo_whiten_rewards: false
53
+ train.pref_beta: 0.1
54
+ train.pref_ftx: 0
55
+ train.pref_loss: sigmoid
56
+ train.report_to:
57
+ - none
58
+ train.resize_vocab: false
59
+ train.reward_model: null
60
+ train.save_steps: 500
61
+ train.swanlab_api_key: ''
62
+ train.swanlab_mode: cloud
63
+ train.swanlab_project: llamafactory
64
+ train.swanlab_run_name: ''
65
+ train.swanlab_workspace: ''
66
+ train.train_on_prompt: false
67
+ train.training_stage: Supervised Fine-Tuning
68
+ train.use_apollo: true
69
+ train.use_badam: false
70
+ train.use_dora: false
71
+ train.use_galore: false
72
+ train.use_llama_pro: true
73
+ train.use_pissa: false
74
+ train.use_rslora: false
75
+ train.use_swanlab: false
76
+ train.val_size: 0
77
+ train.warmup_steps: 0
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:182be20097743536eb8333475d94fdb0eeea45e2d7f20103b65a61c2771ee9bf
3
+ size 4919027568
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f78d374b731ab44b3915afaa2345ffb30fe42ec01a5a1f600f50515ba42d471d
3
+ size 4915915128
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d197d5eeb8b914e9d57c0db5dd3e6c28057fb738a0af2c79f69e6603f5d64fde
3
+ size 4999819112
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5deaa08aa225bc85b0184ec247c1096add649475c24a52eceecdae65336ba8e
3
+ size 1580246000
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16414973952
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }
running_log.txt ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2025-05-12 13:05:10] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--infly--OpenCoder-8B-Instruct/snapshots/01badbbf10c2dfd7e2a0b5f570065ef44548576c/config.json
2
+
3
+ [INFO|2025-05-12 13:05:10] configuration_utils.py:768 >> Model config LlamaConfig {
4
+ "_name_or_path": "infly/OpenCoder-8B-Instruct",
5
+ "architectures": [
6
+ "LlamaForCausalLM"
7
+ ],
8
+ "attention_bias": false,
9
+ "attention_dropout": 0.0,
10
+ "bos_token_id": 96540,
11
+ "eos_token_id": 96539,
12
+ "head_dim": 128,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 14336,
17
+ "max_position_embeddings": 8192,
18
+ "mlp_bias": false,
19
+ "model_type": "llama",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 8,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "rope_theta": 500000.0,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.48.2",
30
+ "use_cache": true,
31
+ "vocab_size": 96640
32
+ }
33
+
34
+
35
+ [INFO|2025-05-12 13:05:13] tokenization_utils_base.py:2034 >> loading file ./tokenizer.model from cache at /home/kiho/.cache/huggingface/hub/models--infly--OpenCoder-8B-Instruct/snapshots/01badbbf10c2dfd7e2a0b5f570065ef44548576c/./tokenizer.model
36
+
37
+ [INFO|2025-05-12 13:05:13] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at /home/kiho/.cache/huggingface/hub/models--infly--OpenCoder-8B-Instruct/snapshots/01badbbf10c2dfd7e2a0b5f570065ef44548576c/added_tokens.json
38
+
39
+ [INFO|2025-05-12 13:05:13] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at /home/kiho/.cache/huggingface/hub/models--infly--OpenCoder-8B-Instruct/snapshots/01badbbf10c2dfd7e2a0b5f570065ef44548576c/special_tokens_map.json
40
+
41
+ [INFO|2025-05-12 13:05:13] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--infly--OpenCoder-8B-Instruct/snapshots/01badbbf10c2dfd7e2a0b5f570065ef44548576c/tokenizer_config.json
42
+
43
+ [INFO|2025-05-12 13:05:13] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at None
44
+
45
+ [INFO|2025-05-12 13:05:13] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
46
+
47
+ [INFO|2025-05-12 13:05:13] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
48
+
49
+ [INFO|2025-05-12 13:05:14] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--infly--OpenCoder-8B-Instruct/snapshots/01badbbf10c2dfd7e2a0b5f570065ef44548576c/config.json
50
+
51
+ [INFO|2025-05-12 13:05:14] configuration_utils.py:768 >> Model config LlamaConfig {
52
+ "_name_or_path": "infly/OpenCoder-8B-Instruct",
53
+ "architectures": [
54
+ "LlamaForCausalLM"
55
+ ],
56
+ "attention_bias": false,
57
+ "attention_dropout": 0.0,
58
+ "bos_token_id": 96540,
59
+ "eos_token_id": 96539,
60
+ "head_dim": 128,
61
+ "hidden_act": "silu",
62
+ "hidden_size": 4096,
63
+ "initializer_range": 0.02,
64
+ "intermediate_size": 14336,
65
+ "max_position_embeddings": 8192,
66
+ "mlp_bias": false,
67
+ "model_type": "llama",
68
+ "num_attention_heads": 32,
69
+ "num_hidden_layers": 32,
70
+ "num_key_value_heads": 8,
71
+ "pretraining_tp": 1,
72
+ "rms_norm_eps": 1e-05,
73
+ "rope_scaling": null,
74
+ "rope_theta": 500000.0,
75
+ "tie_word_embeddings": false,
76
+ "torch_dtype": "bfloat16",
77
+ "transformers_version": "4.48.2",
78
+ "use_cache": true,
79
+ "vocab_size": 96640
80
+ }
81
+
82
+
83
+ [INFO|2025-05-12 13:05:15] tokenization_utils_base.py:2034 >> loading file ./tokenizer.model from cache at /home/kiho/.cache/huggingface/hub/models--infly--OpenCoder-8B-Instruct/snapshots/01badbbf10c2dfd7e2a0b5f570065ef44548576c/./tokenizer.model
84
+
85
+ [INFO|2025-05-12 13:05:15] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at /home/kiho/.cache/huggingface/hub/models--infly--OpenCoder-8B-Instruct/snapshots/01badbbf10c2dfd7e2a0b5f570065ef44548576c/added_tokens.json
86
+
87
+ [INFO|2025-05-12 13:05:15] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at /home/kiho/.cache/huggingface/hub/models--infly--OpenCoder-8B-Instruct/snapshots/01badbbf10c2dfd7e2a0b5f570065ef44548576c/special_tokens_map.json
88
+
89
+ [INFO|2025-05-12 13:05:15] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--infly--OpenCoder-8B-Instruct/snapshots/01badbbf10c2dfd7e2a0b5f570065ef44548576c/tokenizer_config.json
90
+
91
+ [INFO|2025-05-12 13:05:15] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at None
92
+
93
+ [INFO|2025-05-12 13:05:15] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
94
+
95
+ [INFO|2025-05-12 13:05:15] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
96
+
97
+ [INFO|2025-05-12 13:05:15] logging.py:157 >> Add <|im_end|> to stop words.
98
+
99
+ [INFO|2025-05-12 13:05:15] logging.py:157 >> Loading dataset Codes3_query_filtered_330k_nlx.json...
100
+
special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_end|>",
4
+ "<|im_start|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<|im_start|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|im_end|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<pad>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
tokenization_inflm.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ """Tokenization classes for INFLMTokenizer."""
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+ from tokenizers import pre_tokenizers,Regex,decoders
32
+ from tokenizers.pre_tokenizers import Digits, Split, ByteLevel
33
+ import os
34
+
35
+ # same as gpt4 cl-base-100k
36
+ PATTERN = Regex("(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+\s+(\S)+")
37
+
38
+ logger = logging.get_logger(__name__)
39
+
40
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
41
+
42
+ PRETRAINED_VOCAB_FILES_MAP = {}
43
+
44
+
45
+ class INFLMTokenizer(PreTrainedTokenizer):
46
+ """
47
+ Construct a INFLMTokenizer tokenizer based on sentence-piece
48
+
49
+ Args:
50
+ vocab_file (`str`):
51
+ Path to the vocabulary file.
52
+ """
53
+
54
+ vocab_files_names = VOCAB_FILES_NAMES
55
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
56
+ model_input_names = ["input_ids", "attention_mask"]
57
+ _auto_class = "AutoTokenizer"
58
+
59
+ def __init__(
60
+ self,
61
+ vocab_file,
62
+ unk_token="<unk>",
63
+ bos_token="<s>",
64
+ eos_token="</s>",
65
+ pad_token="<pad>",
66
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
67
+ add_bos_token=False,
68
+ add_eos_token=False,
69
+ decode_with_prefix_space=False,
70
+ clean_up_tokenization_spaces=False,
71
+ spaces_between_special_tokens=False,
72
+ **kwargs,
73
+ ):
74
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
75
+ self.vocab_file = vocab_file
76
+ self.add_bos_token = add_bos_token
77
+ self.add_eos_token = add_eos_token
78
+ self.decode_with_prefix_space = decode_with_prefix_space
79
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
80
+ self.sp_model.Load(vocab_file)
81
+ self._no_prefix_space_tokens = None
82
+ self.pre_tokenizer = pre_tokenizers.Sequence([Split(pattern =PATTERN,behavior = "isolated", invert = False)])
83
+ super().__init__(
84
+ bos_token=bos_token,
85
+ eos_token=eos_token,
86
+ unk_token=unk_token,
87
+ pad_token=pad_token,
88
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
89
+ spaces_between_special_tokens=spaces_between_special_tokens,
90
+ **kwargs,
91
+ )
92
+
93
+ """ Initialisation"""
94
+
95
+ @property
96
+ def no_prefix_space_tokens(self):
97
+ if self._no_prefix_space_tokens is None:
98
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
99
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
100
+ return self._no_prefix_space_tokens
101
+
102
+ @property
103
+ def vocab_size(self):
104
+ """Returns vocab size"""
105
+ return self.sp_model.get_piece_size()
106
+
107
+ @property
108
+ def bos_token_id(self) -> Optional[int]:
109
+ return self.sp_model.bos_id()
110
+
111
+ @property
112
+ def eos_token_id(self) -> Optional[int]:
113
+ return self.sp_model.eos_id()
114
+
115
+ def get_vocab(self):
116
+ """Returns vocab as a dict"""
117
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
118
+ vocab.update(self.added_tokens_encoder)
119
+ return vocab
120
+
121
+ def _tokenize(self, text):
122
+ """Returns a tokenized string."""
123
+
124
+ splits = self.pre_tokenizer.pre_tokenize_str(text)
125
+ texts=[]
126
+
127
+ for split in splits:
128
+ texts.extend(self.sp_model.encode(split[0], out_type=str))
129
+ return texts
130
+
131
+ def _convert_token_to_id(self, token):
132
+ """Converts a token (str) in an id using the vocab."""
133
+
134
+ return self.sp_model.piece_to_id(token)
135
+
136
+ def _convert_id_to_token(self, index):
137
+ """Converts an index (integer) in a token (str) using the vocab."""
138
+ token = self.sp_model.IdToPiece(index)
139
+ return token
140
+
141
+ def _maybe_add_prefix_space(self, tokens, decoded):
142
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
143
+ return " " + decoded
144
+ else:
145
+ return decoded
146
+
147
+ def convert_tokens_to_string(self, tokens):
148
+ """Converts a sequence of tokens (string) in a single string."""
149
+ current_sub_tokens = []
150
+ out_string = ""
151
+ prev_is_special = False
152
+ for token in tokens:
153
+ # make sure that special tokens are not decoded using sentencepiece model
154
+ if token in self.all_special_tokens:
155
+ out_string += self.sp_model.decode(current_sub_tokens) + token
156
+ prev_is_special = True
157
+ current_sub_tokens = []
158
+ else:
159
+ current_sub_tokens.append(token)
160
+ prev_is_special = False
161
+ out_string += self.sp_model.decode(current_sub_tokens)
162
+
163
+ return out_string
164
+
165
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
166
+ """
167
+ Save the vocabulary and special tokens file to a directory.
168
+
169
+ Args:
170
+ save_directory (`str`):
171
+ The directory in which to save the vocabulary.
172
+
173
+ Returns:
174
+ `Tuple(str)`: Paths to the files saved.
175
+ """
176
+ if not os.path.isdir(save_directory):
177
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
178
+ return
179
+ out_vocab_file = os.path.join(
180
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
181
+ )
182
+
183
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
184
+ copyfile(self.vocab_file, out_vocab_file)
185
+ elif not os.path.isfile(self.vocab_file):
186
+ with open(out_vocab_file, "wb") as fi:
187
+ content_spiece_model = self.sp_model.serialized_model_proto()
188
+ fi.write(content_spiece_model)
189
+
190
+ return (out_vocab_file,)
191
+
192
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
193
+ if self.add_bos_token:
194
+ bos_token_ids = [self.bos_token_id]
195
+ else:
196
+ bos_token_ids = []
197
+
198
+ output = bos_token_ids + token_ids_0
199
+
200
+ if token_ids_1 is not None:
201
+ output = output + token_ids_1
202
+
203
+ if self.add_eos_token:
204
+ output = output + [self.eos_token_id]
205
+
206
+ return output
207
+
208
+ def get_special_tokens_mask(
209
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
210
+ ) -> List[int]:
211
+ """
212
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
213
+ special tokens using the tokenizer `prepare_for_model` method.
214
+
215
+ Args:
216
+ token_ids_0 (`List[int]`):
217
+ List of IDs.
218
+ token_ids_1 (`List[int]`, *optional*):
219
+ Optional second list of IDs for sequence pairs.
220
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
221
+ Whether or not the token list is already formatted with special tokens for the model.
222
+
223
+ Returns:
224
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
225
+ """
226
+ if already_has_special_tokens:
227
+ return super().get_special_tokens_mask(
228
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
229
+ )
230
+
231
+ eos_token_id = [1] if self.add_eos_token else []
232
+ if token_ids_1 is None:
233
+ return ([0] * len(token_ids_0)) + eos_token_id
234
+ return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
235
+
236
+
237
+ def create_token_type_ids_from_sequences(
238
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
239
+ ) -> List[int]:
240
+ """
241
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
242
+ sequence pair mask has the following format:
243
+
244
+ ```
245
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
246
+ | first sequence | second sequence |
247
+ ```
248
+
249
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
250
+
251
+ Note this is only used for back compatiblity, thus list of zero is returned.
252
+
253
+ Args:
254
+ token_ids_0 (`List[int]`):
255
+ List of ids.
256
+ token_ids_1 (`List[int]`, *optional*):
257
+ Optional second list of IDs for sequence pairs.
258
+
259
+ Returns:
260
+ `List[int]`: List of zeros.
261
+ """
262
+ eos = [self.eos_token_id]
263
+
264
+ if token_ids_1 is None:
265
+ return len(token_ids_0 + eos) * [0]
266
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
267
+
268
+
269
+ @property
270
+ def default_chat_template(self):
271
+ return None
272
+
273
+
274
+ def decode(
275
+ self,
276
+ token_ids,
277
+ skip_special_tokens: bool = False,
278
+ clean_up_tokenization_spaces: Optional[bool] = False,
279
+ spaces_between_special_tokens: bool = False,
280
+ **kwargs,
281
+ ) -> str:
282
+ # default spaces_between_special_tokens should be false.
283
+ if spaces_between_special_tokens:
284
+ logger.warning_once('spaces_between_special_tokens is set. \
285
+ It has no effect for bos,eos,pad,unk when transformers<=4.38.')
286
+ return super().decode(
287
+ token_ids,
288
+ skip_special_tokens=skip_special_tokens,
289
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
290
+ spaces_between_special_tokens=spaces_between_special_tokens,
291
+ **kwargs,
292
+ )
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76d43d618fc0c5a7c79dc4e72579f9f29bb803b36e4a4d709d1233626fd8fe2a
3
+ size 1535725
tokenizer_config.json ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<unk>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<pad>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "96499": {
37
+ "content": "<|start|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "96500": {
45
+ "content": "<|end|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "96501": {
53
+ "content": "<|message|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "96502": {
61
+ "content": "<|tool_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "96503": {
69
+ "content": "<|tool_excute|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "96504": {
77
+ "content": "<|tool_end|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "96505": {
85
+ "content": "<|pad|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "96506": {
93
+ "content": "<|endoftext|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "96507": {
101
+ "content": "<fim_prefix>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "96508": {
109
+ "content": "<fim_middle>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "96509": {
117
+ "content": "<fim_suffix>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "96510": {
125
+ "content": "<repo_name>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "96511": {
133
+ "content": "<file_sep>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "96512": {
141
+ "content": "<issue_start>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "96513": {
149
+ "content": "<issue_comment>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "96514": {
157
+ "content": "<issue_closed>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "96515": {
165
+ "content": "<jupyter_start>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "96516": {
173
+ "content": "<jupyter_text>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "96517": {
181
+ "content": "<jupyter_code>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "96518": {
189
+ "content": "<jupyter_output>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "96519": {
197
+ "content": "<jupyter_script>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "96520": {
205
+ "content": "<empty_output>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "96521": {
213
+ "content": "<code_to_intermediate>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "96522": {
221
+ "content": "<intermediate_to_code>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "96523": {
229
+ "content": "<pr>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "96524": {
237
+ "content": "<pr_status>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "96525": {
245
+ "content": "<pr_is_merged>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "96526": {
253
+ "content": "<pr_base>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "96527": {
261
+ "content": "<pr_file>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "96528": {
269
+ "content": "<pr_base_code>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "96529": {
277
+ "content": "<pr_diff>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "96530": {
285
+ "content": "<pr_diff_hunk>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "96531": {
293
+ "content": "<pr_comment>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "96532": {
301
+ "content": "<pr_event_id>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "96533": {
309
+ "content": "<pr_review>",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "96534": {
317
+ "content": "<pr_review_state>",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "96535": {
325
+ "content": "<pr_review_comment>",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "96536": {
333
+ "content": "<pr_in_reply_to_review_id>",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "96537": {
341
+ "content": "<pr_in_reply_to_comment_id>",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "96538": {
349
+ "content": "<pr_diff_hunk_comment_line>",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "96539": {
357
+ "content": "<|im_end|>",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "96540": {
365
+ "content": "<|im_start|>",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ }
372
+ },
373
+ "additional_special_tokens": [
374
+ "<|im_end|>",
375
+ "<|im_start|>"
376
+ ],
377
+ "auto_map": {
378
+ "AutoTokenizer": [
379
+ "tokenization_inflm.INFLMTokenizer",
380
+ null
381
+ ]
382
+ },
383
+ "bos_token": "<|im_start|>",
384
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are OpenCoder, created by OpenCoder Team.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
385
+ "clean_up_tokenization_spaces": false,
386
+ "eos_token": "<|im_end|>",
387
+ "extra_special_tokens": {},
388
+ "model_max_length": 4096,
389
+ "pad_token": "<pad>",
390
+ "padding_side": "right",
391
+ "return_tensors": true,
392
+ "spaces_between_special_tokens": false,
393
+ "split_special_tokens": false,
394
+ "tokenizer_class": "INFLMTokenizer",
395
+ "unk_token": "<unk>"
396
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9865470852017937,
3
+ "num_input_tokens_seen": 115343360,
4
+ "total_flos": 5.104238176512246e+18,
5
+ "train_loss": 0.6637221011248502,
6
+ "train_runtime": 9208.1472,
7
+ "train_samples_per_second": 3.097,
8
+ "train_steps_per_second": 0.006
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 55, "loss": 0.8371, "lr": 4.995922759815339e-05, "epoch": 0.017937219730941704, "percentage": 1.82, "elapsed_time": "0:02:58", "remaining_time": "2:40:59", "throughput": 11723.96, "total_tokens": 2097152}
2
+ {"current_steps": 2, "total_steps": 55, "loss": 0.7804, "lr": 4.9837043383713753e-05, "epoch": 0.03587443946188341, "percentage": 3.64, "elapsed_time": "0:05:45", "remaining_time": "2:32:35", "throughput": 12140.47, "total_tokens": 4194304}
3
+ {"current_steps": 3, "total_steps": 55, "loss": 0.7695, "lr": 4.963384589619233e-05, "epoch": 0.053811659192825115, "percentage": 5.45, "elapsed_time": "0:08:32", "remaining_time": "2:27:59", "throughput": 12280.9, "total_tokens": 6291456}
4
+ {"current_steps": 4, "total_steps": 55, "loss": 0.7419, "lr": 4.935029792355834e-05, "epoch": 0.07174887892376682, "percentage": 7.27, "elapsed_time": "0:11:18", "remaining_time": "2:24:10", "throughput": 12363.46, "total_tokens": 8388608}
5
+ {"current_steps": 5, "total_steps": 55, "loss": 0.7166, "lr": 4.898732434036244e-05, "epoch": 0.08968609865470852, "percentage": 9.09, "elapsed_time": "0:14:04", "remaining_time": "2:20:47", "throughput": 12412.88, "total_tokens": 10485760}
6
+ {"current_steps": 6, "total_steps": 55, "loss": 0.7194, "lr": 4.854610909098812e-05, "epoch": 0.10762331838565023, "percentage": 10.91, "elapsed_time": "0:16:51", "remaining_time": "2:17:39", "throughput": 12441.93, "total_tokens": 12582912}
7
+ {"current_steps": 7, "total_steps": 55, "loss": 0.6975, "lr": 4.802809132787125e-05, "epoch": 0.12556053811659193, "percentage": 12.73, "elapsed_time": "0:19:37", "remaining_time": "2:14:33", "throughput": 12468.67, "total_tokens": 14680064}
8
+ {"current_steps": 8, "total_steps": 55, "loss": 0.7168, "lr": 4.743496071728396e-05, "epoch": 0.14349775784753363, "percentage": 14.55, "elapsed_time": "0:22:23", "remaining_time": "2:11:33", "throughput": 12487.26, "total_tokens": 16777216}
9
+ {"current_steps": 9, "total_steps": 55, "loss": 0.6707, "lr": 4.6768651927994434e-05, "epoch": 0.16143497757847533, "percentage": 16.36, "elapsed_time": "0:25:10", "remaining_time": "2:08:38", "throughput": 12498.39, "total_tokens": 18874368}
10
+ {"current_steps": 10, "total_steps": 55, "loss": 0.6769, "lr": 4.6031338320779534e-05, "epoch": 0.17937219730941703, "percentage": 18.18, "elapsed_time": "0:27:56", "remaining_time": "2:05:43", "throughput": 12510.8, "total_tokens": 20971520}
11
+ {"current_steps": 11, "total_steps": 55, "loss": 0.6873, "lr": 4.522542485937369e-05, "epoch": 0.19730941704035873, "percentage": 20.0, "elapsed_time": "0:30:42", "remaining_time": "2:02:49", "throughput": 12521.66, "total_tokens": 23068672}
12
+ {"current_steps": 12, "total_steps": 55, "loss": 0.6643, "lr": 4.4353540265977064e-05, "epoch": 0.21524663677130046, "percentage": 21.82, "elapsed_time": "0:33:28", "remaining_time": "1:59:55", "throughput": 12532.39, "total_tokens": 25165824}
13
+ {"current_steps": 13, "total_steps": 55, "loss": 0.6849, "lr": 4.341852844691012e-05, "epoch": 0.23318385650224216, "percentage": 23.64, "elapsed_time": "0:36:14", "remaining_time": "1:57:05", "throughput": 12536.36, "total_tokens": 27262976}
14
+ {"current_steps": 14, "total_steps": 55, "loss": 0.6461, "lr": 4.242343921638234e-05, "epoch": 0.25112107623318386, "percentage": 25.45, "elapsed_time": "0:39:02", "remaining_time": "1:54:18", "throughput": 12536.26, "total_tokens": 29360128}
15
+ {"current_steps": 15, "total_steps": 55, "loss": 0.6623, "lr": 4.137151834863213e-05, "epoch": 0.26905829596412556, "percentage": 27.27, "elapsed_time": "0:41:50", "remaining_time": "1:51:33", "throughput": 12532.13, "total_tokens": 31457280}
16
+ {"current_steps": 16, "total_steps": 55, "loss": 0.6751, "lr": 4.0266196990885955e-05, "epoch": 0.28699551569506726, "percentage": 29.09, "elapsed_time": "0:44:37", "remaining_time": "1:48:47", "throughput": 12530.23, "total_tokens": 33554432}
17
+ {"current_steps": 17, "total_steps": 55, "loss": 0.6472, "lr": 3.911108047166924e-05, "epoch": 0.30493273542600896, "percentage": 30.91, "elapsed_time": "0:47:24", "remaining_time": "1:45:58", "throughput": 12533.91, "total_tokens": 35651584}
18
+ {"current_steps": 18, "total_steps": 55, "loss": 0.6728, "lr": 3.790993654097405e-05, "epoch": 0.32286995515695066, "percentage": 32.73, "elapsed_time": "0:50:10", "remaining_time": "1:43:08", "throughput": 12538.59, "total_tokens": 37748736}
19
+ {"current_steps": 19, "total_steps": 55, "loss": 0.7017, "lr": 3.6666683080641846e-05, "epoch": 0.34080717488789236, "percentage": 34.55, "elapsed_time": "0:52:56", "remaining_time": "1:40:19", "throughput": 12542.68, "total_tokens": 39845888}
20
+ {"current_steps": 20, "total_steps": 55, "loss": 0.6502, "lr": 3.5385375325047166e-05, "epoch": 0.35874439461883406, "percentage": 36.36, "elapsed_time": "0:55:43", "remaining_time": "1:37:30", "throughput": 12545.22, "total_tokens": 41943040}
21
+ {"current_steps": 21, "total_steps": 55, "loss": 0.6476, "lr": 3.4070192633766025e-05, "epoch": 0.37668161434977576, "percentage": 38.18, "elapsed_time": "0:58:29", "remaining_time": "1:34:42", "throughput": 12548.26, "total_tokens": 44040192}
22
+ {"current_steps": 22, "total_steps": 55, "loss": 0.6411, "lr": 3.272542485937369e-05, "epoch": 0.39461883408071746, "percentage": 40.0, "elapsed_time": "1:01:16", "remaining_time": "1:31:54", "throughput": 12550.81, "total_tokens": 46137344}
23
+ {"current_steps": 23, "total_steps": 55, "loss": 0.6428, "lr": 3.135545835483718e-05, "epoch": 0.4125560538116592, "percentage": 41.82, "elapsed_time": "1:04:02", "remaining_time": "1:29:05", "throughput": 12553.59, "total_tokens": 48234496}
24
+ {"current_steps": 24, "total_steps": 55, "loss": 0.6661, "lr": 2.996476166614364e-05, "epoch": 0.4304932735426009, "percentage": 43.64, "elapsed_time": "1:06:49", "remaining_time": "1:26:18", "throughput": 12553.66, "total_tokens": 50331648}
25
+ {"current_steps": 25, "total_steps": 55, "loss": 0.6378, "lr": 2.8557870956832132e-05, "epoch": 0.4484304932735426, "percentage": 45.45, "elapsed_time": "1:09:35", "remaining_time": "1:23:30", "throughput": 12556.55, "total_tokens": 52428800}
26
+ {"current_steps": 26, "total_steps": 55, "loss": 0.6532, "lr": 2.7139375211970996e-05, "epoch": 0.4663677130044843, "percentage": 47.27, "elapsed_time": "1:12:21", "remaining_time": "1:20:42", "throughput": 12559.06, "total_tokens": 54525952}
27
+ {"current_steps": 27, "total_steps": 55, "loss": 0.6403, "lr": 2.5713901269842404e-05, "epoch": 0.484304932735426, "percentage": 49.09, "elapsed_time": "1:15:08", "remaining_time": "1:17:55", "throughput": 12558.03, "total_tokens": 56623104}
28
+ {"current_steps": 28, "total_steps": 55, "loss": 0.6248, "lr": 2.42860987301576e-05, "epoch": 0.5022421524663677, "percentage": 50.91, "elapsed_time": "1:17:56", "remaining_time": "1:15:09", "throughput": 12555.75, "total_tokens": 58720256}
29
+ {"current_steps": 29, "total_steps": 55, "loss": 0.6583, "lr": 2.2860624788029013e-05, "epoch": 0.5201793721973094, "percentage": 52.73, "elapsed_time": "1:20:43", "remaining_time": "1:12:22", "throughput": 12557.32, "total_tokens": 60817408}
30
+ {"current_steps": 30, "total_steps": 55, "loss": 0.6579, "lr": 2.1442129043167874e-05, "epoch": 0.5381165919282511, "percentage": 54.55, "elapsed_time": "1:23:29", "remaining_time": "1:09:34", "throughput": 12558.75, "total_tokens": 62914560}
31
+ {"current_steps": 31, "total_steps": 55, "loss": 0.6659, "lr": 2.003523833385637e-05, "epoch": 0.5560538116591929, "percentage": 56.36, "elapsed_time": "1:26:16", "remaining_time": "1:06:47", "throughput": 12560.18, "total_tokens": 65011712}
32
+ {"current_steps": 32, "total_steps": 55, "loss": 0.6423, "lr": 1.8644541645162834e-05, "epoch": 0.5739910313901345, "percentage": 58.18, "elapsed_time": "1:29:02", "remaining_time": "1:04:00", "throughput": 12560.33, "total_tokens": 67108864}
33
+ {"current_steps": 33, "total_steps": 55, "loss": 0.6509, "lr": 1.7274575140626318e-05, "epoch": 0.5919282511210763, "percentage": 60.0, "elapsed_time": "1:31:49", "remaining_time": "1:01:13", "throughput": 12560.22, "total_tokens": 69206016}
34
+ {"current_steps": 34, "total_steps": 55, "loss": 0.6551, "lr": 1.5929807366233977e-05, "epoch": 0.6098654708520179, "percentage": 61.82, "elapsed_time": "1:34:37", "remaining_time": "0:58:26", "throughput": 12559.4, "total_tokens": 71303168}
35
+ {"current_steps": 35, "total_steps": 55, "loss": 0.6232, "lr": 1.4614624674952842e-05, "epoch": 0.6278026905829597, "percentage": 63.64, "elapsed_time": "1:37:23", "remaining_time": "0:55:39", "throughput": 12560.48, "total_tokens": 73400320}
36
+ {"current_steps": 36, "total_steps": 55, "loss": 0.6137, "lr": 1.3333316919358157e-05, "epoch": 0.6457399103139013, "percentage": 65.45, "elapsed_time": "1:40:10", "remaining_time": "0:52:52", "throughput": 12560.55, "total_tokens": 75497472}
37
+ {"current_steps": 37, "total_steps": 55, "loss": 0.6426, "lr": 1.2090063459025955e-05, "epoch": 0.6636771300448431, "percentage": 67.27, "elapsed_time": "1:42:57", "remaining_time": "0:50:05", "throughput": 12560.88, "total_tokens": 77594624}
38
+ {"current_steps": 38, "total_steps": 55, "loss": 0.6512, "lr": 1.0888919528330777e-05, "epoch": 0.6816143497757847, "percentage": 69.09, "elapsed_time": "1:45:44", "remaining_time": "0:47:18", "throughput": 12560.79, "total_tokens": 79691776}
39
+ {"current_steps": 39, "total_steps": 55, "loss": 0.6269, "lr": 9.733803009114045e-06, "epoch": 0.6995515695067265, "percentage": 70.91, "elapsed_time": "1:48:31", "remaining_time": "0:44:31", "throughput": 12561.62, "total_tokens": 81788928}
40
+ {"current_steps": 40, "total_steps": 55, "loss": 0.6201, "lr": 8.628481651367876e-06, "epoch": 0.7174887892376681, "percentage": 72.73, "elapsed_time": "1:51:17", "remaining_time": "0:41:43", "throughput": 12563.27, "total_tokens": 83886080}
41
+ {"current_steps": 41, "total_steps": 55, "loss": 0.642, "lr": 7.576560783617668e-06, "epoch": 0.7354260089686099, "percentage": 74.55, "elapsed_time": "1:54:03", "remaining_time": "0:38:56", "throughput": 12563.83, "total_tokens": 85983232}
42
+ {"current_steps": 42, "total_steps": 55, "loss": 0.648, "lr": 6.5814715530898745e-06, "epoch": 0.7533632286995515, "percentage": 76.36, "elapsed_time": "1:56:50", "remaining_time": "0:36:09", "throughput": 12564.32, "total_tokens": 88080384}
43
+ {"current_steps": 43, "total_steps": 55, "loss": 0.6442, "lr": 5.646459734022938e-06, "epoch": 0.7713004484304933, "percentage": 78.18, "elapsed_time": "1:59:37", "remaining_time": "0:33:22", "throughput": 12564.19, "total_tokens": 90177536}
44
+ {"current_steps": 44, "total_steps": 55, "loss": 0.6488, "lr": 4.7745751406263165e-06, "epoch": 0.7892376681614349, "percentage": 80.0, "elapsed_time": "2:02:24", "remaining_time": "0:30:36", "throughput": 12563.71, "total_tokens": 92274688}
45
+ {"current_steps": 45, "total_steps": 55, "loss": 0.65, "lr": 3.968661679220468e-06, "epoch": 0.8071748878923767, "percentage": 81.82, "elapsed_time": "2:05:11", "remaining_time": "0:27:49", "throughput": 12563.43, "total_tokens": 94371840}
46
+ {"current_steps": 46, "total_steps": 55, "loss": 0.6584, "lr": 3.2313480720055745e-06, "epoch": 0.8251121076233184, "percentage": 83.64, "elapsed_time": "2:07:58", "remaining_time": "0:25:02", "throughput": 12563.12, "total_tokens": 96468992}
47
+ {"current_steps": 47, "total_steps": 55, "loss": 0.6392, "lr": 2.565039282716045e-06, "epoch": 0.8430493273542601, "percentage": 85.45, "elapsed_time": "2:10:45", "remaining_time": "0:22:15", "throughput": 12562.87, "total_tokens": 98566144}
48
+ {"current_steps": 48, "total_steps": 55, "loss": 0.6524, "lr": 1.97190867212875e-06, "epoch": 0.8609865470852018, "percentage": 87.27, "elapsed_time": "2:13:32", "remaining_time": "0:19:28", "throughput": 12562.77, "total_tokens": 100663296}
49
+ {"current_steps": 49, "total_steps": 55, "loss": 0.6276, "lr": 1.4538909090118846e-06, "epoch": 0.8789237668161435, "percentage": 89.09, "elapsed_time": "2:16:19", "remaining_time": "0:16:41", "throughput": 12562.47, "total_tokens": 102760448}
50
+ {"current_steps": 50, "total_steps": 55, "loss": 0.6282, "lr": 1.0126756596375686e-06, "epoch": 0.8968609865470852, "percentage": 90.91, "elapsed_time": "2:19:07", "remaining_time": "0:13:54", "throughput": 12562.14, "total_tokens": 104857600}
51
+ {"current_steps": 51, "total_steps": 55, "loss": 0.6344, "lr": 6.497020764416633e-07, "epoch": 0.9147982062780269, "percentage": 92.73, "elapsed_time": "2:21:54", "remaining_time": "0:11:07", "throughput": 12561.89, "total_tokens": 106954752}
52
+ {"current_steps": 52, "total_steps": 55, "loss": 0.6464, "lr": 3.6615410380767544e-07, "epoch": 0.9327354260089686, "percentage": 94.55, "elapsed_time": "2:24:41", "remaining_time": "0:08:20", "throughput": 12561.72, "total_tokens": 109051904}
53
+ {"current_steps": 53, "total_steps": 55, "loss": 0.6253, "lr": 1.6295661628624447e-07, "epoch": 0.9506726457399103, "percentage": 96.36, "elapsed_time": "2:27:28", "remaining_time": "0:05:33", "throughput": 12561.53, "total_tokens": 111149056}
54
+ {"current_steps": 54, "total_steps": 55, "loss": 0.6375, "lr": 4.07724018466088e-08, "epoch": 0.968609865470852, "percentage": 98.18, "elapsed_time": "2:30:15", "remaining_time": "0:02:46", "throughput": 12561.27, "total_tokens": 113246208}
55
+ {"current_steps": 55, "total_steps": 55, "loss": 0.6419, "lr": 0.0, "epoch": 0.9865470852017937, "percentage": 100.0, "elapsed_time": "2:33:02", "remaining_time": "0:00:00", "throughput": 12561.25, "total_tokens": 115343360}
56
+ {"current_steps": 55, "total_steps": 55, "epoch": 0.9865470852017937, "percentage": 100.0, "elapsed_time": "2:33:27", "remaining_time": "0:00:00", "throughput": 12527.75, "total_tokens": 115343360}
trainer_state.json ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9865470852017937,
5
+ "eval_steps": 500,
6
+ "global_step": 55,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.017937219730941704,
13
+ "grad_norm": 0.6536183953285217,
14
+ "learning_rate": 4.995922759815339e-05,
15
+ "loss": 0.8371,
16
+ "num_input_tokens_seen": 2097152,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.03587443946188341,
21
+ "grad_norm": 0.517680823802948,
22
+ "learning_rate": 4.9837043383713753e-05,
23
+ "loss": 0.7804,
24
+ "num_input_tokens_seen": 4194304,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.053811659192825115,
29
+ "grad_norm": 0.4423481225967407,
30
+ "learning_rate": 4.963384589619233e-05,
31
+ "loss": 0.7695,
32
+ "num_input_tokens_seen": 6291456,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.07174887892376682,
37
+ "grad_norm": 0.39828750491142273,
38
+ "learning_rate": 4.935029792355834e-05,
39
+ "loss": 0.7419,
40
+ "num_input_tokens_seen": 8388608,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.08968609865470852,
45
+ "grad_norm": 0.31201115250587463,
46
+ "learning_rate": 4.898732434036244e-05,
47
+ "loss": 0.7166,
48
+ "num_input_tokens_seen": 10485760,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.10762331838565023,
53
+ "grad_norm": 0.2536958158016205,
54
+ "learning_rate": 4.854610909098812e-05,
55
+ "loss": 0.7194,
56
+ "num_input_tokens_seen": 12582912,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.12556053811659193,
61
+ "grad_norm": 0.2193588763475418,
62
+ "learning_rate": 4.802809132787125e-05,
63
+ "loss": 0.6975,
64
+ "num_input_tokens_seen": 14680064,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.14349775784753363,
69
+ "grad_norm": 0.18916621804237366,
70
+ "learning_rate": 4.743496071728396e-05,
71
+ "loss": 0.7168,
72
+ "num_input_tokens_seen": 16777216,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.16143497757847533,
77
+ "grad_norm": 0.1561172604560852,
78
+ "learning_rate": 4.6768651927994434e-05,
79
+ "loss": 0.6707,
80
+ "num_input_tokens_seen": 18874368,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.17937219730941703,
85
+ "grad_norm": 0.12857139110565186,
86
+ "learning_rate": 4.6031338320779534e-05,
87
+ "loss": 0.6769,
88
+ "num_input_tokens_seen": 20971520,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.19730941704035873,
93
+ "grad_norm": 0.11340289562940598,
94
+ "learning_rate": 4.522542485937369e-05,
95
+ "loss": 0.6873,
96
+ "num_input_tokens_seen": 23068672,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.21524663677130046,
101
+ "grad_norm": 0.10658581554889679,
102
+ "learning_rate": 4.4353540265977064e-05,
103
+ "loss": 0.6643,
104
+ "num_input_tokens_seen": 25165824,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.23318385650224216,
109
+ "grad_norm": 0.08937722444534302,
110
+ "learning_rate": 4.341852844691012e-05,
111
+ "loss": 0.6849,
112
+ "num_input_tokens_seen": 27262976,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.25112107623318386,
117
+ "grad_norm": 0.07756289094686508,
118
+ "learning_rate": 4.242343921638234e-05,
119
+ "loss": 0.6461,
120
+ "num_input_tokens_seen": 29360128,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.26905829596412556,
125
+ "grad_norm": 0.07581546157598495,
126
+ "learning_rate": 4.137151834863213e-05,
127
+ "loss": 0.6623,
128
+ "num_input_tokens_seen": 31457280,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.28699551569506726,
133
+ "grad_norm": 0.07386067509651184,
134
+ "learning_rate": 4.0266196990885955e-05,
135
+ "loss": 0.6751,
136
+ "num_input_tokens_seen": 33554432,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.30493273542600896,
141
+ "grad_norm": 0.06293580681085587,
142
+ "learning_rate": 3.911108047166924e-05,
143
+ "loss": 0.6472,
144
+ "num_input_tokens_seen": 35651584,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.32286995515695066,
149
+ "grad_norm": 0.06199085712432861,
150
+ "learning_rate": 3.790993654097405e-05,
151
+ "loss": 0.6728,
152
+ "num_input_tokens_seen": 37748736,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.34080717488789236,
157
+ "grad_norm": 0.060734592378139496,
158
+ "learning_rate": 3.6666683080641846e-05,
159
+ "loss": 0.7017,
160
+ "num_input_tokens_seen": 39845888,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.35874439461883406,
165
+ "grad_norm": 0.05623164027929306,
166
+ "learning_rate": 3.5385375325047166e-05,
167
+ "loss": 0.6502,
168
+ "num_input_tokens_seen": 41943040,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.37668161434977576,
173
+ "grad_norm": 0.0574677549302578,
174
+ "learning_rate": 3.4070192633766025e-05,
175
+ "loss": 0.6476,
176
+ "num_input_tokens_seen": 44040192,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.39461883408071746,
181
+ "grad_norm": 0.05185185372829437,
182
+ "learning_rate": 3.272542485937369e-05,
183
+ "loss": 0.6411,
184
+ "num_input_tokens_seen": 46137344,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.4125560538116592,
189
+ "grad_norm": 0.05139186978340149,
190
+ "learning_rate": 3.135545835483718e-05,
191
+ "loss": 0.6428,
192
+ "num_input_tokens_seen": 48234496,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.4304932735426009,
197
+ "grad_norm": 0.050159115344285965,
198
+ "learning_rate": 2.996476166614364e-05,
199
+ "loss": 0.6661,
200
+ "num_input_tokens_seen": 50331648,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.4484304932735426,
205
+ "grad_norm": 0.04851464927196503,
206
+ "learning_rate": 2.8557870956832132e-05,
207
+ "loss": 0.6378,
208
+ "num_input_tokens_seen": 52428800,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.4663677130044843,
213
+ "grad_norm": 0.04896726831793785,
214
+ "learning_rate": 2.7139375211970996e-05,
215
+ "loss": 0.6532,
216
+ "num_input_tokens_seen": 54525952,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.484304932735426,
221
+ "grad_norm": 0.04698600620031357,
222
+ "learning_rate": 2.5713901269842404e-05,
223
+ "loss": 0.6403,
224
+ "num_input_tokens_seen": 56623104,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.5022421524663677,
229
+ "grad_norm": 0.048034097999334335,
230
+ "learning_rate": 2.42860987301576e-05,
231
+ "loss": 0.6248,
232
+ "num_input_tokens_seen": 58720256,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.5201793721973094,
237
+ "grad_norm": 0.044828303158283234,
238
+ "learning_rate": 2.2860624788029013e-05,
239
+ "loss": 0.6583,
240
+ "num_input_tokens_seen": 60817408,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.5381165919282511,
245
+ "grad_norm": 0.04563640430569649,
246
+ "learning_rate": 2.1442129043167874e-05,
247
+ "loss": 0.6579,
248
+ "num_input_tokens_seen": 62914560,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.5560538116591929,
253
+ "grad_norm": 0.044318560510873795,
254
+ "learning_rate": 2.003523833385637e-05,
255
+ "loss": 0.6659,
256
+ "num_input_tokens_seen": 65011712,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.5739910313901345,
261
+ "grad_norm": 0.04331167787313461,
262
+ "learning_rate": 1.8644541645162834e-05,
263
+ "loss": 0.6423,
264
+ "num_input_tokens_seen": 67108864,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.5919282511210763,
269
+ "grad_norm": 0.04475367069244385,
270
+ "learning_rate": 1.7274575140626318e-05,
271
+ "loss": 0.6509,
272
+ "num_input_tokens_seen": 69206016,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.6098654708520179,
277
+ "grad_norm": 0.045547887682914734,
278
+ "learning_rate": 1.5929807366233977e-05,
279
+ "loss": 0.6551,
280
+ "num_input_tokens_seen": 71303168,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.6278026905829597,
285
+ "grad_norm": 0.043985530734062195,
286
+ "learning_rate": 1.4614624674952842e-05,
287
+ "loss": 0.6232,
288
+ "num_input_tokens_seen": 73400320,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.6457399103139013,
293
+ "grad_norm": 0.0414094403386116,
294
+ "learning_rate": 1.3333316919358157e-05,
295
+ "loss": 0.6137,
296
+ "num_input_tokens_seen": 75497472,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.6636771300448431,
301
+ "grad_norm": 0.041019294410943985,
302
+ "learning_rate": 1.2090063459025955e-05,
303
+ "loss": 0.6426,
304
+ "num_input_tokens_seen": 77594624,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.6816143497757847,
309
+ "grad_norm": 0.04383592680096626,
310
+ "learning_rate": 1.0888919528330777e-05,
311
+ "loss": 0.6512,
312
+ "num_input_tokens_seen": 79691776,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.6995515695067265,
317
+ "grad_norm": 0.040539514273405075,
318
+ "learning_rate": 9.733803009114045e-06,
319
+ "loss": 0.6269,
320
+ "num_input_tokens_seen": 81788928,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.7174887892376681,
325
+ "grad_norm": 0.04238974675536156,
326
+ "learning_rate": 8.628481651367876e-06,
327
+ "loss": 0.6201,
328
+ "num_input_tokens_seen": 83886080,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.7354260089686099,
333
+ "grad_norm": 0.04115669056773186,
334
+ "learning_rate": 7.576560783617668e-06,
335
+ "loss": 0.642,
336
+ "num_input_tokens_seen": 85983232,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.7533632286995515,
341
+ "grad_norm": 0.04178008437156677,
342
+ "learning_rate": 6.5814715530898745e-06,
343
+ "loss": 0.648,
344
+ "num_input_tokens_seen": 88080384,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.7713004484304933,
349
+ "grad_norm": 0.04329155012965202,
350
+ "learning_rate": 5.646459734022938e-06,
351
+ "loss": 0.6442,
352
+ "num_input_tokens_seen": 90177536,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.7892376681614349,
357
+ "grad_norm": 0.043740272521972656,
358
+ "learning_rate": 4.7745751406263165e-06,
359
+ "loss": 0.6488,
360
+ "num_input_tokens_seen": 92274688,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.8071748878923767,
365
+ "grad_norm": 0.04263562709093094,
366
+ "learning_rate": 3.968661679220468e-06,
367
+ "loss": 0.65,
368
+ "num_input_tokens_seen": 94371840,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.8251121076233184,
373
+ "grad_norm": 0.041693028062582016,
374
+ "learning_rate": 3.2313480720055745e-06,
375
+ "loss": 0.6584,
376
+ "num_input_tokens_seen": 96468992,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.8430493273542601,
381
+ "grad_norm": 0.04151754826307297,
382
+ "learning_rate": 2.565039282716045e-06,
383
+ "loss": 0.6392,
384
+ "num_input_tokens_seen": 98566144,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.8609865470852018,
389
+ "grad_norm": 0.04260968416929245,
390
+ "learning_rate": 1.97190867212875e-06,
391
+ "loss": 0.6524,
392
+ "num_input_tokens_seen": 100663296,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.8789237668161435,
397
+ "grad_norm": 0.04022514820098877,
398
+ "learning_rate": 1.4538909090118846e-06,
399
+ "loss": 0.6276,
400
+ "num_input_tokens_seen": 102760448,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.8968609865470852,
405
+ "grad_norm": 0.039072513580322266,
406
+ "learning_rate": 1.0126756596375686e-06,
407
+ "loss": 0.6282,
408
+ "num_input_tokens_seen": 104857600,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.9147982062780269,
413
+ "grad_norm": 0.03952722251415253,
414
+ "learning_rate": 6.497020764416633e-07,
415
+ "loss": 0.6344,
416
+ "num_input_tokens_seen": 106954752,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.9327354260089686,
421
+ "grad_norm": 0.04045777767896652,
422
+ "learning_rate": 3.6615410380767544e-07,
423
+ "loss": 0.6464,
424
+ "num_input_tokens_seen": 109051904,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.9506726457399103,
429
+ "grad_norm": 0.03984501212835312,
430
+ "learning_rate": 1.6295661628624447e-07,
431
+ "loss": 0.6253,
432
+ "num_input_tokens_seen": 111149056,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.968609865470852,
437
+ "grad_norm": 0.040761884301900864,
438
+ "learning_rate": 4.07724018466088e-08,
439
+ "loss": 0.6375,
440
+ "num_input_tokens_seen": 113246208,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.9865470852017937,
445
+ "grad_norm": 0.04142209142446518,
446
+ "learning_rate": 0.0,
447
+ "loss": 0.6419,
448
+ "num_input_tokens_seen": 115343360,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.9865470852017937,
453
+ "num_input_tokens_seen": 115343360,
454
+ "step": 55,
455
+ "total_flos": 5.104238176512246e+18,
456
+ "train_loss": 0.6637221011248502,
457
+ "train_runtime": 9208.1472,
458
+ "train_samples_per_second": 3.097,
459
+ "train_steps_per_second": 0.006
460
+ }
461
+ ],
462
+ "logging_steps": 1.0,
463
+ "max_steps": 55,
464
+ "num_input_tokens_seen": 115343360,
465
+ "num_train_epochs": 1,
466
+ "save_steps": 500,
467
+ "stateful_callbacks": {
468
+ "TrainerControl": {
469
+ "args": {
470
+ "should_epoch_stop": false,
471
+ "should_evaluate": false,
472
+ "should_log": false,
473
+ "should_save": true,
474
+ "should_training_stop": true
475
+ },
476
+ "attributes": {}
477
+ }
478
+ },
479
+ "total_flos": 5.104238176512246e+18,
480
+ "train_batch_size": 16,
481
+ "trial_name": null,
482
+ "trial_params": null
483
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e164dab6761d5ccf7f25c775d976260379deb4b28f82ec691fefd0f00aae4acd
3
+ size 5688
training_args.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apollo_rank: 256
2
+ apollo_scale: 1
3
+ apollo_target: all
4
+ apollo_update_interval: 200
5
+ bf16: true
6
+ cutoff_len: 4096
7
+ dataset: codes3_query_filtered_330k_nlx
8
+ dataset_dir: data
9
+ ddp_timeout: 180000000
10
+ do_train: true
11
+ enable_liger_kernel: true
12
+ finetuning_type: freeze
13
+ flash_attn: auto
14
+ freeze_trainable_layers: 2
15
+ freeze_trainable_modules: all
16
+ gradient_accumulation_steps: 8
17
+ include_num_input_tokens_seen: true
18
+ learning_rate: 5.0e-05
19
+ logging_steps: 1
20
+ lr_scheduler_type: cosine
21
+ max_grad_norm: 1.0
22
+ max_samples: 50000000
23
+ model_name_or_path: infly/OpenCoder-8B-Instruct
24
+ neat_packing: true
25
+ num_train_epochs: 1.0
26
+ output_dir: saves/OpenCoder-8B-Instruct/freeze/opencoder-nlx-330k
27
+ packing: true
28
+ per_device_train_batch_size: 16
29
+ plot_loss: true
30
+ preprocessing_num_workers: 16
31
+ report_to: none
32
+ rope_scaling: llama3
33
+ save_steps: 500
34
+ stage: sft
35
+ template: opencoder
36
+ trust_remote_code: true
37
+ use_apollo: true
38
+ use_llama_pro: true
39
+ warmup_steps: 0
training_loss.png ADDED