File size: 6,624 Bytes
f5414e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
library_name: keras-hub
---
### Model Overview
# Model Summary

Qwen1.5-MoE is a transformer-based MoE decoder-only language model pre-trained on a large amount of data. Qwen1.5-MoE employs a Mixture of Experts (MoE) architecture, where the models are upcycled from dense language models. For instance, Qwen1.5-MoE-A2.7B is upcycled from Qwen-1.8B. It has 14.3B parameters in total and 2.7B activated parameters during runtime, while achieving comparable performance to Qwen1.5-7B, it only requires 25% of the training resources.

Weights are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE) . Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).

## Links

* [Qwen 1.5 MoE Quickstart Notebook](https://colab.sandbox.google.com/gist/laxmareddyp/45cb05fbf5d15380297fb8017b181efc/qwenmoe_quickstart.ipynb)
* [Qwen 1.5 MoE API Documentation](https://keras.io/keras_hub/api/models/qwen_moe/)
* [Qwen 1.5 MoE Model Card](https://qwenlm.github.io/blog/qwen-moe/)
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)

## Installation

Keras and KerasHub can be installed with:

```
pip install -U -q keras-hub
pip install -U -q keras
```

Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.

## Presets

The following model checkpoints are provided by the Keras team. Full code examples for each are available below.

| Preset name                            | Parameters | Description                                                                                                  |
|---------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|
|  qwen1.5_moe_2.7b_en       | 2.7B       | 24-layer Qwen MoE model with 2.7 billion parameters and 8 experts per MoE layer. |

## Example Usage
```Python

import keras
import keras_hub
import numpy as np

# Basic text generation with Qwen MoE
qwen_moe = keras_hub.models.QwenMoeCausalLM.from_preset("qwen1.5_moe_2.7b_en")
qwen_moe.generate("I want to say", max_length=30)

# Batch generation with multiple prompts
qwen_moe.generate(["This is a", "Where are you"], max_length=30)

# Using different sampling strategies
qwen_moe = keras_hub.models.QwenMoeCausalLM.from_preset("qwen1.5_moe_2.7b_en")
# Greedy sampling
qwen_moe.compile(sampler="greedy")
qwen_moe.generate("I want to say", max_length=30)
# Beam search with MoE-specific parameters
qwen_moe.compile(
    sampler=keras_hub.samplers.BeamSampler(
        num_beams=2,
        decoder_sparse_step=2,  # MoE-specific: control expert usage frequency
        top_k_experts=2,        # MoE-specific: number of experts to use per token
    )
)
qwen_moe.generate("I want to say", max_length=30)

# Generate without preprocessing
prompt = {
    "token_ids": np.array([[15191, 374, 0, 0, 0]] * 2),
    "padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}

qwen_moe = keras_hub.models.QwenMoeCausalLM.from_preset(
    "qwen1.5_moe_2.7b_en",
    preprocessor=None,
)
qwen_moe.generate(
    prompt,
    num_experts=8,           # Total number of experts per layer
    top_k_experts=2,         # Number of experts to use per token
    decoder_sparse_step=2,   # Control expert usage frequency
)

# Training on a single batch
features = ["The quick brown fox jumped.", "I forgot my homework."]
qwen_moe = keras_hub.models.QwenMoeCausalLM.from_preset("qwen1.5_moe_2.7b_en")
qwen_moe.fit(
    x=features,
    batch_size=2,
    router_aux_loss_coefficient=0.01,  # MoE-specific: aux loss for router training
)

# Training without preprocessing
x = {
    "token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
    "padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[2, 3, 4, 5, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)

qwen_moe = keras_hub.models.QwenMoeCausalLM.from_preset(
    "qwen1.5_moe_2.7b_en",
    preprocessor=None,
)
qwen_moe.fit(
    x=x,
    y=y,
    sample_weight=sw,
    batch_size=2,
    router_aux_loss_coefficient=0.01,  # MoE-specific: aux loss weight
)

```

## Example Usage with Hugging Face URI

```Python

import keras
import keras_hub
import numpy as np

# Basic text generation with Qwen MoE
qwen_moe = keras_hub.models.QwenMoeCausalLM.from_preset("hf://keras/qwen1.5_moe_2.7b_en")
qwen_moe.generate("I want to say", max_length=30)

# Batch generation with multiple prompts
qwen_moe.generate(["This is a", "Where are you"], max_length=30)

# Using different sampling strategies
qwen_moe = keras_hub.models.QwenMoeCausalLM.from_preset("hf://keras/qwen1.5_moe_2.7b_en")
# Greedy sampling
qwen_moe.compile(sampler="greedy")
qwen_moe.generate("I want to say", max_length=30)
# Beam search with MoE-specific parameters
qwen_moe.compile(
    sampler=keras_hub.samplers.BeamSampler(
        num_beams=2,
        decoder_sparse_step=2,  # MoE-specific: control expert usage frequency
        top_k_experts=2,        # MoE-specific: number of experts to use per token
    )
)
qwen_moe.generate("I want to say", max_length=30)

# Generate without preprocessing
prompt = {
    "token_ids": np.array([[15191, 374, 0, 0, 0]] * 2),
    "padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}

qwen_moe = keras_hub.models.QwenMoeCausalLM.from_preset(
    "hf://keras/qwen1.5_moe_2.7b_en",
    preprocessor=None,
)
qwen_moe.generate(
    prompt,
    num_experts=8,           # Total number of experts per layer
    top_k_experts=2,         # Number of experts to use per token
    decoder_sparse_step=2,   # Control expert usage frequency
)

# Training on a single batch
features = ["The quick brown fox jumped.", "I forgot my homework."]
qwen_moe = keras_hub.models.QwenMoeCausalLM.from_preset("hf://keras/qwen1.5_moe_2.7b_en")
qwen_moe.fit(
    x=features,
    batch_size=2,
    router_aux_loss_coefficient=0.01,  # MoE-specific: aux loss for router training
)

# Training without preprocessing
x = {
    "token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
    "padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[2, 3, 4, 5, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)

qwen_moe = keras_hub.models.QwenMoeCausalLM.from_preset(
    "hf://keras/qwen1.5_moe_2.7b_en",
    preprocessor=None,
)
qwen_moe.fit(
    x=x,
    y=y,
    sample_weight=sw,
    batch_size=2,
    router_aux_loss_coefficient=0.01,  # MoE-specific: aux loss weight
)

```