File size: 6,233 Bytes
9b9f1c1 b9ce83d 273551c 9b9f1c1 1fd9ef3 081d046 1fd9ef3 081d046 1fd9ef3 081d046 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
---
library_name: keras-hub
license: llama2
language:
- en
tags:
- text-generation-inference
pipeline_tag: text-generation
---
### Model Overview
Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT.Weights are release under the [Llama 2 Community License Agreement ](https://ai.meta.com/llama/license/) and Keras model code are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
Model type: An auto-regressive language model based on the transformer architecture.
Fine tuned from model: Llama 2
Uses:
The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
## Links
* [Vicuna Quickstart Notebook](https://www.kaggle.com/code/laxmareddypatlolla/vicuna-quickstart-notebook)
* [Vicuna API Documentation](coming soon)
* [Vicuna Model Card](https://huggingface.co/lmsys/vicuna-7b-v1.5#vicuna-model-card)
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
## Installation
Keras and KerasHub can be installed with:
```
pip install -U -q keras-hub
pip install -U -q keras
```
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
## Presets
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
| Preset name | Parameters | Description |
|-----------------------|------------|---------------|
|` vicuna_1.5_7b_en ` | 6.74B | 7 billion parameter, 32-layer, instruction tuned Vicuna v1.5 model.|
Paper: https://arxiv.org/abs/2306.05685
## Example Usage
```python
import keras
import keras_hub
import numpy as np
```
Use `generate()` to do text generation.
```python
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("vicuna_1.5_7b_en")
vicuna_lm.generate("### HUMAN:\nWhat is Keras? \n### RESPONSE:\n", max_length=500)
# Generate with batched prompts.
vicuna_lm.generate([
"### HUMAN:\nWhat is ML? \n### RESPONSE:\n",
"### HUMAN:\nGive me your best brownie recipe.\n### RESPONSE:\n",
],max_length=500)
```
Compile the `generate()` function with a custom sampler.
```python
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("vicuna_1.5_7b_en")
vicuna_lm.compile(sampler="greedy")
vicuna_lm.generate("I want to say", max_length=30)
vicuna_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
vicuna_lm.generate("I want to say", max_length=30)
```
Use `generate()` without preprocessing.
```python
prompt = {
# `1` maps to the start token followed by "I want to say".
"token_ids": np.array([[1, 306, 864, 304, 1827, 0, 0, 0, 0, 0]] * 2),
# Use `"padding_mask"` to indicate values that should not be overridden.
"padding_mask": np.array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 2),
}
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset(
"vicuna_1.5_7b_en",
preprocessor=None,
dtype="bfloat16"
)
vicuna_lm.generate(prompt)
```
Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("vicuna_1.5_7b_en")
vicuna_lm.fit(x=features, batch_size=2)
```
Call `fit()` without preprocessing.
```python
x = {
"token_ids": np.array([[1, 450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 0]] * 2),
}
y = np.array([[450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2)
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset(
"vicuna_1.5_7b_en",
preprocessor=None,
dtype="bfloat16"
)
vicuna_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```
## Example Usage with Hugging Face URI
```python
import keras
import keras_hub
import numpy as np
```
Use `generate()` to do text generation.
```python
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("hf://keras/vicuna_1.5_7b_en")
vicuna_lm.generate("### HUMAN:\nWhat is Keras? \n### RESPONSE:\n", max_length=500)
# Generate with batched prompts.
vicuna_lm.generate([
"### HUMAN:\nWhat is ML? \n### RESPONSE:\n",
"### HUMAN:\nGive me your best brownie recipe.\n### RESPONSE:\n",
],max_length=500)
```
Compile the `generate()` function with a custom sampler.
```python
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("hf://keras/vicuna_1.5_7b_en")
vicuna_lm.compile(sampler="greedy")
vicuna_lm.generate("I want to say", max_length=30)
vicuna_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
vicuna_lm.generate("I want to say", max_length=30)
```
Use `generate()` without preprocessing.
```python
prompt = {
# `1` maps to the start token followed by "I want to say".
"token_ids": np.array([[1, 306, 864, 304, 1827, 0, 0, 0, 0, 0]] * 2),
# Use `"padding_mask"` to indicate values that should not be overridden.
"padding_mask": np.array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 2),
}
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset(
"hf://keras/vicuna_1.5_7b_en",
preprocessor=None,
dtype="bfloat16"
)
vicuna_lm.generate(prompt)
```
Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("hf://keras/vicuna_1.5_7b_en")
vicuna_lm.fit(x=features, batch_size=2)
```
Call `fit()` without preprocessing.
```python
x = {
"token_ids": np.array([[1, 450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 0]] * 2),
}
y = np.array([[450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2)
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset(
"hf://keras/vicuna_1.5_7b_en",
preprocessor=None,
dtype="bfloat16"
)
vicuna_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```
|