k1h0 commited on
Commit
0208592
·
verified ·
1 Parent(s): c117833

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: infly/OpenCoder-8B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - freeze
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: opencoder_nsx
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # opencoder_nsx
18
+
19
+ This model is a fine-tuned version of [infly/OpenCoder-8B-Instruct](https://huggingface.co/infly/OpenCoder-8B-Instruct) on the codes_330k_nsx dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 4
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 512
46
+ - total_eval_batch_size: 32
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - num_epochs: 1.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.48.2
58
+ - Pytorch 2.5.1+cu124
59
+ - Datasets 3.2.0
60
+ - Tokenizers 0.21.0
added_tokens.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<code_to_intermediate>": 96521,
3
+ "<empty_output>": 96520,
4
+ "<file_sep>": 96511,
5
+ "<fim_middle>": 96508,
6
+ "<fim_prefix>": 96507,
7
+ "<fim_suffix>": 96509,
8
+ "<intermediate_to_code>": 96522,
9
+ "<issue_closed>": 96514,
10
+ "<issue_comment>": 96513,
11
+ "<issue_start>": 96512,
12
+ "<jupyter_code>": 96517,
13
+ "<jupyter_output>": 96518,
14
+ "<jupyter_script>": 96519,
15
+ "<jupyter_start>": 96515,
16
+ "<jupyter_text>": 96516,
17
+ "<pr>": 96523,
18
+ "<pr_base>": 96526,
19
+ "<pr_base_code>": 96528,
20
+ "<pr_comment>": 96531,
21
+ "<pr_diff>": 96529,
22
+ "<pr_diff_hunk>": 96530,
23
+ "<pr_diff_hunk_comment_line>": 96538,
24
+ "<pr_event_id>": 96532,
25
+ "<pr_file>": 96527,
26
+ "<pr_in_reply_to_comment_id>": 96537,
27
+ "<pr_in_reply_to_review_id>": 96536,
28
+ "<pr_is_merged>": 96525,
29
+ "<pr_review>": 96533,
30
+ "<pr_review_comment>": 96535,
31
+ "<pr_review_state>": 96534,
32
+ "<pr_status>": 96524,
33
+ "<repo_name>": 96510,
34
+ "<|endoftext|>": 96506,
35
+ "<|end|>": 96500,
36
+ "<|im_end|>": 96539,
37
+ "<|im_start|>": 96540,
38
+ "<|message|>": 96501,
39
+ "<|pad|>": 96505,
40
+ "<|start|>": 96499,
41
+ "<|tool_end|>": 96504,
42
+ "<|tool_excute|>": 96503,
43
+ "<|tool_start|>": 96502
44
+ }
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9977924944812362,
3
+ "num_input_tokens_seen": 236978176,
4
+ "total_flos": 1.0486889344470614e+19,
5
+ "train_loss": 0.7524756815581195,
6
+ "train_runtime": 19134.3763,
7
+ "train_samples_per_second": 3.027,
8
+ "train_steps_per_second": 0.006
9
+ }
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "infly/OpenCoder-8B-Instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 96540,
9
+ "eos_token_id": 96539,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 14336,
15
+ "max_position_embeddings": 8192,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "num_key_value_heads": 8,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 1.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.48.2",
34
+ "use_cache": false,
35
+ "vocab_size": 96640
36
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 96540,
4
+ "eos_token_id": 96539,
5
+ "transformers_version": "4.48.2"
6
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: liger_kernel
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: freeze
4
+ top.model_name: OpenCoder-8B-Instruct
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: llama3
8
+ top.template: opencoder
9
+ train.additional_target: ''
10
+ train.apollo_rank: 256
11
+ train.apollo_scale: 1
12
+ train.apollo_target: all
13
+ train.apollo_update_interval: 200
14
+ train.badam_mode: layer
15
+ train.badam_switch_interval: 50
16
+ train.badam_switch_mode: ascending
17
+ train.badam_update_ratio: 0.05
18
+ train.batch_size: 16
19
+ train.compute_type: bf16
20
+ train.create_new_adapter: false
21
+ train.cutoff_len: 4096
22
+ train.dataset:
23
+ - codes_330k_nsx
24
+ train.dataset_dir: data
25
+ train.ds_offload: false
26
+ train.ds_stage: none
27
+ train.extra_args: '{}'
28
+ train.freeze_extra_modules: ''
29
+ train.freeze_trainable_layers: 2
30
+ train.freeze_trainable_modules: all
31
+ train.galore_rank: 16
32
+ train.galore_scale: 2
33
+ train.galore_target: all
34
+ train.galore_update_interval: 200
35
+ train.gradient_accumulation_steps: 8
36
+ train.learning_rate: 5e-5
37
+ train.logging_steps: 1
38
+ train.lora_alpha: 16
39
+ train.lora_dropout: 0
40
+ train.lora_rank: 8
41
+ train.lora_target: ''
42
+ train.loraplus_lr_ratio: 0
43
+ train.lr_scheduler_type: cosine
44
+ train.mask_history: false
45
+ train.max_grad_norm: '1.0'
46
+ train.max_samples: '50000000'
47
+ train.neat_packing: true
48
+ train.neftune_alpha: 0
49
+ train.num_train_epochs: '1'
50
+ train.packing: true
51
+ train.ppo_score_norm: false
52
+ train.ppo_whiten_rewards: false
53
+ train.pref_beta: 0.1
54
+ train.pref_ftx: 0
55
+ train.pref_loss: sigmoid
56
+ train.report_to:
57
+ - none
58
+ train.resize_vocab: false
59
+ train.reward_model: null
60
+ train.save_steps: 500
61
+ train.swanlab_api_key: ''
62
+ train.swanlab_mode: cloud
63
+ train.swanlab_project: llamafactory
64
+ train.swanlab_run_name: ''
65
+ train.swanlab_workspace: ''
66
+ train.train_on_prompt: false
67
+ train.training_stage: Supervised Fine-Tuning
68
+ train.use_apollo: true
69
+ train.use_badam: false
70
+ train.use_dora: false
71
+ train.use_galore: false
72
+ train.use_llama_pro: true
73
+ train.use_pissa: false
74
+ train.use_rslora: false
75
+ train.use_swanlab: false
76
+ train.val_size: 0
77
+ train.warmup_steps: 0
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:182be20097743536eb8333475d94fdb0eeea45e2d7f20103b65a61c2771ee9bf
3
+ size 4919027568
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd94e601a2ea58138028ded43fe07b1345edc5df4b3b30449de0d09bceee1231
3
+ size 4915915128
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ed95d0f7caa2694d620d6e75edb8341e121d82b09c4688cc831b67af335c19d
3
+ size 4999819112
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fd964e5239ecdc56be2c5745bfff1e4fc8415c9d83f6faa3015a7b54b333926
3
+ size 1580246000
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16414973952
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_end|>",
4
+ "<|im_start|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<|im_start|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|im_end|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<pad>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
tokenization_inflm.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ """Tokenization classes for INFLMTokenizer."""
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+ from tokenizers import pre_tokenizers,Regex,decoders
32
+ from tokenizers.pre_tokenizers import Digits, Split, ByteLevel
33
+ import os
34
+
35
+ # same as gpt4 cl-base-100k
36
+ PATTERN = Regex("(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+\s+(\S)+")
37
+
38
+ logger = logging.get_logger(__name__)
39
+
40
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
41
+
42
+ PRETRAINED_VOCAB_FILES_MAP = {}
43
+
44
+
45
+ class INFLMTokenizer(PreTrainedTokenizer):
46
+ """
47
+ Construct a INFLMTokenizer tokenizer based on sentence-piece
48
+
49
+ Args:
50
+ vocab_file (`str`):
51
+ Path to the vocabulary file.
52
+ """
53
+
54
+ vocab_files_names = VOCAB_FILES_NAMES
55
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
56
+ model_input_names = ["input_ids", "attention_mask"]
57
+ _auto_class = "AutoTokenizer"
58
+
59
+ def __init__(
60
+ self,
61
+ vocab_file,
62
+ unk_token="<unk>",
63
+ bos_token="<s>",
64
+ eos_token="</s>",
65
+ pad_token="<pad>",
66
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
67
+ add_bos_token=False,
68
+ add_eos_token=False,
69
+ decode_with_prefix_space=False,
70
+ clean_up_tokenization_spaces=False,
71
+ spaces_between_special_tokens=False,
72
+ **kwargs,
73
+ ):
74
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
75
+ self.vocab_file = vocab_file
76
+ self.add_bos_token = add_bos_token
77
+ self.add_eos_token = add_eos_token
78
+ self.decode_with_prefix_space = decode_with_prefix_space
79
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
80
+ self.sp_model.Load(vocab_file)
81
+ self._no_prefix_space_tokens = None
82
+ self.pre_tokenizer = pre_tokenizers.Sequence([Split(pattern =PATTERN,behavior = "isolated", invert = False)])
83
+ super().__init__(
84
+ bos_token=bos_token,
85
+ eos_token=eos_token,
86
+ unk_token=unk_token,
87
+ pad_token=pad_token,
88
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
89
+ spaces_between_special_tokens=spaces_between_special_tokens,
90
+ **kwargs,
91
+ )
92
+
93
+ """ Initialisation"""
94
+
95
+ @property
96
+ def no_prefix_space_tokens(self):
97
+ if self._no_prefix_space_tokens is None:
98
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
99
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
100
+ return self._no_prefix_space_tokens
101
+
102
+ @property
103
+ def vocab_size(self):
104
+ """Returns vocab size"""
105
+ return self.sp_model.get_piece_size()
106
+
107
+ @property
108
+ def bos_token_id(self) -> Optional[int]:
109
+ return self.sp_model.bos_id()
110
+
111
+ @property
112
+ def eos_token_id(self) -> Optional[int]:
113
+ return self.sp_model.eos_id()
114
+
115
+ def get_vocab(self):
116
+ """Returns vocab as a dict"""
117
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
118
+ vocab.update(self.added_tokens_encoder)
119
+ return vocab
120
+
121
+ def _tokenize(self, text):
122
+ """Returns a tokenized string."""
123
+
124
+ splits = self.pre_tokenizer.pre_tokenize_str(text)
125
+ texts=[]
126
+
127
+ for split in splits:
128
+ texts.extend(self.sp_model.encode(split[0], out_type=str))
129
+ return texts
130
+
131
+ def _convert_token_to_id(self, token):
132
+ """Converts a token (str) in an id using the vocab."""
133
+
134
+ return self.sp_model.piece_to_id(token)
135
+
136
+ def _convert_id_to_token(self, index):
137
+ """Converts an index (integer) in a token (str) using the vocab."""
138
+ token = self.sp_model.IdToPiece(index)
139
+ return token
140
+
141
+ def _maybe_add_prefix_space(self, tokens, decoded):
142
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
143
+ return " " + decoded
144
+ else:
145
+ return decoded
146
+
147
+ def convert_tokens_to_string(self, tokens):
148
+ """Converts a sequence of tokens (string) in a single string."""
149
+ current_sub_tokens = []
150
+ out_string = ""
151
+ prev_is_special = False
152
+ for token in tokens:
153
+ # make sure that special tokens are not decoded using sentencepiece model
154
+ if token in self.all_special_tokens:
155
+ out_string += self.sp_model.decode(current_sub_tokens) + token
156
+ prev_is_special = True
157
+ current_sub_tokens = []
158
+ else:
159
+ current_sub_tokens.append(token)
160
+ prev_is_special = False
161
+ out_string += self.sp_model.decode(current_sub_tokens)
162
+
163
+ return out_string
164
+
165
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
166
+ """
167
+ Save the vocabulary and special tokens file to a directory.
168
+
169
+ Args:
170
+ save_directory (`str`):
171
+ The directory in which to save the vocabulary.
172
+
173
+ Returns:
174
+ `Tuple(str)`: Paths to the files saved.
175
+ """
176
+ if not os.path.isdir(save_directory):
177
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
178
+ return
179
+ out_vocab_file = os.path.join(
180
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
181
+ )
182
+
183
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
184
+ copyfile(self.vocab_file, out_vocab_file)
185
+ elif not os.path.isfile(self.vocab_file):
186
+ with open(out_vocab_file, "wb") as fi:
187
+ content_spiece_model = self.sp_model.serialized_model_proto()
188
+ fi.write(content_spiece_model)
189
+
190
+ return (out_vocab_file,)
191
+
192
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
193
+ if self.add_bos_token:
194
+ bos_token_ids = [self.bos_token_id]
195
+ else:
196
+ bos_token_ids = []
197
+
198
+ output = bos_token_ids + token_ids_0
199
+
200
+ if token_ids_1 is not None:
201
+ output = output + token_ids_1
202
+
203
+ if self.add_eos_token:
204
+ output = output + [self.eos_token_id]
205
+
206
+ return output
207
+
208
+ def get_special_tokens_mask(
209
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
210
+ ) -> List[int]:
211
+ """
212
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
213
+ special tokens using the tokenizer `prepare_for_model` method.
214
+
215
+ Args:
216
+ token_ids_0 (`List[int]`):
217
+ List of IDs.
218
+ token_ids_1 (`List[int]`, *optional*):
219
+ Optional second list of IDs for sequence pairs.
220
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
221
+ Whether or not the token list is already formatted with special tokens for the model.
222
+
223
+ Returns:
224
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
225
+ """
226
+ if already_has_special_tokens:
227
+ return super().get_special_tokens_mask(
228
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
229
+ )
230
+
231
+ eos_token_id = [1] if self.add_eos_token else []
232
+ if token_ids_1 is None:
233
+ return ([0] * len(token_ids_0)) + eos_token_id
234
+ return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
235
+
236
+
237
+ def create_token_type_ids_from_sequences(
238
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
239
+ ) -> List[int]:
240
+ """
241
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
242
+ sequence pair mask has the following format:
243
+
244
+ ```
245
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
246
+ | first sequence | second sequence |
247
+ ```
248
+
249
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
250
+
251
+ Note this is only used for back compatiblity, thus list of zero is returned.
252
+
253
+ Args:
254
+ token_ids_0 (`List[int]`):
255
+ List of ids.
256
+ token_ids_1 (`List[int]`, *optional*):
257
+ Optional second list of IDs for sequence pairs.
258
+
259
+ Returns:
260
+ `List[int]`: List of zeros.
261
+ """
262
+ eos = [self.eos_token_id]
263
+
264
+ if token_ids_1 is None:
265
+ return len(token_ids_0 + eos) * [0]
266
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
267
+
268
+
269
+ @property
270
+ def default_chat_template(self):
271
+ return None
272
+
273
+
274
+ def decode(
275
+ self,
276
+ token_ids,
277
+ skip_special_tokens: bool = False,
278
+ clean_up_tokenization_spaces: Optional[bool] = False,
279
+ spaces_between_special_tokens: bool = False,
280
+ **kwargs,
281
+ ) -> str:
282
+ # default spaces_between_special_tokens should be false.
283
+ if spaces_between_special_tokens:
284
+ logger.warning_once('spaces_between_special_tokens is set. \
285
+ It has no effect for bos,eos,pad,unk when transformers<=4.38.')
286
+ return super().decode(
287
+ token_ids,
288
+ skip_special_tokens=skip_special_tokens,
289
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
290
+ spaces_between_special_tokens=spaces_between_special_tokens,
291
+ **kwargs,
292
+ )
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76d43d618fc0c5a7c79dc4e72579f9f29bb803b36e4a4d709d1233626fd8fe2a
3
+ size 1535725
tokenizer_config.json ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<unk>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<pad>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "96499": {
37
+ "content": "<|start|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "96500": {
45
+ "content": "<|end|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "96501": {
53
+ "content": "<|message|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "96502": {
61
+ "content": "<|tool_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "96503": {
69
+ "content": "<|tool_excute|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "96504": {
77
+ "content": "<|tool_end|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "96505": {
85
+ "content": "<|pad|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "96506": {
93
+ "content": "<|endoftext|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "96507": {
101
+ "content": "<fim_prefix>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "96508": {
109
+ "content": "<fim_middle>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "96509": {
117
+ "content": "<fim_suffix>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "96510": {
125
+ "content": "<repo_name>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "96511": {
133
+ "content": "<file_sep>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "96512": {
141
+ "content": "<issue_start>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "96513": {
149
+ "content": "<issue_comment>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "96514": {
157
+ "content": "<issue_closed>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "96515": {
165
+ "content": "<jupyter_start>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "96516": {
173
+ "content": "<jupyter_text>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "96517": {
181
+ "content": "<jupyter_code>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "96518": {
189
+ "content": "<jupyter_output>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "96519": {
197
+ "content": "<jupyter_script>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "96520": {
205
+ "content": "<empty_output>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "96521": {
213
+ "content": "<code_to_intermediate>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "96522": {
221
+ "content": "<intermediate_to_code>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "96523": {
229
+ "content": "<pr>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "96524": {
237
+ "content": "<pr_status>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "96525": {
245
+ "content": "<pr_is_merged>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "96526": {
253
+ "content": "<pr_base>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "96527": {
261
+ "content": "<pr_file>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "96528": {
269
+ "content": "<pr_base_code>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "96529": {
277
+ "content": "<pr_diff>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "96530": {
285
+ "content": "<pr_diff_hunk>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "96531": {
293
+ "content": "<pr_comment>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "96532": {
301
+ "content": "<pr_event_id>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "96533": {
309
+ "content": "<pr_review>",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "96534": {
317
+ "content": "<pr_review_state>",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "96535": {
325
+ "content": "<pr_review_comment>",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "96536": {
333
+ "content": "<pr_in_reply_to_review_id>",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "96537": {
341
+ "content": "<pr_in_reply_to_comment_id>",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "96538": {
349
+ "content": "<pr_diff_hunk_comment_line>",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "96539": {
357
+ "content": "<|im_end|>",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "96540": {
365
+ "content": "<|im_start|>",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ }
372
+ },
373
+ "additional_special_tokens": [
374
+ "<|im_end|>",
375
+ "<|im_start|>"
376
+ ],
377
+ "auto_map": {
378
+ "AutoTokenizer": [
379
+ "tokenization_inflm.INFLMTokenizer",
380
+ null
381
+ ]
382
+ },
383
+ "bos_token": "<|im_start|>",
384
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are OpenCoder, created by OpenCoder Team.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
385
+ "clean_up_tokenization_spaces": false,
386
+ "eos_token": "<|im_end|>",
387
+ "extra_special_tokens": {},
388
+ "model_max_length": 4096,
389
+ "pad_token": "<pad>",
390
+ "padding_side": "right",
391
+ "return_tensors": true,
392
+ "spaces_between_special_tokens": false,
393
+ "split_special_tokens": false,
394
+ "tokenizer_class": "INFLMTokenizer",
395
+ "unk_token": "<unk>"
396
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9977924944812362,
3
+ "num_input_tokens_seen": 236978176,
4
+ "total_flos": 1.0486889344470614e+19,
5
+ "train_loss": 0.7524756815581195,
6
+ "train_runtime": 19134.3763,
7
+ "train_samples_per_second": 3.027,
8
+ "train_steps_per_second": 0.006
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 113, "loss": 0.9875, "lr": 4.999033893736386e-05, "epoch": 0.008830022075055188, "percentage": 0.88, "elapsed_time": "0:02:59", "remaining_time": "5:34:56", "throughput": 11687.78, "total_tokens": 2097152}
2
+ {"current_steps": 2, "total_steps": 113, "loss": 0.944, "lr": 4.99613632163459e-05, "epoch": 0.017660044150110375, "percentage": 1.77, "elapsed_time": "0:05:53", "remaining_time": "5:27:13", "throughput": 11856.46, "total_tokens": 4194304}
3
+ {"current_steps": 3, "total_steps": 113, "loss": 0.904, "lr": 4.991309523184661e-05, "epoch": 0.026490066225165563, "percentage": 2.65, "elapsed_time": "0:08:43", "remaining_time": "5:20:09", "throughput": 12009.19, "total_tokens": 6291456}
4
+ {"current_steps": 4, "total_steps": 113, "loss": 0.8913, "lr": 4.98455722894677e-05, "epoch": 0.03532008830022075, "percentage": 3.54, "elapsed_time": "0:11:34", "remaining_time": "5:15:26", "throughput": 12077.74, "total_tokens": 8388608}
5
+ {"current_steps": 5, "total_steps": 113, "loss": 0.8511, "lr": 4.975884657667922e-05, "epoch": 0.04415011037527594, "percentage": 4.42, "elapsed_time": "0:14:24", "remaining_time": "5:11:10", "throughput": 12131.05, "total_tokens": 10485760}
6
+ {"current_steps": 6, "total_steps": 113, "loss": 0.8311, "lr": 4.965298512248466e-05, "epoch": 0.052980132450331126, "percentage": 5.31, "elapsed_time": "0:17:14", "remaining_time": "5:07:33", "throughput": 12160.16, "total_tokens": 12582912}
7
+ {"current_steps": 7, "total_steps": 113, "loss": 0.838, "lr": 4.952806974561518e-05, "epoch": 0.06181015452538632, "percentage": 6.19, "elapsed_time": "0:20:05", "remaining_time": "5:04:07", "throughput": 12182.29, "total_tokens": 14680064}
8
+ {"current_steps": 8, "total_steps": 113, "loss": 0.8468, "lr": 4.9384196991293205e-05, "epoch": 0.0706401766004415, "percentage": 7.08, "elapsed_time": "0:22:54", "remaining_time": "5:00:41", "throughput": 12205.11, "total_tokens": 16777216}
9
+ {"current_steps": 9, "total_steps": 113, "loss": 0.7884, "lr": 4.922147805661402e-05, "epoch": 0.07947019867549669, "percentage": 7.96, "elapsed_time": "0:25:44", "remaining_time": "4:57:22", "throughput": 12224.04, "total_tokens": 18874368}
10
+ {"current_steps": 10, "total_steps": 113, "loss": 0.8009, "lr": 4.904003870460323e-05, "epoch": 0.08830022075055188, "percentage": 8.85, "elapsed_time": "0:28:34", "remaining_time": "4:54:16", "throughput": 12233.96, "total_tokens": 20971520}
11
+ {"current_steps": 11, "total_steps": 113, "loss": 0.7764, "lr": 4.884001916701639e-05, "epoch": 0.09713024282560706, "percentage": 9.73, "elapsed_time": "0:31:23", "remaining_time": "4:51:08", "throughput": 12245.4, "total_tokens": 23068672}
12
+ {"current_steps": 12, "total_steps": 113, "loss": 0.7774, "lr": 4.862157403595598e-05, "epoch": 0.10596026490066225, "percentage": 10.62, "elapsed_time": "0:34:14", "remaining_time": "4:48:13", "throughput": 12248.38, "total_tokens": 25165824}
13
+ {"current_steps": 13, "total_steps": 113, "loss": 0.7808, "lr": 4.838487214438951e-05, "epoch": 0.11479028697571744, "percentage": 11.5, "elapsed_time": "0:37:04", "remaining_time": "4:45:15", "throughput": 12253.12, "total_tokens": 27262976}
14
+ {"current_steps": 14, "total_steps": 113, "loss": 0.8111, "lr": 4.813009643566101e-05, "epoch": 0.12362030905077263, "percentage": 12.39, "elapsed_time": "0:39:54", "remaining_time": "4:42:15", "throughput": 12259.37, "total_tokens": 29360128}
15
+ {"current_steps": 15, "total_steps": 113, "loss": 0.7997, "lr": 4.7857443822096905e-05, "epoch": 0.13245033112582782, "percentage": 13.27, "elapsed_time": "0:42:45", "remaining_time": "4:39:21", "throughput": 12261.52, "total_tokens": 31457280}
16
+ {"current_steps": 16, "total_steps": 113, "loss": 0.7537, "lr": 4.7567125032815394e-05, "epoch": 0.141280353200883, "percentage": 14.16, "elapsed_time": "0:45:35", "remaining_time": "4:36:21", "throughput": 12267.81, "total_tokens": 33554432}
17
+ {"current_steps": 17, "total_steps": 113, "loss": 0.7645, "lr": 4.7259364450857096e-05, "epoch": 0.15011037527593818, "percentage": 15.04, "elapsed_time": "0:48:25", "remaining_time": "4:33:27", "throughput": 12270.65, "total_tokens": 35651584}
18
+ {"current_steps": 18, "total_steps": 113, "loss": 0.7712, "lr": 4.6934399939762746e-05, "epoch": 0.15894039735099338, "percentage": 15.93, "elapsed_time": "0:51:15", "remaining_time": "4:30:33", "throughput": 12272.81, "total_tokens": 37748736}
19
+ {"current_steps": 19, "total_steps": 113, "loss": 0.74, "lr": 4.659248265973205e-05, "epoch": 0.16777041942604856, "percentage": 16.81, "elapsed_time": "0:54:05", "remaining_time": "4:27:38", "throughput": 12275.77, "total_tokens": 39845888}
20
+ {"current_steps": 20, "total_steps": 113, "loss": 0.777, "lr": 4.6233876873505694e-05, "epoch": 0.17660044150110377, "percentage": 17.7, "elapsed_time": "0:56:55", "remaining_time": "4:24:43", "throughput": 12279.48, "total_tokens": 41943040}
21
+ {"current_steps": 21, "total_steps": 113, "loss": 0.7537, "lr": 4.585885974212068e-05, "epoch": 0.18543046357615894, "percentage": 18.58, "elapsed_time": "0:59:44", "remaining_time": "4:21:45", "throughput": 12284.78, "total_tokens": 44040192}
22
+ {"current_steps": 22, "total_steps": 113, "loss": 0.7453, "lr": 4.5467721110696685e-05, "epoch": 0.19426048565121412, "percentage": 19.47, "elapsed_time": "1:02:34", "remaining_time": "4:18:50", "throughput": 12288.21, "total_tokens": 46137344}
23
+ {"current_steps": 23, "total_steps": 113, "loss": 0.7573, "lr": 4.5060763284419114e-05, "epoch": 0.20309050772626933, "percentage": 20.35, "elapsed_time": "1:05:24", "remaining_time": "4:15:56", "throughput": 12290.92, "total_tokens": 48234496}
24
+ {"current_steps": 24, "total_steps": 113, "loss": 0.7626, "lr": 4.463830079489196e-05, "epoch": 0.2119205298013245, "percentage": 21.24, "elapsed_time": "1:08:13", "remaining_time": "4:13:01", "throughput": 12294.4, "total_tokens": 50331648}
25
+ {"current_steps": 25, "total_steps": 113, "loss": 0.7558, "lr": 4.420066015704105e-05, "epoch": 0.22075055187637968, "percentage": 22.12, "elapsed_time": "1:11:03", "remaining_time": "4:10:08", "throughput": 12296.47, "total_tokens": 52428800}
26
+ {"current_steps": 26, "total_steps": 113, "loss": 0.7654, "lr": 4.374817961675553e-05, "epoch": 0.22958057395143489, "percentage": 23.01, "elapsed_time": "1:13:53", "remaining_time": "4:07:15", "throughput": 12298.04, "total_tokens": 54525952}
27
+ {"current_steps": 27, "total_steps": 113, "loss": 0.7363, "lr": 4.3281208889462715e-05, "epoch": 0.23841059602649006, "percentage": 23.89, "elapsed_time": "1:16:43", "remaining_time": "4:04:22", "throughput": 12300.77, "total_tokens": 56623104}
28
+ {"current_steps": 28, "total_steps": 113, "loss": 0.7503, "lr": 4.2800108889838244e-05, "epoch": 0.24724061810154527, "percentage": 24.78, "elapsed_time": "1:19:33", "remaining_time": "4:01:29", "throughput": 12302.45, "total_tokens": 58720256}
29
+ {"current_steps": 29, "total_steps": 113, "loss": 0.7474, "lr": 4.230525145286057e-05, "epoch": 0.2560706401766004, "percentage": 25.66, "elapsed_time": "1:22:22", "remaining_time": "3:58:35", "throughput": 12305.37, "total_tokens": 60817408}
30
+ {"current_steps": 30, "total_steps": 113, "loss": 0.7442, "lr": 4.1797019046425264e-05, "epoch": 0.26490066225165565, "percentage": 26.55, "elapsed_time": "1:25:12", "remaining_time": "3:55:44", "throughput": 12306.4, "total_tokens": 62914560}
31
+ {"current_steps": 31, "total_steps": 113, "loss": 0.7492, "lr": 4.127580447574131e-05, "epoch": 0.2737306843267108, "percentage": 27.43, "elapsed_time": "1:28:01", "remaining_time": "3:52:51", "throughput": 12308.37, "total_tokens": 65011712}
32
+ {"current_steps": 32, "total_steps": 113, "loss": 0.7601, "lr": 4.0742010579737855e-05, "epoch": 0.282560706401766, "percentage": 28.32, "elapsed_time": "1:30:51", "remaining_time": "3:49:59", "throughput": 12309.6, "total_tokens": 67108864}
33
+ {"current_steps": 33, "total_steps": 113, "loss": 0.7381, "lr": 4.0196049919716004e-05, "epoch": 0.2913907284768212, "percentage": 29.2, "elapsed_time": "1:33:41", "remaining_time": "3:47:07", "throughput": 12311.56, "total_tokens": 69206016}
34
+ {"current_steps": 34, "total_steps": 113, "loss": 0.7406, "lr": 3.963834446048644e-05, "epoch": 0.30022075055187636, "percentage": 30.09, "elapsed_time": "1:36:31", "remaining_time": "3:44:16", "throughput": 12312.23, "total_tokens": 71303168}
35
+ {"current_steps": 35, "total_steps": 113, "loss": 0.7573, "lr": 3.9069325244239095e-05, "epoch": 0.3090507726269316, "percentage": 30.97, "elapsed_time": "1:39:20", "remaining_time": "3:41:23", "throughput": 12313.97, "total_tokens": 73400320}
36
+ {"current_steps": 36, "total_steps": 113, "loss": 0.7419, "lr": 3.848943205739711e-05, "epoch": 0.31788079470198677, "percentage": 31.86, "elapsed_time": "1:42:10", "remaining_time": "3:38:32", "throughput": 12315.1, "total_tokens": 75497472}
37
+ {"current_steps": 37, "total_steps": 113, "loss": 0.7357, "lr": 3.7899113090712526e-05, "epoch": 0.32671081677704195, "percentage": 32.74, "elapsed_time": "1:45:00", "remaining_time": "3:35:40", "throughput": 12316.24, "total_tokens": 77594624}
38
+ {"current_steps": 38, "total_steps": 113, "loss": 0.7346, "lr": 3.729882459286632e-05, "epoch": 0.3355408388520971, "percentage": 33.63, "elapsed_time": "1:47:49", "remaining_time": "3:32:49", "throughput": 12317.13, "total_tokens": 79691776}
39
+ {"current_steps": 39, "total_steps": 113, "loss": 0.7437, "lr": 3.66890305178407e-05, "epoch": 0.3443708609271523, "percentage": 34.51, "elapsed_time": "1:50:39", "remaining_time": "3:29:58", "throughput": 12318.14, "total_tokens": 81788928}
40
+ {"current_steps": 40, "total_steps": 113, "loss": 0.742, "lr": 3.607020216633599e-05, "epoch": 0.35320088300220753, "percentage": 35.4, "elapsed_time": "1:53:29", "remaining_time": "3:27:08", "throughput": 12318.13, "total_tokens": 83886080}
41
+ {"current_steps": 41, "total_steps": 113, "loss": 0.7136, "lr": 3.544281782150936e-05, "epoch": 0.3620309050772627, "percentage": 36.28, "elapsed_time": "1:56:20", "remaining_time": "3:24:17", "throughput": 12318.44, "total_tokens": 85983232}
42
+ {"current_steps": 42, "total_steps": 113, "loss": 0.7417, "lr": 3.4807362379317025e-05, "epoch": 0.3708609271523179, "percentage": 37.17, "elapsed_time": "1:59:10", "remaining_time": "3:21:27", "throughput": 12318.8, "total_tokens": 88080384}
43
+ {"current_steps": 43, "total_steps": 113, "loss": 0.7102, "lr": 3.416432697374533e-05, "epoch": 0.37969094922737306, "percentage": 38.05, "elapsed_time": "2:01:59", "remaining_time": "3:18:36", "throughput": 12319.37, "total_tokens": 90177536}
44
+ {"current_steps": 44, "total_steps": 113, "loss": 0.7685, "lr": 3.3514208597220705e-05, "epoch": 0.38852097130242824, "percentage": 38.94, "elapsed_time": "2:04:49", "remaining_time": "3:15:44", "throughput": 12320.63, "total_tokens": 92274688}
45
+ {"current_steps": 45, "total_steps": 113, "loss": 0.7332, "lr": 3.285750971649167e-05, "epoch": 0.3973509933774834, "percentage": 39.82, "elapsed_time": "2:07:40", "remaining_time": "3:12:55", "throughput": 12319.92, "total_tokens": 94371840}
46
+ {"current_steps": 46, "total_steps": 113, "loss": 0.7387, "lr": 3.219473788427984e-05, "epoch": 0.40618101545253865, "percentage": 40.71, "elapsed_time": "2:10:30", "remaining_time": "3:10:05", "throughput": 12319.21, "total_tokens": 96468992}
47
+ {"current_steps": 47, "total_steps": 113, "loss": 0.7096, "lr": 3.1526405346999946e-05, "epoch": 0.41501103752759383, "percentage": 41.59, "elapsed_time": "2:13:20", "remaining_time": "3:07:15", "throughput": 12319.45, "total_tokens": 98566144}
48
+ {"current_steps": 48, "total_steps": 113, "loss": 0.7242, "lr": 3.085302864885235e-05, "epoch": 0.423841059602649, "percentage": 42.48, "elapsed_time": "2:16:10", "remaining_time": "3:04:24", "throughput": 12319.97, "total_tokens": 100663296}
49
+ {"current_steps": 49, "total_steps": 113, "loss": 0.7338, "lr": 3.017512823259373e-05, "epoch": 0.4326710816777042, "percentage": 43.36, "elapsed_time": "2:19:00", "remaining_time": "3:01:33", "throughput": 12320.62, "total_tokens": 102760448}
50
+ {"current_steps": 50, "total_steps": 113, "loss": 0.7494, "lr": 2.9493228037294702e-05, "epoch": 0.44150110375275936, "percentage": 44.25, "elapsed_time": "2:21:50", "remaining_time": "2:58:43", "throughput": 12321.04, "total_tokens": 104857600}
51
+ {"current_steps": 51, "total_steps": 113, "loss": 0.7272, "lr": 2.8807855093395126e-05, "epoch": 0.4503311258278146, "percentage": 45.13, "elapsed_time": "2:24:41", "remaining_time": "2:55:53", "throughput": 12320.02, "total_tokens": 106954752}
52
+ {"current_steps": 52, "total_steps": 113, "loss": 0.7447, "lr": 2.8119539115370218e-05, "epoch": 0.45916114790286977, "percentage": 46.02, "elapsed_time": "2:27:29", "remaining_time": "2:53:00", "throughput": 12323.37, "total_tokens": 109051904}
53
+ {"current_steps": 53, "total_steps": 113, "loss": 0.7219, "lr": 2.742881209232215e-05, "epoch": 0.46799116997792495, "percentage": 46.9, "elapsed_time": "2:30:17", "remaining_time": "2:50:08", "throughput": 12325.84, "total_tokens": 111149056}
54
+ {"current_steps": 54, "total_steps": 113, "loss": 0.7484, "lr": 2.6736207876813646e-05, "epoch": 0.4768211920529801, "percentage": 47.79, "elapsed_time": "2:33:05", "remaining_time": "2:47:15", "throughput": 12328.88, "total_tokens": 113246208}
55
+ {"current_steps": 55, "total_steps": 113, "loss": 0.7352, "lr": 2.604226177226137e-05, "epoch": 0.4856512141280353, "percentage": 48.67, "elapsed_time": "2:35:54", "remaining_time": "2:44:24", "throughput": 12330.83, "total_tokens": 115343360}
56
+ {"current_steps": 56, "total_steps": 113, "loss": 0.7254, "lr": 2.5347510119207878e-05, "epoch": 0.49448123620309054, "percentage": 49.56, "elapsed_time": "2:38:43", "remaining_time": "2:41:33", "throughput": 12331.8, "total_tokens": 117440512}
57
+ {"current_steps": 57, "total_steps": 113, "loss": 0.724, "lr": 2.4652489880792128e-05, "epoch": 0.5033112582781457, "percentage": 50.44, "elapsed_time": "2:41:32", "remaining_time": "2:38:42", "throughput": 12333.18, "total_tokens": 119537664}
58
+ {"current_steps": 58, "total_steps": 113, "loss": 0.747, "lr": 2.395773822773863e-05, "epoch": 0.5121412803532008, "percentage": 51.33, "elapsed_time": "2:44:19", "remaining_time": "2:35:49", "throughput": 12336.23, "total_tokens": 121634816}
59
+ {"current_steps": 59, "total_steps": 113, "loss": 0.7246, "lr": 2.3263792123186353e-05, "epoch": 0.5209713024282561, "percentage": 52.21, "elapsed_time": "2:47:08", "remaining_time": "2:32:58", "throughput": 12338.13, "total_tokens": 123731968}
60
+ {"current_steps": 60, "total_steps": 113, "loss": 0.7424, "lr": 2.2571187907677853e-05, "epoch": 0.5298013245033113, "percentage": 53.1, "elapsed_time": "2:49:57", "remaining_time": "2:30:07", "throughput": 12339.8, "total_tokens": 125829120}
61
+ {"current_steps": 61, "total_steps": 113, "loss": 0.7422, "lr": 2.188046088462979e-05, "epoch": 0.5386313465783664, "percentage": 53.98, "elapsed_time": "2:52:45", "remaining_time": "2:27:16", "throughput": 12341.13, "total_tokens": 127926272}
62
+ {"current_steps": 62, "total_steps": 113, "loss": 0.7166, "lr": 2.1192144906604876e-05, "epoch": 0.5474613686534217, "percentage": 54.87, "elapsed_time": "2:55:33", "remaining_time": "2:24:25", "throughput": 12343.22, "total_tokens": 130023424}
63
+ {"current_steps": 63, "total_steps": 113, "loss": 0.7564, "lr": 2.0506771962705304e-05, "epoch": 0.5562913907284768, "percentage": 55.75, "elapsed_time": "2:58:21", "remaining_time": "2:21:33", "throughput": 12346.02, "total_tokens": 132120576}
64
+ {"current_steps": 64, "total_steps": 113, "loss": 0.744, "lr": 1.982487176740627e-05, "epoch": 0.565121412803532, "percentage": 56.64, "elapsed_time": "3:01:10", "remaining_time": "2:18:42", "throughput": 12347.51, "total_tokens": 134217728}
65
+ {"current_steps": 65, "total_steps": 113, "loss": 0.7523, "lr": 1.9146971351147655e-05, "epoch": 0.5739514348785872, "percentage": 57.52, "elapsed_time": "3:03:57", "remaining_time": "2:15:51", "throughput": 12349.65, "total_tokens": 136314880}
66
+ {"current_steps": 66, "total_steps": 113, "loss": 0.7274, "lr": 1.847359465300006e-05, "epoch": 0.5827814569536424, "percentage": 58.41, "elapsed_time": "3:06:46", "remaining_time": "2:13:00", "throughput": 12351.39, "total_tokens": 138412032}
67
+ {"current_steps": 67, "total_steps": 113, "loss": 0.746, "lr": 1.780526211572016e-05, "epoch": 0.5916114790286976, "percentage": 59.29, "elapsed_time": "3:09:34", "remaining_time": "2:10:09", "throughput": 12353.19, "total_tokens": 140509184}
68
+ {"current_steps": 68, "total_steps": 113, "loss": 0.7423, "lr": 1.7142490283508324e-05, "epoch": 0.6004415011037527, "percentage": 60.18, "elapsed_time": "3:12:21", "remaining_time": "2:07:18", "throughput": 12355.43, "total_tokens": 142606336}
69
+ {"current_steps": 69, "total_steps": 113, "loss": 0.7234, "lr": 1.648579140277931e-05, "epoch": 0.609271523178808, "percentage": 61.06, "elapsed_time": "3:15:09", "remaining_time": "2:04:26", "throughput": 12357.73, "total_tokens": 144703488}
70
+ {"current_steps": 70, "total_steps": 113, "loss": 0.7495, "lr": 1.583567302625469e-05, "epoch": 0.6181015452538632, "percentage": 61.95, "elapsed_time": "3:17:57", "remaining_time": "2:01:35", "throughput": 12359.87, "total_tokens": 146800640}
71
+ {"current_steps": 71, "total_steps": 113, "loss": 0.7227, "lr": 1.5192637620682981e-05, "epoch": 0.6269315673289183, "percentage": 62.83, "elapsed_time": "3:20:45", "remaining_time": "1:58:45", "throughput": 12361.65, "total_tokens": 148897792}
72
+ {"current_steps": 72, "total_steps": 113, "loss": 0.7607, "lr": 1.4557182178490636e-05, "epoch": 0.6357615894039735, "percentage": 63.72, "elapsed_time": "3:23:32", "remaining_time": "1:55:54", "throughput": 12363.6, "total_tokens": 150994944}
73
+ {"current_steps": 73, "total_steps": 113, "loss": 0.7296, "lr": 1.3929797833664013e-05, "epoch": 0.6445916114790287, "percentage": 64.6, "elapsed_time": "3:26:21", "remaining_time": "1:53:04", "throughput": 12364.6, "total_tokens": 153092096}
74
+ {"current_steps": 74, "total_steps": 113, "loss": 0.7361, "lr": 1.3310969482159297e-05, "epoch": 0.6534216335540839, "percentage": 65.49, "elapsed_time": "3:29:09", "remaining_time": "1:50:13", "throughput": 12366.65, "total_tokens": 155189248}
75
+ {"current_steps": 75, "total_steps": 113, "loss": 0.7379, "lr": 1.270117540713368e-05, "epoch": 0.6622516556291391, "percentage": 66.37, "elapsed_time": "3:31:57", "remaining_time": "1:47:23", "throughput": 12368.13, "total_tokens": 157286400}
76
+ {"current_steps": 76, "total_steps": 113, "loss": 0.7351, "lr": 1.2100886909287478e-05, "epoch": 0.6710816777041942, "percentage": 67.26, "elapsed_time": "3:34:44", "remaining_time": "1:44:32", "throughput": 12369.85, "total_tokens": 159383552}
77
+ {"current_steps": 77, "total_steps": 113, "loss": 0.7295, "lr": 1.151056794260289e-05, "epoch": 0.6799116997792495, "percentage": 68.14, "elapsed_time": "3:37:32", "remaining_time": "1:41:42", "throughput": 12371.69, "total_tokens": 161480704}
78
+ {"current_steps": 78, "total_steps": 113, "loss": 0.7333, "lr": 1.0930674755760908e-05, "epoch": 0.6887417218543046, "percentage": 69.03, "elapsed_time": "3:40:20", "remaining_time": "1:38:52", "throughput": 12373.07, "total_tokens": 163577856}
79
+ {"current_steps": 79, "total_steps": 113, "loss": 0.7334, "lr": 1.0361655539513565e-05, "epoch": 0.6975717439293598, "percentage": 69.91, "elapsed_time": "3:43:08", "remaining_time": "1:36:02", "throughput": 12374.64, "total_tokens": 165675008}
80
+ {"current_steps": 80, "total_steps": 113, "loss": 0.7437, "lr": 9.803950080284005e-06, "epoch": 0.7064017660044151, "percentage": 70.8, "elapsed_time": "3:45:56", "remaining_time": "1:33:12", "throughput": 12375.68, "total_tokens": 167772160}
81
+ {"current_steps": 81, "total_steps": 113, "loss": 0.7133, "lr": 9.257989420262151e-06, "epoch": 0.7152317880794702, "percentage": 71.68, "elapsed_time": "3:48:44", "remaining_time": "1:30:21", "throughput": 12377.37, "total_tokens": 169869312}
82
+ {"current_steps": 82, "total_steps": 113, "loss": 0.7415, "lr": 8.724195524258688e-06, "epoch": 0.7240618101545254, "percentage": 72.57, "elapsed_time": "3:51:31", "remaining_time": "1:27:31", "throughput": 12379.17, "total_tokens": 171966464}
83
+ {"current_steps": 83, "total_steps": 113, "loss": 0.7423, "lr": 8.202980953574735e-06, "epoch": 0.7328918322295805, "percentage": 73.45, "elapsed_time": "3:54:19", "remaining_time": "1:24:41", "throughput": 12380.31, "total_tokens": 174063616}
84
+ {"current_steps": 84, "total_steps": 113, "loss": 0.7125, "lr": 7.69474854713943e-06, "epoch": 0.7417218543046358, "percentage": 74.34, "elapsed_time": "3:57:08", "remaining_time": "1:21:52", "throughput": 12381.1, "total_tokens": 176160768}
85
+ {"current_steps": 85, "total_steps": 113, "loss": 0.7346, "lr": 7.1998911101617575e-06, "epoch": 0.7505518763796909, "percentage": 75.22, "elapsed_time": "3:59:56", "remaining_time": "1:19:02", "throughput": 12382.4, "total_tokens": 178257920}
86
+ {"current_steps": 86, "total_steps": 113, "loss": 0.7235, "lr": 6.718791110537287e-06, "epoch": 0.7593818984547461, "percentage": 76.11, "elapsed_time": "4:02:44", "remaining_time": "1:16:12", "throughput": 12383.21, "total_tokens": 180355072}
87
+ {"current_steps": 87, "total_steps": 113, "loss": 0.7268, "lr": 6.25182038324447e-06, "epoch": 0.7682119205298014, "percentage": 76.99, "elapsed_time": "4:05:32", "remaining_time": "1:13:22", "throughput": 12384.33, "total_tokens": 182452224}
88
+ {"current_steps": 88, "total_steps": 113, "loss": 0.7251, "lr": 5.7993398429589506e-06, "epoch": 0.7770419426048565, "percentage": 77.88, "elapsed_time": "4:08:20", "remaining_time": "1:10:33", "throughput": 12385.44, "total_tokens": 184549376}
89
+ {"current_steps": 89, "total_steps": 113, "loss": 0.7216, "lr": 5.361699205108042e-06, "epoch": 0.7858719646799117, "percentage": 78.76, "elapsed_time": "4:11:08", "remaining_time": "1:07:43", "throughput": 12386.47, "total_tokens": 186646528}
90
+ {"current_steps": 90, "total_steps": 113, "loss": 0.7386, "lr": 4.939236715580884e-06, "epoch": 0.7947019867549668, "percentage": 79.65, "elapsed_time": "4:13:57", "remaining_time": "1:04:53", "throughput": 12387.18, "total_tokens": 188743680}
91
+ {"current_steps": 91, "total_steps": 113, "loss": 0.734, "lr": 4.5322788893033155e-06, "epoch": 0.8035320088300221, "percentage": 80.53, "elapsed_time": "4:16:45", "remaining_time": "1:02:04", "throughput": 12387.88, "total_tokens": 190840832}
92
+ {"current_steps": 92, "total_steps": 113, "loss": 0.7519, "lr": 4.14114025787932e-06, "epoch": 0.8123620309050773, "percentage": 81.42, "elapsed_time": "4:19:33", "remaining_time": "0:59:14", "throughput": 12389.08, "total_tokens": 192937984}
93
+ {"current_steps": 93, "total_steps": 113, "loss": 0.7194, "lr": 3.7661231264943086e-06, "epoch": 0.8211920529801324, "percentage": 82.3, "elapsed_time": "4:22:21", "remaining_time": "0:56:25", "throughput": 12389.85, "total_tokens": 195035136}
94
+ {"current_steps": 94, "total_steps": 113, "loss": 0.7263, "lr": 3.4075173402679574e-06, "epoch": 0.8300220750551877, "percentage": 83.19, "elapsed_time": "4:25:10", "remaining_time": "0:53:35", "throughput": 12390.35, "total_tokens": 197132288}
95
+ {"current_steps": 95, "total_steps": 113, "loss": 0.7093, "lr": 3.0656000602372558e-06, "epoch": 0.8388520971302428, "percentage": 84.07, "elapsed_time": "4:27:58", "remaining_time": "0:50:46", "throughput": 12391.05, "total_tokens": 199229440}
96
+ {"current_steps": 96, "total_steps": 113, "loss": 0.7654, "lr": 2.7406355491429086e-06, "epoch": 0.847682119205298, "percentage": 84.96, "elapsed_time": "4:30:47", "remaining_time": "0:47:57", "throughput": 12391.45, "total_tokens": 201326592}
97
+ {"current_steps": 97, "total_steps": 113, "loss": 0.7365, "lr": 2.4328749671846116e-06, "epoch": 0.8565121412803532, "percentage": 85.84, "elapsed_time": "4:33:35", "remaining_time": "0:45:07", "throughput": 12392.15, "total_tokens": 203423744}
98
+ {"current_steps": 98, "total_steps": 113, "loss": 0.7468, "lr": 2.142556177903096e-06, "epoch": 0.8653421633554084, "percentage": 86.73, "elapsed_time": "4:36:23", "remaining_time": "0:42:18", "throughput": 12393.07, "total_tokens": 205520896}
99
+ {"current_steps": 99, "total_steps": 113, "loss": 0.7264, "lr": 1.8699035643389928e-06, "epoch": 0.8741721854304636, "percentage": 87.61, "elapsed_time": "4:39:11", "remaining_time": "0:39:28", "throughput": 12394.01, "total_tokens": 207618048}
100
+ {"current_steps": 100, "total_steps": 113, "loss": 0.7392, "lr": 1.615127855610496e-06, "epoch": 0.8830022075055187, "percentage": 88.5, "elapsed_time": "4:41:59", "remaining_time": "0:36:39", "throughput": 12395.06, "total_tokens": 209715200}
101
+ {"current_steps": 101, "total_steps": 113, "loss": 0.7378, "lr": 1.3784259640440279e-06, "epoch": 0.891832229580574, "percentage": 89.38, "elapsed_time": "4:44:47", "remaining_time": "0:33:50", "throughput": 12396.1, "total_tokens": 211812352}
102
+ {"current_steps": 102, "total_steps": 113, "loss": 0.7384, "lr": 1.1599808329836177e-06, "epoch": 0.9006622516556292, "percentage": 90.27, "elapsed_time": "4:47:34", "remaining_time": "0:31:00", "throughput": 12397.09, "total_tokens": 213909504}
103
+ {"current_steps": 103, "total_steps": 113, "loss": 0.7326, "lr": 9.599612953967746e-07, "epoch": 0.9094922737306843, "percentage": 91.15, "elapsed_time": "4:50:23", "remaining_time": "0:28:11", "throughput": 12397.55, "total_tokens": 216006656}
104
+ {"current_steps": 104, "total_steps": 113, "loss": 0.7319, "lr": 7.785219433859847e-07, "epoch": 0.9183222958057395, "percentage": 92.04, "elapsed_time": "4:53:11", "remaining_time": "0:25:22", "throughput": 12398.3, "total_tokens": 218103808}
105
+ {"current_steps": 105, "total_steps": 113, "loss": 0.7365, "lr": 6.158030087068001e-07, "epoch": 0.9271523178807947, "percentage": 92.92, "elapsed_time": "4:55:59", "remaining_time": "0:22:33", "throughput": 12399.3, "total_tokens": 220200960}
106
+ {"current_steps": 106, "total_steps": 113, "loss": 0.75, "lr": 4.719302543848225e-07, "epoch": 0.9359823399558499, "percentage": 93.81, "elapsed_time": "4:58:46", "remaining_time": "0:19:43", "throughput": 12400.52, "total_tokens": 222298112}
107
+ {"current_steps": 107, "total_steps": 113, "loss": 0.7468, "lr": 3.470148775153448e-07, "epoch": 0.9448123620309051, "percentage": 94.69, "elapsed_time": "5:01:34", "remaining_time": "0:16:54", "throughput": 12401.53, "total_tokens": 224395264}
108
+ {"current_steps": 108, "total_steps": 113, "loss": 0.7425, "lr": 2.4115342332078074e-07, "epoch": 0.9536423841059603, "percentage": 95.58, "elapsed_time": "5:04:21", "remaining_time": "0:14:05", "throughput": 12402.6, "total_tokens": 226492416}
109
+ {"current_steps": 109, "total_steps": 113, "loss": 0.7314, "lr": 1.5442771053230665e-07, "epoch": 0.9624724061810155, "percentage": 96.46, "elapsed_time": "5:07:14", "remaining_time": "0:11:16", "throughput": 12399.84, "total_tokens": 228589568}
110
+ {"current_steps": 110, "total_steps": 113, "loss": 0.7407, "lr": 8.690476815339244e-08, "epoch": 0.9713024282560706, "percentage": 97.35, "elapsed_time": "5:10:04", "remaining_time": "0:08:27", "throughput": 12399.79, "total_tokens": 230686720}
111
+ {"current_steps": 111, "total_steps": 113, "loss": 0.729, "lr": 3.8636783654100174e-08, "epoch": 0.9801324503311258, "percentage": 98.23, "elapsed_time": "5:12:51", "remaining_time": "0:05:38", "throughput": 12400.69, "total_tokens": 232783872}
112
+ {"current_steps": 112, "total_steps": 113, "loss": 0.7333, "lr": 9.661062636148744e-09, "epoch": 0.9889624724061811, "percentage": 99.12, "elapsed_time": "5:15:40", "remaining_time": "0:02:49", "throughput": 12401.32, "total_tokens": 234881024}
113
+ {"current_steps": 113, "total_steps": 113, "loss": 0.7217, "lr": 0.0, "epoch": 0.9977924944812362, "percentage": 100.0, "elapsed_time": "5:18:28", "remaining_time": "0:00:00", "throughput": 12401.67, "total_tokens": 236978176}
114
+ {"current_steps": 113, "total_steps": 113, "epoch": 0.9977924944812362, "percentage": 100.0, "elapsed_time": "5:18:52", "remaining_time": "0:00:00", "throughput": 12385.92, "total_tokens": 236978176}
trainer_state.json ADDED
@@ -0,0 +1,947 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9977924944812362,
5
+ "eval_steps": 500,
6
+ "global_step": 113,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008830022075055188,
13
+ "grad_norm": 0.8537317514419556,
14
+ "learning_rate": 4.999033893736386e-05,
15
+ "loss": 0.9875,
16
+ "num_input_tokens_seen": 2097152,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.017660044150110375,
21
+ "grad_norm": 0.7285566926002502,
22
+ "learning_rate": 4.99613632163459e-05,
23
+ "loss": 0.944,
24
+ "num_input_tokens_seen": 4194304,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.026490066225165563,
29
+ "grad_norm": 0.5551783442497253,
30
+ "learning_rate": 4.991309523184661e-05,
31
+ "loss": 0.904,
32
+ "num_input_tokens_seen": 6291456,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.03532008830022075,
37
+ "grad_norm": 0.4819079041481018,
38
+ "learning_rate": 4.98455722894677e-05,
39
+ "loss": 0.8913,
40
+ "num_input_tokens_seen": 8388608,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.04415011037527594,
45
+ "grad_norm": 0.373820960521698,
46
+ "learning_rate": 4.975884657667922e-05,
47
+ "loss": 0.8511,
48
+ "num_input_tokens_seen": 10485760,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.052980132450331126,
53
+ "grad_norm": 0.2974053621292114,
54
+ "learning_rate": 4.965298512248466e-05,
55
+ "loss": 0.8311,
56
+ "num_input_tokens_seen": 12582912,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.06181015452538632,
61
+ "grad_norm": 0.25162145495414734,
62
+ "learning_rate": 4.952806974561518e-05,
63
+ "loss": 0.838,
64
+ "num_input_tokens_seen": 14680064,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.0706401766004415,
69
+ "grad_norm": 0.20863372087478638,
70
+ "learning_rate": 4.9384196991293205e-05,
71
+ "loss": 0.8468,
72
+ "num_input_tokens_seen": 16777216,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.07947019867549669,
77
+ "grad_norm": 0.18535731732845306,
78
+ "learning_rate": 4.922147805661402e-05,
79
+ "loss": 0.7884,
80
+ "num_input_tokens_seen": 18874368,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.08830022075055188,
85
+ "grad_norm": 0.16335929930210114,
86
+ "learning_rate": 4.904003870460323e-05,
87
+ "loss": 0.8009,
88
+ "num_input_tokens_seen": 20971520,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.09713024282560706,
93
+ "grad_norm": 0.1265847086906433,
94
+ "learning_rate": 4.884001916701639e-05,
95
+ "loss": 0.7764,
96
+ "num_input_tokens_seen": 23068672,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.10596026490066225,
101
+ "grad_norm": 0.11690282076597214,
102
+ "learning_rate": 4.862157403595598e-05,
103
+ "loss": 0.7774,
104
+ "num_input_tokens_seen": 25165824,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.11479028697571744,
109
+ "grad_norm": 0.10680913180112839,
110
+ "learning_rate": 4.838487214438951e-05,
111
+ "loss": 0.7808,
112
+ "num_input_tokens_seen": 27262976,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.12362030905077263,
117
+ "grad_norm": 0.09127331525087357,
118
+ "learning_rate": 4.813009643566101e-05,
119
+ "loss": 0.8111,
120
+ "num_input_tokens_seen": 29360128,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.13245033112582782,
125
+ "grad_norm": 0.08718351274728775,
126
+ "learning_rate": 4.7857443822096905e-05,
127
+ "loss": 0.7997,
128
+ "num_input_tokens_seen": 31457280,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.141280353200883,
133
+ "grad_norm": 0.06960419565439224,
134
+ "learning_rate": 4.7567125032815394e-05,
135
+ "loss": 0.7537,
136
+ "num_input_tokens_seen": 33554432,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.15011037527593818,
141
+ "grad_norm": 0.0721953734755516,
142
+ "learning_rate": 4.7259364450857096e-05,
143
+ "loss": 0.7645,
144
+ "num_input_tokens_seen": 35651584,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.15894039735099338,
149
+ "grad_norm": 0.0680830106139183,
150
+ "learning_rate": 4.6934399939762746e-05,
151
+ "loss": 0.7712,
152
+ "num_input_tokens_seen": 37748736,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.16777041942604856,
157
+ "grad_norm": 0.06572319567203522,
158
+ "learning_rate": 4.659248265973205e-05,
159
+ "loss": 0.74,
160
+ "num_input_tokens_seen": 39845888,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.17660044150110377,
165
+ "grad_norm": 0.06348133087158203,
166
+ "learning_rate": 4.6233876873505694e-05,
167
+ "loss": 0.777,
168
+ "num_input_tokens_seen": 41943040,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.18543046357615894,
173
+ "grad_norm": 0.06005046144127846,
174
+ "learning_rate": 4.585885974212068e-05,
175
+ "loss": 0.7537,
176
+ "num_input_tokens_seen": 44040192,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.19426048565121412,
181
+ "grad_norm": 0.057457394897937775,
182
+ "learning_rate": 4.5467721110696685e-05,
183
+ "loss": 0.7453,
184
+ "num_input_tokens_seen": 46137344,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.20309050772626933,
189
+ "grad_norm": 0.054359156638383865,
190
+ "learning_rate": 4.5060763284419114e-05,
191
+ "loss": 0.7573,
192
+ "num_input_tokens_seen": 48234496,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.2119205298013245,
197
+ "grad_norm": 0.054271843284368515,
198
+ "learning_rate": 4.463830079489196e-05,
199
+ "loss": 0.7626,
200
+ "num_input_tokens_seen": 50331648,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.22075055187637968,
205
+ "grad_norm": 0.048914600163698196,
206
+ "learning_rate": 4.420066015704105e-05,
207
+ "loss": 0.7558,
208
+ "num_input_tokens_seen": 52428800,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.22958057395143489,
213
+ "grad_norm": 0.04995320364832878,
214
+ "learning_rate": 4.374817961675553e-05,
215
+ "loss": 0.7654,
216
+ "num_input_tokens_seen": 54525952,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.23841059602649006,
221
+ "grad_norm": 0.04679872468113899,
222
+ "learning_rate": 4.3281208889462715e-05,
223
+ "loss": 0.7363,
224
+ "num_input_tokens_seen": 56623104,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.24724061810154527,
229
+ "grad_norm": 0.04957474768161774,
230
+ "learning_rate": 4.2800108889838244e-05,
231
+ "loss": 0.7503,
232
+ "num_input_tokens_seen": 58720256,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.2560706401766004,
237
+ "grad_norm": 0.04368240758776665,
238
+ "learning_rate": 4.230525145286057e-05,
239
+ "loss": 0.7474,
240
+ "num_input_tokens_seen": 60817408,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.26490066225165565,
245
+ "grad_norm": 0.04365404695272446,
246
+ "learning_rate": 4.1797019046425264e-05,
247
+ "loss": 0.7442,
248
+ "num_input_tokens_seen": 62914560,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.2737306843267108,
253
+ "grad_norm": 0.04533332213759422,
254
+ "learning_rate": 4.127580447574131e-05,
255
+ "loss": 0.7492,
256
+ "num_input_tokens_seen": 65011712,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.282560706401766,
261
+ "grad_norm": 0.045380424708127975,
262
+ "learning_rate": 4.0742010579737855e-05,
263
+ "loss": 0.7601,
264
+ "num_input_tokens_seen": 67108864,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.2913907284768212,
269
+ "grad_norm": 0.04397201910614967,
270
+ "learning_rate": 4.0196049919716004e-05,
271
+ "loss": 0.7381,
272
+ "num_input_tokens_seen": 69206016,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.30022075055187636,
277
+ "grad_norm": 0.042593635618686676,
278
+ "learning_rate": 3.963834446048644e-05,
279
+ "loss": 0.7406,
280
+ "num_input_tokens_seen": 71303168,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.3090507726269316,
285
+ "grad_norm": 0.04130704328417778,
286
+ "learning_rate": 3.9069325244239095e-05,
287
+ "loss": 0.7573,
288
+ "num_input_tokens_seen": 73400320,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.31788079470198677,
293
+ "grad_norm": 0.04113290086388588,
294
+ "learning_rate": 3.848943205739711e-05,
295
+ "loss": 0.7419,
296
+ "num_input_tokens_seen": 75497472,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.32671081677704195,
301
+ "grad_norm": 0.0397503562271595,
302
+ "learning_rate": 3.7899113090712526e-05,
303
+ "loss": 0.7357,
304
+ "num_input_tokens_seen": 77594624,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.3355408388520971,
309
+ "grad_norm": 0.03884141892194748,
310
+ "learning_rate": 3.729882459286632e-05,
311
+ "loss": 0.7346,
312
+ "num_input_tokens_seen": 79691776,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.3443708609271523,
317
+ "grad_norm": 0.03996223211288452,
318
+ "learning_rate": 3.66890305178407e-05,
319
+ "loss": 0.7437,
320
+ "num_input_tokens_seen": 81788928,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.35320088300220753,
325
+ "grad_norm": 0.0395955815911293,
326
+ "learning_rate": 3.607020216633599e-05,
327
+ "loss": 0.742,
328
+ "num_input_tokens_seen": 83886080,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.3620309050772627,
333
+ "grad_norm": 0.03895486891269684,
334
+ "learning_rate": 3.544281782150936e-05,
335
+ "loss": 0.7136,
336
+ "num_input_tokens_seen": 85983232,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.3708609271523179,
341
+ "grad_norm": 0.03683311864733696,
342
+ "learning_rate": 3.4807362379317025e-05,
343
+ "loss": 0.7417,
344
+ "num_input_tokens_seen": 88080384,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.37969094922737306,
349
+ "grad_norm": 0.037801578640937805,
350
+ "learning_rate": 3.416432697374533e-05,
351
+ "loss": 0.7102,
352
+ "num_input_tokens_seen": 90177536,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.38852097130242824,
357
+ "grad_norm": 0.03917045146226883,
358
+ "learning_rate": 3.3514208597220705e-05,
359
+ "loss": 0.7685,
360
+ "num_input_tokens_seen": 92274688,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.3973509933774834,
365
+ "grad_norm": 0.037231214344501495,
366
+ "learning_rate": 3.285750971649167e-05,
367
+ "loss": 0.7332,
368
+ "num_input_tokens_seen": 94371840,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.40618101545253865,
373
+ "grad_norm": 0.03943084925413132,
374
+ "learning_rate": 3.219473788427984e-05,
375
+ "loss": 0.7387,
376
+ "num_input_tokens_seen": 96468992,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.41501103752759383,
381
+ "grad_norm": 0.03614073246717453,
382
+ "learning_rate": 3.1526405346999946e-05,
383
+ "loss": 0.7096,
384
+ "num_input_tokens_seen": 98566144,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.423841059602649,
389
+ "grad_norm": 0.03576625511050224,
390
+ "learning_rate": 3.085302864885235e-05,
391
+ "loss": 0.7242,
392
+ "num_input_tokens_seen": 100663296,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.4326710816777042,
397
+ "grad_norm": 0.0361945666372776,
398
+ "learning_rate": 3.017512823259373e-05,
399
+ "loss": 0.7338,
400
+ "num_input_tokens_seen": 102760448,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.44150110375275936,
405
+ "grad_norm": 0.03698369115591049,
406
+ "learning_rate": 2.9493228037294702e-05,
407
+ "loss": 0.7494,
408
+ "num_input_tokens_seen": 104857600,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.4503311258278146,
413
+ "grad_norm": 0.03586776927113533,
414
+ "learning_rate": 2.8807855093395126e-05,
415
+ "loss": 0.7272,
416
+ "num_input_tokens_seen": 106954752,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.45916114790286977,
421
+ "grad_norm": 0.03969455882906914,
422
+ "learning_rate": 2.8119539115370218e-05,
423
+ "loss": 0.7447,
424
+ "num_input_tokens_seen": 109051904,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.46799116997792495,
429
+ "grad_norm": 0.037024304270744324,
430
+ "learning_rate": 2.742881209232215e-05,
431
+ "loss": 0.7219,
432
+ "num_input_tokens_seen": 111149056,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.4768211920529801,
437
+ "grad_norm": 0.035661764442920685,
438
+ "learning_rate": 2.6736207876813646e-05,
439
+ "loss": 0.7484,
440
+ "num_input_tokens_seen": 113246208,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.4856512141280353,
445
+ "grad_norm": 0.03690381348133087,
446
+ "learning_rate": 2.604226177226137e-05,
447
+ "loss": 0.7352,
448
+ "num_input_tokens_seen": 115343360,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.49448123620309054,
453
+ "grad_norm": 0.03607625514268875,
454
+ "learning_rate": 2.5347510119207878e-05,
455
+ "loss": 0.7254,
456
+ "num_input_tokens_seen": 117440512,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.5033112582781457,
461
+ "grad_norm": 0.036771535873413086,
462
+ "learning_rate": 2.4652489880792128e-05,
463
+ "loss": 0.724,
464
+ "num_input_tokens_seen": 119537664,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.5121412803532008,
469
+ "grad_norm": 0.035380277782678604,
470
+ "learning_rate": 2.395773822773863e-05,
471
+ "loss": 0.747,
472
+ "num_input_tokens_seen": 121634816,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.5209713024282561,
477
+ "grad_norm": 0.03334279730916023,
478
+ "learning_rate": 2.3263792123186353e-05,
479
+ "loss": 0.7246,
480
+ "num_input_tokens_seen": 123731968,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.5298013245033113,
485
+ "grad_norm": 0.03534376993775368,
486
+ "learning_rate": 2.2571187907677853e-05,
487
+ "loss": 0.7424,
488
+ "num_input_tokens_seen": 125829120,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.5386313465783664,
493
+ "grad_norm": 0.035675469785928726,
494
+ "learning_rate": 2.188046088462979e-05,
495
+ "loss": 0.7422,
496
+ "num_input_tokens_seen": 127926272,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.5474613686534217,
501
+ "grad_norm": 0.03412646800279617,
502
+ "learning_rate": 2.1192144906604876e-05,
503
+ "loss": 0.7166,
504
+ "num_input_tokens_seen": 130023424,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 0.5562913907284768,
509
+ "grad_norm": 0.03617184981703758,
510
+ "learning_rate": 2.0506771962705304e-05,
511
+ "loss": 0.7564,
512
+ "num_input_tokens_seen": 132120576,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 0.565121412803532,
517
+ "grad_norm": 0.03402591496706009,
518
+ "learning_rate": 1.982487176740627e-05,
519
+ "loss": 0.744,
520
+ "num_input_tokens_seen": 134217728,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.5739514348785872,
525
+ "grad_norm": 0.035137876868247986,
526
+ "learning_rate": 1.9146971351147655e-05,
527
+ "loss": 0.7523,
528
+ "num_input_tokens_seen": 136314880,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 0.5827814569536424,
533
+ "grad_norm": 0.03335074707865715,
534
+ "learning_rate": 1.847359465300006e-05,
535
+ "loss": 0.7274,
536
+ "num_input_tokens_seen": 138412032,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 0.5916114790286976,
541
+ "grad_norm": 0.032923776656389236,
542
+ "learning_rate": 1.780526211572016e-05,
543
+ "loss": 0.746,
544
+ "num_input_tokens_seen": 140509184,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 0.6004415011037527,
549
+ "grad_norm": 0.038766708225011826,
550
+ "learning_rate": 1.7142490283508324e-05,
551
+ "loss": 0.7423,
552
+ "num_input_tokens_seen": 142606336,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.609271523178808,
557
+ "grad_norm": 0.032216496765613556,
558
+ "learning_rate": 1.648579140277931e-05,
559
+ "loss": 0.7234,
560
+ "num_input_tokens_seen": 144703488,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 0.6181015452538632,
565
+ "grad_norm": 0.03458288684487343,
566
+ "learning_rate": 1.583567302625469e-05,
567
+ "loss": 0.7495,
568
+ "num_input_tokens_seen": 146800640,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 0.6269315673289183,
573
+ "grad_norm": 0.033755529671907425,
574
+ "learning_rate": 1.5192637620682981e-05,
575
+ "loss": 0.7227,
576
+ "num_input_tokens_seen": 148897792,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 0.6357615894039735,
581
+ "grad_norm": 0.03497767448425293,
582
+ "learning_rate": 1.4557182178490636e-05,
583
+ "loss": 0.7607,
584
+ "num_input_tokens_seen": 150994944,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 0.6445916114790287,
589
+ "grad_norm": 0.03499361500144005,
590
+ "learning_rate": 1.3929797833664013e-05,
591
+ "loss": 0.7296,
592
+ "num_input_tokens_seen": 153092096,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 0.6534216335540839,
597
+ "grad_norm": 0.033749066293239594,
598
+ "learning_rate": 1.3310969482159297e-05,
599
+ "loss": 0.7361,
600
+ "num_input_tokens_seen": 155189248,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 0.6622516556291391,
605
+ "grad_norm": 0.03505317121744156,
606
+ "learning_rate": 1.270117540713368e-05,
607
+ "loss": 0.7379,
608
+ "num_input_tokens_seen": 157286400,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 0.6710816777041942,
613
+ "grad_norm": 0.035697367042303085,
614
+ "learning_rate": 1.2100886909287478e-05,
615
+ "loss": 0.7351,
616
+ "num_input_tokens_seen": 159383552,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 0.6799116997792495,
621
+ "grad_norm": 0.035562630742788315,
622
+ "learning_rate": 1.151056794260289e-05,
623
+ "loss": 0.7295,
624
+ "num_input_tokens_seen": 161480704,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 0.6887417218543046,
629
+ "grad_norm": 0.0363004133105278,
630
+ "learning_rate": 1.0930674755760908e-05,
631
+ "loss": 0.7333,
632
+ "num_input_tokens_seen": 163577856,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 0.6975717439293598,
637
+ "grad_norm": 0.034324079751968384,
638
+ "learning_rate": 1.0361655539513565e-05,
639
+ "loss": 0.7334,
640
+ "num_input_tokens_seen": 165675008,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 0.7064017660044151,
645
+ "grad_norm": 0.03306734561920166,
646
+ "learning_rate": 9.803950080284005e-06,
647
+ "loss": 0.7437,
648
+ "num_input_tokens_seen": 167772160,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 0.7152317880794702,
653
+ "grad_norm": 0.03080984577536583,
654
+ "learning_rate": 9.257989420262151e-06,
655
+ "loss": 0.7133,
656
+ "num_input_tokens_seen": 169869312,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 0.7240618101545254,
661
+ "grad_norm": 0.03477946296334267,
662
+ "learning_rate": 8.724195524258688e-06,
663
+ "loss": 0.7415,
664
+ "num_input_tokens_seen": 171966464,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 0.7328918322295805,
669
+ "grad_norm": 0.03363949805498123,
670
+ "learning_rate": 8.202980953574735e-06,
671
+ "loss": 0.7423,
672
+ "num_input_tokens_seen": 174063616,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 0.7417218543046358,
677
+ "grad_norm": 0.032141055911779404,
678
+ "learning_rate": 7.69474854713943e-06,
679
+ "loss": 0.7125,
680
+ "num_input_tokens_seen": 176160768,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 0.7505518763796909,
685
+ "grad_norm": 0.03413500636816025,
686
+ "learning_rate": 7.1998911101617575e-06,
687
+ "loss": 0.7346,
688
+ "num_input_tokens_seen": 178257920,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 0.7593818984547461,
693
+ "grad_norm": 0.032283272594213486,
694
+ "learning_rate": 6.718791110537287e-06,
695
+ "loss": 0.7235,
696
+ "num_input_tokens_seen": 180355072,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 0.7682119205298014,
701
+ "grad_norm": 0.03352838382124901,
702
+ "learning_rate": 6.25182038324447e-06,
703
+ "loss": 0.7268,
704
+ "num_input_tokens_seen": 182452224,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 0.7770419426048565,
709
+ "grad_norm": 0.033114444464445114,
710
+ "learning_rate": 5.7993398429589506e-06,
711
+ "loss": 0.7251,
712
+ "num_input_tokens_seen": 184549376,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 0.7858719646799117,
717
+ "grad_norm": 0.03312879428267479,
718
+ "learning_rate": 5.361699205108042e-06,
719
+ "loss": 0.7216,
720
+ "num_input_tokens_seen": 186646528,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 0.7947019867549668,
725
+ "grad_norm": 0.034220073372125626,
726
+ "learning_rate": 4.939236715580884e-06,
727
+ "loss": 0.7386,
728
+ "num_input_tokens_seen": 188743680,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 0.8035320088300221,
733
+ "grad_norm": 0.03237886354327202,
734
+ "learning_rate": 4.5322788893033155e-06,
735
+ "loss": 0.734,
736
+ "num_input_tokens_seen": 190840832,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 0.8123620309050773,
741
+ "grad_norm": 0.032567963004112244,
742
+ "learning_rate": 4.14114025787932e-06,
743
+ "loss": 0.7519,
744
+ "num_input_tokens_seen": 192937984,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 0.8211920529801324,
749
+ "grad_norm": 0.032218772917985916,
750
+ "learning_rate": 3.7661231264943086e-06,
751
+ "loss": 0.7194,
752
+ "num_input_tokens_seen": 195035136,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 0.8300220750551877,
757
+ "grad_norm": 0.0331319235265255,
758
+ "learning_rate": 3.4075173402679574e-06,
759
+ "loss": 0.7263,
760
+ "num_input_tokens_seen": 197132288,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 0.8388520971302428,
765
+ "grad_norm": 0.03236314281821251,
766
+ "learning_rate": 3.0656000602372558e-06,
767
+ "loss": 0.7093,
768
+ "num_input_tokens_seen": 199229440,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 0.847682119205298,
773
+ "grad_norm": 0.03465864434838295,
774
+ "learning_rate": 2.7406355491429086e-06,
775
+ "loss": 0.7654,
776
+ "num_input_tokens_seen": 201326592,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 0.8565121412803532,
781
+ "grad_norm": 0.033873483538627625,
782
+ "learning_rate": 2.4328749671846116e-06,
783
+ "loss": 0.7365,
784
+ "num_input_tokens_seen": 203423744,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 0.8653421633554084,
789
+ "grad_norm": 0.03332989290356636,
790
+ "learning_rate": 2.142556177903096e-06,
791
+ "loss": 0.7468,
792
+ "num_input_tokens_seen": 205520896,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 0.8741721854304636,
797
+ "grad_norm": 0.033005475997924805,
798
+ "learning_rate": 1.8699035643389928e-06,
799
+ "loss": 0.7264,
800
+ "num_input_tokens_seen": 207618048,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 0.8830022075055187,
805
+ "grad_norm": 0.034544438123703,
806
+ "learning_rate": 1.615127855610496e-06,
807
+ "loss": 0.7392,
808
+ "num_input_tokens_seen": 209715200,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 0.891832229580574,
813
+ "grad_norm": 0.03568817302584648,
814
+ "learning_rate": 1.3784259640440279e-06,
815
+ "loss": 0.7378,
816
+ "num_input_tokens_seen": 211812352,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 0.9006622516556292,
821
+ "grad_norm": 0.03453758731484413,
822
+ "learning_rate": 1.1599808329836177e-06,
823
+ "loss": 0.7384,
824
+ "num_input_tokens_seen": 213909504,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 0.9094922737306843,
829
+ "grad_norm": 0.03320000693202019,
830
+ "learning_rate": 9.599612953967746e-07,
831
+ "loss": 0.7326,
832
+ "num_input_tokens_seen": 216006656,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 0.9183222958057395,
837
+ "grad_norm": 0.033046990633010864,
838
+ "learning_rate": 7.785219433859847e-07,
839
+ "loss": 0.7319,
840
+ "num_input_tokens_seen": 218103808,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 0.9271523178807947,
845
+ "grad_norm": 0.032943662256002426,
846
+ "learning_rate": 6.158030087068001e-07,
847
+ "loss": 0.7365,
848
+ "num_input_tokens_seen": 220200960,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 0.9359823399558499,
853
+ "grad_norm": 0.03540504723787308,
854
+ "learning_rate": 4.719302543848225e-07,
855
+ "loss": 0.75,
856
+ "num_input_tokens_seen": 222298112,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 0.9448123620309051,
861
+ "grad_norm": 0.03443380072712898,
862
+ "learning_rate": 3.470148775153448e-07,
863
+ "loss": 0.7468,
864
+ "num_input_tokens_seen": 224395264,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 0.9536423841059603,
869
+ "grad_norm": 0.03330874443054199,
870
+ "learning_rate": 2.4115342332078074e-07,
871
+ "loss": 0.7425,
872
+ "num_input_tokens_seen": 226492416,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 0.9624724061810155,
877
+ "grad_norm": 0.03456017002463341,
878
+ "learning_rate": 1.5442771053230665e-07,
879
+ "loss": 0.7314,
880
+ "num_input_tokens_seen": 228589568,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 0.9713024282560706,
885
+ "grad_norm": 0.03423641249537468,
886
+ "learning_rate": 8.690476815339244e-08,
887
+ "loss": 0.7407,
888
+ "num_input_tokens_seen": 230686720,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 0.9801324503311258,
893
+ "grad_norm": 0.03197889402508736,
894
+ "learning_rate": 3.8636783654100174e-08,
895
+ "loss": 0.729,
896
+ "num_input_tokens_seen": 232783872,
897
+ "step": 111
898
+ },
899
+ {
900
+ "epoch": 0.9889624724061811,
901
+ "grad_norm": 0.034751225262880325,
902
+ "learning_rate": 9.661062636148744e-09,
903
+ "loss": 0.7333,
904
+ "num_input_tokens_seen": 234881024,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 0.9977924944812362,
909
+ "grad_norm": 0.03236055746674538,
910
+ "learning_rate": 0.0,
911
+ "loss": 0.7217,
912
+ "num_input_tokens_seen": 236978176,
913
+ "step": 113
914
+ },
915
+ {
916
+ "epoch": 0.9977924944812362,
917
+ "num_input_tokens_seen": 236978176,
918
+ "step": 113,
919
+ "total_flos": 1.0486889344470614e+19,
920
+ "train_loss": 0.7524756815581195,
921
+ "train_runtime": 19134.3763,
922
+ "train_samples_per_second": 3.027,
923
+ "train_steps_per_second": 0.006
924
+ }
925
+ ],
926
+ "logging_steps": 1.0,
927
+ "max_steps": 113,
928
+ "num_input_tokens_seen": 236978176,
929
+ "num_train_epochs": 1,
930
+ "save_steps": 500,
931
+ "stateful_callbacks": {
932
+ "TrainerControl": {
933
+ "args": {
934
+ "should_epoch_stop": false,
935
+ "should_evaluate": false,
936
+ "should_log": false,
937
+ "should_save": true,
938
+ "should_training_stop": true
939
+ },
940
+ "attributes": {}
941
+ }
942
+ },
943
+ "total_flos": 1.0486889344470614e+19,
944
+ "train_batch_size": 16,
945
+ "trial_name": null,
946
+ "trial_params": null
947
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f283812e758cb6fff59dbe2b0f45aae1e85b4a071df1fd285f6f24af74f6d93
3
+ size 5624
training_args.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apollo_rank: 256
2
+ apollo_scale: 1
3
+ apollo_target: all
4
+ apollo_update_interval: 200
5
+ bf16: true
6
+ cutoff_len: 4096
7
+ dataset: codes_330k_nsx
8
+ dataset_dir: data
9
+ ddp_timeout: 180000000
10
+ do_train: true
11
+ enable_liger_kernel: true
12
+ finetuning_type: freeze
13
+ flash_attn: auto
14
+ freeze_trainable_layers: 2
15
+ freeze_trainable_modules: all
16
+ gradient_accumulation_steps: 8
17
+ include_num_input_tokens_seen: true
18
+ learning_rate: 5.0e-05
19
+ logging_steps: 1
20
+ lr_scheduler_type: cosine
21
+ max_grad_norm: 1.0
22
+ max_samples: 50000000
23
+ model_name_or_path: infly/OpenCoder-8B-Instruct
24
+ neat_packing: true
25
+ num_train_epochs: 1.0
26
+ output_dir: saves/OpenCoder-8B-Instruct/freeze/opencoder_nsx
27
+ packing: true
28
+ per_device_train_batch_size: 16
29
+ plot_loss: true
30
+ preprocessing_num_workers: 16
31
+ report_to: none
32
+ rope_scaling: llama3
33
+ save_steps: 500
34
+ stage: sft
35
+ template: opencoder
36
+ trust_remote_code: true
37
+ use_apollo: true
38
+ use_llama_pro: true
39
+ warmup_steps: 0
training_loss.png ADDED