File size: 6,233 Bytes
9b9f1c1
 
b9ce83d
 
 
 
 
273551c
9b9f1c1
1fd9ef3
081d046
1fd9ef3
081d046
1fd9ef3
081d046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
library_name: keras-hub
license: llama2
language:
- en
tags:
- text-generation-inference
pipeline_tag: text-generation
---
### Model Overview
Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT.Weights are release under the [Llama 2 Community License Agreement ](https://ai.meta.com/llama/license/) and Keras model code are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).

Model type: An auto-regressive language model based on the transformer architecture.

Fine tuned from model: Llama 2

Uses: 
The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.

## Links

* [Vicuna Quickstart Notebook](https://www.kaggle.com/code/laxmareddypatlolla/vicuna-quickstart-notebook)
* [Vicuna API Documentation](coming soon)
* [Vicuna Model Card](https://huggingface.co/lmsys/vicuna-7b-v1.5#vicuna-model-card)
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)

## Installation

Keras and KerasHub can be installed with:

```
pip install -U -q keras-hub
pip install -U -q keras
```

Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.

## Presets

The following model checkpoints are provided by the Keras team. Full code examples for each are available below.

| Preset name           | Parameters | Description   |
|-----------------------|------------|---------------|
|` vicuna_1.5_7b_en ` | 6.74B | 7 billion parameter, 32-layer, instruction tuned Vicuna v1.5 model.|


Paper: https://arxiv.org/abs/2306.05685

## Example Usage
```python
import keras
import keras_hub
import numpy as np
```

Use `generate()` to do text generation.
```python
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("vicuna_1.5_7b_en")
vicuna_lm.generate("### HUMAN:\nWhat is Keras? \n### RESPONSE:\n", max_length=500)

# Generate with batched prompts.
vicuna_lm.generate([
    "### HUMAN:\nWhat is ML? \n### RESPONSE:\n",
    "### HUMAN:\nGive me your best brownie recipe.\n### RESPONSE:\n",
],max_length=500)
```

Compile the `generate()` function with a custom sampler.
```python
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("vicuna_1.5_7b_en")
vicuna_lm.compile(sampler="greedy")
vicuna_lm.generate("I want to say", max_length=30)

vicuna_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
vicuna_lm.generate("I want to say", max_length=30)
```

Use `generate()` without preprocessing.
```python
prompt = {
    # `1` maps to the start token followed by "I want to say".
    "token_ids": np.array([[1, 306, 864, 304, 1827, 0, 0, 0, 0, 0]] * 2),
    # Use `"padding_mask"` to indicate values that should not be overridden.
    "padding_mask": np.array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 2),
}

vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset(
    "vicuna_1.5_7b_en",
    preprocessor=None,
    dtype="bfloat16"
)
vicuna_lm.generate(prompt)
```

Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("vicuna_1.5_7b_en")
vicuna_lm.fit(x=features, batch_size=2)
```

Call `fit()` without preprocessing.
```python
x = {
    "token_ids": np.array([[1, 450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0]] * 2),
    "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 0]] * 2),
}
y = np.array([[450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2)

vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset(
    "vicuna_1.5_7b_en",
    preprocessor=None,
    dtype="bfloat16"
)
vicuna_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```

## Example Usage with Hugging Face URI

```python
import keras
import keras_hub
import numpy as np
```

Use `generate()` to do text generation.
```python
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("hf://keras/vicuna_1.5_7b_en")
vicuna_lm.generate("### HUMAN:\nWhat is Keras? \n### RESPONSE:\n", max_length=500)

# Generate with batched prompts.
vicuna_lm.generate([
    "### HUMAN:\nWhat is ML? \n### RESPONSE:\n",
    "### HUMAN:\nGive me your best brownie recipe.\n### RESPONSE:\n",
],max_length=500)
```

Compile the `generate()` function with a custom sampler.
```python
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("hf://keras/vicuna_1.5_7b_en")
vicuna_lm.compile(sampler="greedy")
vicuna_lm.generate("I want to say", max_length=30)

vicuna_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
vicuna_lm.generate("I want to say", max_length=30)
```

Use `generate()` without preprocessing.
```python
prompt = {
    # `1` maps to the start token followed by "I want to say".
    "token_ids": np.array([[1, 306, 864, 304, 1827, 0, 0, 0, 0, 0]] * 2),
    # Use `"padding_mask"` to indicate values that should not be overridden.
    "padding_mask": np.array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 2),
}

vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset(
    "hf://keras/vicuna_1.5_7b_en",
    preprocessor=None,
    dtype="bfloat16"
)
vicuna_lm.generate(prompt)
```

Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset("hf://keras/vicuna_1.5_7b_en")
vicuna_lm.fit(x=features, batch_size=2)
```

Call `fit()` without preprocessing.
```python
x = {
    "token_ids": np.array([[1, 450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0]] * 2),
    "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 0]] * 2),
}
y = np.array([[450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2)

vicuna_lm = keras_hub.models.LlamaCausalLM.from_preset(
    "hf://keras/vicuna_1.5_7b_en",
    preprocessor=None,
    dtype="bfloat16"
)
vicuna_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```