danieldk HF Staff commited on
Commit
6c9920d
·
1 Parent(s): e99cc09
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. build/torch25-cxx11-cu118-x86_64-linux/activation/__init__.py +0 -52
  2. build/torch25-cxx11-cu118-x86_64-linux/activation/_ops.py +0 -9
  3. build/torch25-cxx11-cu118-x86_64-linux/activation/layers.py +0 -65
  4. build/torch25-cxx11-cu121-x86_64-linux/activation/__init__.py +0 -52
  5. build/torch25-cxx11-cu121-x86_64-linux/activation/_ops.py +0 -9
  6. build/torch25-cxx11-cu121-x86_64-linux/activation/layers.py +0 -65
  7. build/torch25-cxx11-cu124-x86_64-linux/activation/__init__.py +0 -52
  8. build/torch25-cxx11-cu124-x86_64-linux/activation/_ops.py +0 -9
  9. build/torch25-cxx11-cu124-x86_64-linux/activation/layers.py +0 -65
  10. build/torch25-cxx98-cu118-x86_64-linux/activation/__init__.py +0 -52
  11. build/torch25-cxx98-cu118-x86_64-linux/activation/_ops.py +0 -9
  12. build/torch25-cxx98-cu118-x86_64-linux/activation/layers.py +0 -65
  13. build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py +0 -52
  14. build/torch25-cxx98-cu121-x86_64-linux/activation/_activation_78448fa.abi3.so +0 -3
  15. build/torch25-cxx98-cu121-x86_64-linux/activation/_ops.py +0 -9
  16. build/torch25-cxx98-cu121-x86_64-linux/activation/layers.py +0 -65
  17. build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py +0 -52
  18. build/torch25-cxx98-cu124-x86_64-linux/activation/_activation_78448fa.abi3.so +0 -3
  19. build/torch25-cxx98-cu124-x86_64-linux/activation/_ops.py +0 -9
  20. build/torch25-cxx98-cu124-x86_64-linux/activation/layers.py +0 -65
  21. build/torch26-cxx11-cu118-x86_64-linux/activation/_activation_78448fa.abi3.so +0 -3
  22. build/{torch25-cxx11-cu121-x86_64-linux/activation/_activation_78448fa.abi3.so → torch26-cxx11-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so} +2 -2
  23. build/torch26-cxx11-cu118-x86_64-linux/activation/_ops.py +3 -3
  24. build/torch26-cxx11-cu118-x86_64-linux/activation/layers.py +14 -0
  25. build/torch26-cxx11-cu124-x86_64-linux/activation/_activation_78448fa.abi3.so +0 -3
  26. build/{torch25-cxx11-cu118-x86_64-linux/activation/_activation_78448fa.abi3.so → torch26-cxx11-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so} +2 -2
  27. build/torch26-cxx11-cu124-x86_64-linux/activation/_ops.py +3 -3
  28. build/torch26-cxx11-cu124-x86_64-linux/activation/layers.py +14 -0
  29. build/torch26-cxx11-cu126-aarch64-linux/activation/__init__.py +0 -52
  30. build/torch26-cxx11-cu126-aarch64-linux/activation/_activation_bbdc1b4_dirty.abi3.so +0 -3
  31. build/torch26-cxx11-cu126-aarch64-linux/activation/_ops.py +0 -9
  32. build/torch26-cxx11-cu126-aarch64-linux/activation/layers.py +0 -65
  33. build/torch26-cxx11-cu126-x86_64-linux/activation/_activation_78448fa.abi3.so +0 -3
  34. build/{torch27-cxx11-cu126-x86_64-linux/activation/_activation_78448fa.abi3.so → torch26-cxx11-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so} +1 -1
  35. build/torch26-cxx11-cu126-x86_64-linux/activation/_ops.py +3 -3
  36. build/torch26-cxx11-cu126-x86_64-linux/activation/layers.py +14 -0
  37. build/torch26-cxx98-cu118-x86_64-linux/activation/_activation_78448fa.abi3.so +0 -3
  38. build/{torch25-cxx11-cu124-x86_64-linux/activation/_activation_78448fa.abi3.so → torch26-cxx98-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so} +2 -2
  39. build/torch26-cxx98-cu118-x86_64-linux/activation/_ops.py +3 -3
  40. build/torch26-cxx98-cu118-x86_64-linux/activation/layers.py +14 -0
  41. build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_78448fa.abi3.so +0 -3
  42. build/{torch25-cxx98-cu118-x86_64-linux/activation/_activation_78448fa.abi3.so → torch26-cxx98-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so} +2 -2
  43. build/torch26-cxx98-cu124-x86_64-linux/activation/_ops.py +3 -3
  44. build/torch26-cxx98-cu124-x86_64-linux/activation/layers.py +14 -0
  45. build/torch26-cxx98-cu126-aarch64-linux/activation/__init__.py +0 -52
  46. build/torch26-cxx98-cu126-aarch64-linux/activation/_activation_bbdc1b4_dirty.abi3.so +0 -3
  47. build/torch26-cxx98-cu126-aarch64-linux/activation/_ops.py +0 -9
  48. build/torch26-cxx98-cu126-aarch64-linux/activation/layers.py +0 -65
  49. build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_78448fa.abi3.so +0 -3
  50. build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so +3 -0
build/torch25-cxx11-cu118-x86_64-linux/activation/__init__.py DELETED
@@ -1,52 +0,0 @@
1
- import torch
2
-
3
- from ._ops import ops
4
-
5
- from . import layers
6
-
7
-
8
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
- ops.silu_and_mul(out, x)
10
- return out
11
-
12
-
13
- def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.gelu_and_mul(out, x)
15
- return out
16
-
17
-
18
- def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
- ops.gelu_tanh_and_mul(out, x)
20
- return out
21
-
22
-
23
- def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
24
- ops.fatrelu_and_mul(out, x, threshold)
25
- return out
26
-
27
-
28
- def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
29
- ops.gelu_fast(out, x)
30
- return out
31
-
32
-
33
- def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu_new(out, x)
35
- return out
36
-
37
-
38
- def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
39
- ops.gelu_quick(out, x)
40
- return out
41
-
42
-
43
- __all__ = [
44
- "silu_and_mul",
45
- "gelu_and_mul",
46
- "gelu_tanh_and_mul",
47
- "fatrelu_and_mul",
48
- "gelu_fast",
49
- "gelu_new",
50
- "gelu_quick",
51
- "layers",
52
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx11-cu118-x86_64-linux/activation/_ops.py DELETED
@@ -1,9 +0,0 @@
1
- import torch
2
- from . import _activation_78448fa
3
- ops = torch.ops._activation_78448fa
4
-
5
- def add_op_namespace_prefix(op_name: str):
6
- """
7
- Prefix op by namespace.
8
- """
9
- return f"_activation_78448fa::{op_name}"
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx11-cu118-x86_64-linux/activation/layers.py DELETED
@@ -1,65 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from ._ops import ops
5
-
6
-
7
- class SiluAndMul(nn.Module):
8
- def forward(self, x: torch.Tensor):
9
- d = x.shape[-1] // 2
10
- output_shape = x.shape[:-1] + (d,)
11
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
12
- ops.silu_and_mul(out, x)
13
- return out
14
-
15
-
16
- class GeluAndMul(nn.Module):
17
- def forward(self, x: torch.Tensor):
18
- d = x.shape[-1] // 2
19
- output_shape = x.shape[:-1] + (d,)
20
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
21
- ops.gelu_and_mul(out, x)
22
- return out
23
-
24
-
25
- class GeluTanhAndMul(nn.Module):
26
- def forward(self, x: torch.Tensor):
27
- d = x.shape[-1] // 2
28
- output_shape = x.shape[:-1] + (d,)
29
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
30
- ops.gelu_tanh_and_mul(out, x)
31
- return out
32
-
33
-
34
- class FatreluAndMul(nn.Module):
35
- def __init__(self, threshold: float = 0.0):
36
- super().__init__()
37
- self.threshold = threshold
38
-
39
- def forward(self, x: torch.Tensor):
40
- d = x.shape[-1] // 2
41
- output_shape = x.shape[:-1] + (d,)
42
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
43
- ops.fatrelu_and_mul(out, x, self.threshold)
44
- return out
45
-
46
-
47
- class FastGELU(nn.Module):
48
- def forward(self, x: torch.Tensor) -> torch.Tensor:
49
- out = torch.empty_like(x)
50
- ops.gelu_fast(out, x)
51
- return out
52
-
53
-
54
- class NewGELU(nn.Module):
55
- def forward(self, x: torch.Tensor) -> torch.Tensor:
56
- out = torch.empty_like(x)
57
- ops.gelu_new(out, x)
58
- return out
59
-
60
-
61
- class QuickGELU(nn.Module):
62
- def forward(self, x: torch.Tensor) -> torch.Tensor:
63
- out = torch.empty_like(x)
64
- ops.gelu_quick(out, x)
65
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx11-cu121-x86_64-linux/activation/__init__.py DELETED
@@ -1,52 +0,0 @@
1
- import torch
2
-
3
- from ._ops import ops
4
-
5
- from . import layers
6
-
7
-
8
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
- ops.silu_and_mul(out, x)
10
- return out
11
-
12
-
13
- def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.gelu_and_mul(out, x)
15
- return out
16
-
17
-
18
- def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
- ops.gelu_tanh_and_mul(out, x)
20
- return out
21
-
22
-
23
- def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
24
- ops.fatrelu_and_mul(out, x, threshold)
25
- return out
26
-
27
-
28
- def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
29
- ops.gelu_fast(out, x)
30
- return out
31
-
32
-
33
- def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu_new(out, x)
35
- return out
36
-
37
-
38
- def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
39
- ops.gelu_quick(out, x)
40
- return out
41
-
42
-
43
- __all__ = [
44
- "silu_and_mul",
45
- "gelu_and_mul",
46
- "gelu_tanh_and_mul",
47
- "fatrelu_and_mul",
48
- "gelu_fast",
49
- "gelu_new",
50
- "gelu_quick",
51
- "layers",
52
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx11-cu121-x86_64-linux/activation/_ops.py DELETED
@@ -1,9 +0,0 @@
1
- import torch
2
- from . import _activation_78448fa
3
- ops = torch.ops._activation_78448fa
4
-
5
- def add_op_namespace_prefix(op_name: str):
6
- """
7
- Prefix op by namespace.
8
- """
9
- return f"_activation_78448fa::{op_name}"
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx11-cu121-x86_64-linux/activation/layers.py DELETED
@@ -1,65 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from ._ops import ops
5
-
6
-
7
- class SiluAndMul(nn.Module):
8
- def forward(self, x: torch.Tensor):
9
- d = x.shape[-1] // 2
10
- output_shape = x.shape[:-1] + (d,)
11
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
12
- ops.silu_and_mul(out, x)
13
- return out
14
-
15
-
16
- class GeluAndMul(nn.Module):
17
- def forward(self, x: torch.Tensor):
18
- d = x.shape[-1] // 2
19
- output_shape = x.shape[:-1] + (d,)
20
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
21
- ops.gelu_and_mul(out, x)
22
- return out
23
-
24
-
25
- class GeluTanhAndMul(nn.Module):
26
- def forward(self, x: torch.Tensor):
27
- d = x.shape[-1] // 2
28
- output_shape = x.shape[:-1] + (d,)
29
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
30
- ops.gelu_tanh_and_mul(out, x)
31
- return out
32
-
33
-
34
- class FatreluAndMul(nn.Module):
35
- def __init__(self, threshold: float = 0.0):
36
- super().__init__()
37
- self.threshold = threshold
38
-
39
- def forward(self, x: torch.Tensor):
40
- d = x.shape[-1] // 2
41
- output_shape = x.shape[:-1] + (d,)
42
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
43
- ops.fatrelu_and_mul(out, x, self.threshold)
44
- return out
45
-
46
-
47
- class FastGELU(nn.Module):
48
- def forward(self, x: torch.Tensor) -> torch.Tensor:
49
- out = torch.empty_like(x)
50
- ops.gelu_fast(out, x)
51
- return out
52
-
53
-
54
- class NewGELU(nn.Module):
55
- def forward(self, x: torch.Tensor) -> torch.Tensor:
56
- out = torch.empty_like(x)
57
- ops.gelu_new(out, x)
58
- return out
59
-
60
-
61
- class QuickGELU(nn.Module):
62
- def forward(self, x: torch.Tensor) -> torch.Tensor:
63
- out = torch.empty_like(x)
64
- ops.gelu_quick(out, x)
65
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx11-cu124-x86_64-linux/activation/__init__.py DELETED
@@ -1,52 +0,0 @@
1
- import torch
2
-
3
- from ._ops import ops
4
-
5
- from . import layers
6
-
7
-
8
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
- ops.silu_and_mul(out, x)
10
- return out
11
-
12
-
13
- def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.gelu_and_mul(out, x)
15
- return out
16
-
17
-
18
- def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
- ops.gelu_tanh_and_mul(out, x)
20
- return out
21
-
22
-
23
- def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
24
- ops.fatrelu_and_mul(out, x, threshold)
25
- return out
26
-
27
-
28
- def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
29
- ops.gelu_fast(out, x)
30
- return out
31
-
32
-
33
- def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu_new(out, x)
35
- return out
36
-
37
-
38
- def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
39
- ops.gelu_quick(out, x)
40
- return out
41
-
42
-
43
- __all__ = [
44
- "silu_and_mul",
45
- "gelu_and_mul",
46
- "gelu_tanh_and_mul",
47
- "fatrelu_and_mul",
48
- "gelu_fast",
49
- "gelu_new",
50
- "gelu_quick",
51
- "layers",
52
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx11-cu124-x86_64-linux/activation/_ops.py DELETED
@@ -1,9 +0,0 @@
1
- import torch
2
- from . import _activation_78448fa
3
- ops = torch.ops._activation_78448fa
4
-
5
- def add_op_namespace_prefix(op_name: str):
6
- """
7
- Prefix op by namespace.
8
- """
9
- return f"_activation_78448fa::{op_name}"
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx11-cu124-x86_64-linux/activation/layers.py DELETED
@@ -1,65 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from ._ops import ops
5
-
6
-
7
- class SiluAndMul(nn.Module):
8
- def forward(self, x: torch.Tensor):
9
- d = x.shape[-1] // 2
10
- output_shape = x.shape[:-1] + (d,)
11
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
12
- ops.silu_and_mul(out, x)
13
- return out
14
-
15
-
16
- class GeluAndMul(nn.Module):
17
- def forward(self, x: torch.Tensor):
18
- d = x.shape[-1] // 2
19
- output_shape = x.shape[:-1] + (d,)
20
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
21
- ops.gelu_and_mul(out, x)
22
- return out
23
-
24
-
25
- class GeluTanhAndMul(nn.Module):
26
- def forward(self, x: torch.Tensor):
27
- d = x.shape[-1] // 2
28
- output_shape = x.shape[:-1] + (d,)
29
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
30
- ops.gelu_tanh_and_mul(out, x)
31
- return out
32
-
33
-
34
- class FatreluAndMul(nn.Module):
35
- def __init__(self, threshold: float = 0.0):
36
- super().__init__()
37
- self.threshold = threshold
38
-
39
- def forward(self, x: torch.Tensor):
40
- d = x.shape[-1] // 2
41
- output_shape = x.shape[:-1] + (d,)
42
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
43
- ops.fatrelu_and_mul(out, x, self.threshold)
44
- return out
45
-
46
-
47
- class FastGELU(nn.Module):
48
- def forward(self, x: torch.Tensor) -> torch.Tensor:
49
- out = torch.empty_like(x)
50
- ops.gelu_fast(out, x)
51
- return out
52
-
53
-
54
- class NewGELU(nn.Module):
55
- def forward(self, x: torch.Tensor) -> torch.Tensor:
56
- out = torch.empty_like(x)
57
- ops.gelu_new(out, x)
58
- return out
59
-
60
-
61
- class QuickGELU(nn.Module):
62
- def forward(self, x: torch.Tensor) -> torch.Tensor:
63
- out = torch.empty_like(x)
64
- ops.gelu_quick(out, x)
65
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx98-cu118-x86_64-linux/activation/__init__.py DELETED
@@ -1,52 +0,0 @@
1
- import torch
2
-
3
- from ._ops import ops
4
-
5
- from . import layers
6
-
7
-
8
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
- ops.silu_and_mul(out, x)
10
- return out
11
-
12
-
13
- def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.gelu_and_mul(out, x)
15
- return out
16
-
17
-
18
- def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
- ops.gelu_tanh_and_mul(out, x)
20
- return out
21
-
22
-
23
- def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
24
- ops.fatrelu_and_mul(out, x, threshold)
25
- return out
26
-
27
-
28
- def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
29
- ops.gelu_fast(out, x)
30
- return out
31
-
32
-
33
- def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu_new(out, x)
35
- return out
36
-
37
-
38
- def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
39
- ops.gelu_quick(out, x)
40
- return out
41
-
42
-
43
- __all__ = [
44
- "silu_and_mul",
45
- "gelu_and_mul",
46
- "gelu_tanh_and_mul",
47
- "fatrelu_and_mul",
48
- "gelu_fast",
49
- "gelu_new",
50
- "gelu_quick",
51
- "layers",
52
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx98-cu118-x86_64-linux/activation/_ops.py DELETED
@@ -1,9 +0,0 @@
1
- import torch
2
- from . import _activation_78448fa
3
- ops = torch.ops._activation_78448fa
4
-
5
- def add_op_namespace_prefix(op_name: str):
6
- """
7
- Prefix op by namespace.
8
- """
9
- return f"_activation_78448fa::{op_name}"
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx98-cu118-x86_64-linux/activation/layers.py DELETED
@@ -1,65 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from ._ops import ops
5
-
6
-
7
- class SiluAndMul(nn.Module):
8
- def forward(self, x: torch.Tensor):
9
- d = x.shape[-1] // 2
10
- output_shape = x.shape[:-1] + (d,)
11
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
12
- ops.silu_and_mul(out, x)
13
- return out
14
-
15
-
16
- class GeluAndMul(nn.Module):
17
- def forward(self, x: torch.Tensor):
18
- d = x.shape[-1] // 2
19
- output_shape = x.shape[:-1] + (d,)
20
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
21
- ops.gelu_and_mul(out, x)
22
- return out
23
-
24
-
25
- class GeluTanhAndMul(nn.Module):
26
- def forward(self, x: torch.Tensor):
27
- d = x.shape[-1] // 2
28
- output_shape = x.shape[:-1] + (d,)
29
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
30
- ops.gelu_tanh_and_mul(out, x)
31
- return out
32
-
33
-
34
- class FatreluAndMul(nn.Module):
35
- def __init__(self, threshold: float = 0.0):
36
- super().__init__()
37
- self.threshold = threshold
38
-
39
- def forward(self, x: torch.Tensor):
40
- d = x.shape[-1] // 2
41
- output_shape = x.shape[:-1] + (d,)
42
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
43
- ops.fatrelu_and_mul(out, x, self.threshold)
44
- return out
45
-
46
-
47
- class FastGELU(nn.Module):
48
- def forward(self, x: torch.Tensor) -> torch.Tensor:
49
- out = torch.empty_like(x)
50
- ops.gelu_fast(out, x)
51
- return out
52
-
53
-
54
- class NewGELU(nn.Module):
55
- def forward(self, x: torch.Tensor) -> torch.Tensor:
56
- out = torch.empty_like(x)
57
- ops.gelu_new(out, x)
58
- return out
59
-
60
-
61
- class QuickGELU(nn.Module):
62
- def forward(self, x: torch.Tensor) -> torch.Tensor:
63
- out = torch.empty_like(x)
64
- ops.gelu_quick(out, x)
65
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py DELETED
@@ -1,52 +0,0 @@
1
- import torch
2
-
3
- from ._ops import ops
4
-
5
- from . import layers
6
-
7
-
8
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
- ops.silu_and_mul(out, x)
10
- return out
11
-
12
-
13
- def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.gelu_and_mul(out, x)
15
- return out
16
-
17
-
18
- def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
- ops.gelu_tanh_and_mul(out, x)
20
- return out
21
-
22
-
23
- def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
24
- ops.fatrelu_and_mul(out, x, threshold)
25
- return out
26
-
27
-
28
- def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
29
- ops.gelu_fast(out, x)
30
- return out
31
-
32
-
33
- def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu_new(out, x)
35
- return out
36
-
37
-
38
- def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
39
- ops.gelu_quick(out, x)
40
- return out
41
-
42
-
43
- __all__ = [
44
- "silu_and_mul",
45
- "gelu_and_mul",
46
- "gelu_tanh_and_mul",
47
- "fatrelu_and_mul",
48
- "gelu_fast",
49
- "gelu_new",
50
- "gelu_quick",
51
- "layers",
52
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx98-cu121-x86_64-linux/activation/_activation_78448fa.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7e6475ed603ad2cb565bd19ad2554484bd6c00d0d3f02decff60f2285df2546f
3
- size 2463232
 
 
 
 
build/torch25-cxx98-cu121-x86_64-linux/activation/_ops.py DELETED
@@ -1,9 +0,0 @@
1
- import torch
2
- from . import _activation_78448fa
3
- ops = torch.ops._activation_78448fa
4
-
5
- def add_op_namespace_prefix(op_name: str):
6
- """
7
- Prefix op by namespace.
8
- """
9
- return f"_activation_78448fa::{op_name}"
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx98-cu121-x86_64-linux/activation/layers.py DELETED
@@ -1,65 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from ._ops import ops
5
-
6
-
7
- class SiluAndMul(nn.Module):
8
- def forward(self, x: torch.Tensor):
9
- d = x.shape[-1] // 2
10
- output_shape = x.shape[:-1] + (d,)
11
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
12
- ops.silu_and_mul(out, x)
13
- return out
14
-
15
-
16
- class GeluAndMul(nn.Module):
17
- def forward(self, x: torch.Tensor):
18
- d = x.shape[-1] // 2
19
- output_shape = x.shape[:-1] + (d,)
20
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
21
- ops.gelu_and_mul(out, x)
22
- return out
23
-
24
-
25
- class GeluTanhAndMul(nn.Module):
26
- def forward(self, x: torch.Tensor):
27
- d = x.shape[-1] // 2
28
- output_shape = x.shape[:-1] + (d,)
29
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
30
- ops.gelu_tanh_and_mul(out, x)
31
- return out
32
-
33
-
34
- class FatreluAndMul(nn.Module):
35
- def __init__(self, threshold: float = 0.0):
36
- super().__init__()
37
- self.threshold = threshold
38
-
39
- def forward(self, x: torch.Tensor):
40
- d = x.shape[-1] // 2
41
- output_shape = x.shape[:-1] + (d,)
42
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
43
- ops.fatrelu_and_mul(out, x, self.threshold)
44
- return out
45
-
46
-
47
- class FastGELU(nn.Module):
48
- def forward(self, x: torch.Tensor) -> torch.Tensor:
49
- out = torch.empty_like(x)
50
- ops.gelu_fast(out, x)
51
- return out
52
-
53
-
54
- class NewGELU(nn.Module):
55
- def forward(self, x: torch.Tensor) -> torch.Tensor:
56
- out = torch.empty_like(x)
57
- ops.gelu_new(out, x)
58
- return out
59
-
60
-
61
- class QuickGELU(nn.Module):
62
- def forward(self, x: torch.Tensor) -> torch.Tensor:
63
- out = torch.empty_like(x)
64
- ops.gelu_quick(out, x)
65
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py DELETED
@@ -1,52 +0,0 @@
1
- import torch
2
-
3
- from ._ops import ops
4
-
5
- from . import layers
6
-
7
-
8
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
- ops.silu_and_mul(out, x)
10
- return out
11
-
12
-
13
- def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.gelu_and_mul(out, x)
15
- return out
16
-
17
-
18
- def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
- ops.gelu_tanh_and_mul(out, x)
20
- return out
21
-
22
-
23
- def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
24
- ops.fatrelu_and_mul(out, x, threshold)
25
- return out
26
-
27
-
28
- def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
29
- ops.gelu_fast(out, x)
30
- return out
31
-
32
-
33
- def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu_new(out, x)
35
- return out
36
-
37
-
38
- def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
39
- ops.gelu_quick(out, x)
40
- return out
41
-
42
-
43
- __all__ = [
44
- "silu_and_mul",
45
- "gelu_and_mul",
46
- "gelu_tanh_and_mul",
47
- "fatrelu_and_mul",
48
- "gelu_fast",
49
- "gelu_new",
50
- "gelu_quick",
51
- "layers",
52
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx98-cu124-x86_64-linux/activation/_activation_78448fa.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a0767f6dba00c543d3cb77e2044bccd32ef569abc55b921231112c8a1ddfb187
3
- size 2502088
 
 
 
 
build/torch25-cxx98-cu124-x86_64-linux/activation/_ops.py DELETED
@@ -1,9 +0,0 @@
1
- import torch
2
- from . import _activation_78448fa
3
- ops = torch.ops._activation_78448fa
4
-
5
- def add_op_namespace_prefix(op_name: str):
6
- """
7
- Prefix op by namespace.
8
- """
9
- return f"_activation_78448fa::{op_name}"
 
 
 
 
 
 
 
 
 
 
build/torch25-cxx98-cu124-x86_64-linux/activation/layers.py DELETED
@@ -1,65 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from ._ops import ops
5
-
6
-
7
- class SiluAndMul(nn.Module):
8
- def forward(self, x: torch.Tensor):
9
- d = x.shape[-1] // 2
10
- output_shape = x.shape[:-1] + (d,)
11
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
12
- ops.silu_and_mul(out, x)
13
- return out
14
-
15
-
16
- class GeluAndMul(nn.Module):
17
- def forward(self, x: torch.Tensor):
18
- d = x.shape[-1] // 2
19
- output_shape = x.shape[:-1] + (d,)
20
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
21
- ops.gelu_and_mul(out, x)
22
- return out
23
-
24
-
25
- class GeluTanhAndMul(nn.Module):
26
- def forward(self, x: torch.Tensor):
27
- d = x.shape[-1] // 2
28
- output_shape = x.shape[:-1] + (d,)
29
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
30
- ops.gelu_tanh_and_mul(out, x)
31
- return out
32
-
33
-
34
- class FatreluAndMul(nn.Module):
35
- def __init__(self, threshold: float = 0.0):
36
- super().__init__()
37
- self.threshold = threshold
38
-
39
- def forward(self, x: torch.Tensor):
40
- d = x.shape[-1] // 2
41
- output_shape = x.shape[:-1] + (d,)
42
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
43
- ops.fatrelu_and_mul(out, x, self.threshold)
44
- return out
45
-
46
-
47
- class FastGELU(nn.Module):
48
- def forward(self, x: torch.Tensor) -> torch.Tensor:
49
- out = torch.empty_like(x)
50
- ops.gelu_fast(out, x)
51
- return out
52
-
53
-
54
- class NewGELU(nn.Module):
55
- def forward(self, x: torch.Tensor) -> torch.Tensor:
56
- out = torch.empty_like(x)
57
- ops.gelu_new(out, x)
58
- return out
59
-
60
-
61
- class QuickGELU(nn.Module):
62
- def forward(self, x: torch.Tensor) -> torch.Tensor:
63
- out = torch.empty_like(x)
64
- ops.gelu_quick(out, x)
65
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch26-cxx11-cu118-x86_64-linux/activation/_activation_78448fa.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0c04d860454cc565113a3c93ff755fe9cbba0578c4604b89ad89e47c2503932
3
- size 2448056
 
 
 
 
build/{torch25-cxx11-cu121-x86_64-linux/activation/_activation_78448fa.abi3.so → torch26-cxx11-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6146ac6e77cbd458560bf67c46d93217833f2caf08260cc80a4aa62ba5645ee9
3
- size 2471056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b925dc27b6a9afd5b6d11e454275222c531a92f7ca27958ac81a78c580665e4d
3
+ size 2448088
build/torch26-cxx11-cu118-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_78448fa
3
- ops = torch.ops._activation_78448fa
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_78448fa::{op_name}"
 
1
  import torch
2
+ from . import _activation_e99cc09_dirty
3
+ ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_e99cc09_dirty::{op_name}"
build/torch26-cxx11-cu118-x86_64-linux/activation/layers.py CHANGED
@@ -5,6 +5,8 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
@@ -14,6 +16,8 @@ class SiluAndMul(nn.Module):
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
@@ -23,6 +27,8 @@ class GeluAndMul(nn.Module):
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
@@ -32,6 +38,8 @@ class GeluTanhAndMul(nn.Module):
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
@@ -45,6 +53,8 @@ class FatreluAndMul(nn.Module):
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
@@ -52,6 +62,8 @@ class FastGELU(nn.Module):
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
@@ -59,6 +71,8 @@ class NewGELU(nn.Module):
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
+ can_torch_compile: bool = True
9
+
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
 
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
+ can_torch_compile: bool = True
20
+
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
 
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
+ can_torch_compile: bool = True
31
+
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
 
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
+ can_torch_compile: bool = True
42
+
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
 
53
 
54
 
55
  class FastGELU(nn.Module):
56
+ can_torch_compile: bool = True
57
+
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
 
62
 
63
 
64
  class NewGELU(nn.Module):
65
+ can_torch_compile: bool = True
66
+
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
 
71
 
72
 
73
  class QuickGELU(nn.Module):
74
+ can_torch_compile: bool = True
75
+
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
build/torch26-cxx11-cu124-x86_64-linux/activation/_activation_78448fa.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:48d7b0d190af1dd0366dbaeb0690b9c7cd1dfdc9aeda9b0b23bce56c70f5cbae
3
- size 2509928
 
 
 
 
build/{torch25-cxx11-cu118-x86_64-linux/activation/_activation_78448fa.abi3.so → torch26-cxx11-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:323dbf69b89390fd46b207abc1314a4cbe27491e1bb9f026c840bc3bff43b7d3
3
- size 2447952
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfdbe510752b57a8dc4671f744bb0a2da5b1646e0b9a19fec02f1505ba044c8c
3
+ size 2509960
build/torch26-cxx11-cu124-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_78448fa
3
- ops = torch.ops._activation_78448fa
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_78448fa::{op_name}"
 
1
  import torch
2
+ from . import _activation_e99cc09_dirty
3
+ ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_e99cc09_dirty::{op_name}"
build/torch26-cxx11-cu124-x86_64-linux/activation/layers.py CHANGED
@@ -5,6 +5,8 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
@@ -14,6 +16,8 @@ class SiluAndMul(nn.Module):
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
@@ -23,6 +27,8 @@ class GeluAndMul(nn.Module):
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
@@ -32,6 +38,8 @@ class GeluTanhAndMul(nn.Module):
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
@@ -45,6 +53,8 @@ class FatreluAndMul(nn.Module):
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
@@ -52,6 +62,8 @@ class FastGELU(nn.Module):
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
@@ -59,6 +71,8 @@ class NewGELU(nn.Module):
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
+ can_torch_compile: bool = True
9
+
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
 
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
+ can_torch_compile: bool = True
20
+
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
 
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
+ can_torch_compile: bool = True
31
+
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
 
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
+ can_torch_compile: bool = True
42
+
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
 
53
 
54
 
55
  class FastGELU(nn.Module):
56
+ can_torch_compile: bool = True
57
+
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
 
62
 
63
 
64
  class NewGELU(nn.Module):
65
+ can_torch_compile: bool = True
66
+
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
 
71
 
72
 
73
  class QuickGELU(nn.Module):
74
+ can_torch_compile: bool = True
75
+
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
build/torch26-cxx11-cu126-aarch64-linux/activation/__init__.py DELETED
@@ -1,52 +0,0 @@
1
- import torch
2
-
3
- from ._ops import ops
4
-
5
- from . import layers
6
-
7
-
8
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
- ops.silu_and_mul(out, x)
10
- return out
11
-
12
-
13
- def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.gelu_and_mul(out, x)
15
- return out
16
-
17
-
18
- def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
- ops.gelu_tanh_and_mul(out, x)
20
- return out
21
-
22
-
23
- def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
24
- ops.fatrelu_and_mul(out, x, threshold)
25
- return out
26
-
27
-
28
- def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
29
- ops.gelu_fast(out, x)
30
- return out
31
-
32
-
33
- def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu_new(out, x)
35
- return out
36
-
37
-
38
- def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
39
- ops.gelu_quick(out, x)
40
- return out
41
-
42
-
43
- __all__ = [
44
- "silu_and_mul",
45
- "gelu_and_mul",
46
- "gelu_tanh_and_mul",
47
- "fatrelu_and_mul",
48
- "gelu_fast",
49
- "gelu_new",
50
- "gelu_quick",
51
- "layers",
52
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch26-cxx11-cu126-aarch64-linux/activation/_activation_bbdc1b4_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:558e4499ad3c09d02633488cfdc802a228b78a8cd51d963c92239d44744298c7
3
- size 2631936
 
 
 
 
build/torch26-cxx11-cu126-aarch64-linux/activation/_ops.py DELETED
@@ -1,9 +0,0 @@
1
- import torch
2
- from . import _activation_bbdc1b4_dirty
3
- ops = torch.ops._activation_bbdc1b4_dirty
4
-
5
- def add_op_namespace_prefix(op_name: str):
6
- """
7
- Prefix op by namespace.
8
- """
9
- return f"_activation_bbdc1b4_dirty::{op_name}"
 
 
 
 
 
 
 
 
 
 
build/torch26-cxx11-cu126-aarch64-linux/activation/layers.py DELETED
@@ -1,65 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from ._ops import ops
5
-
6
-
7
- class SiluAndMul(nn.Module):
8
- def forward(self, x: torch.Tensor):
9
- d = x.shape[-1] // 2
10
- output_shape = x.shape[:-1] + (d,)
11
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
12
- ops.silu_and_mul(out, x)
13
- return out
14
-
15
-
16
- class GeluAndMul(nn.Module):
17
- def forward(self, x: torch.Tensor):
18
- d = x.shape[-1] // 2
19
- output_shape = x.shape[:-1] + (d,)
20
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
21
- ops.gelu_and_mul(out, x)
22
- return out
23
-
24
-
25
- class GeluTanhAndMul(nn.Module):
26
- def forward(self, x: torch.Tensor):
27
- d = x.shape[-1] // 2
28
- output_shape = x.shape[:-1] + (d,)
29
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
30
- ops.gelu_tanh_and_mul(out, x)
31
- return out
32
-
33
-
34
- class FatreluAndMul(nn.Module):
35
- def __init__(self, threshold: float = 0.0):
36
- super().__init__()
37
- self.threshold = threshold
38
-
39
- def forward(self, x: torch.Tensor):
40
- d = x.shape[-1] // 2
41
- output_shape = x.shape[:-1] + (d,)
42
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
43
- ops.fatrelu_and_mul(out, x, self.threshold)
44
- return out
45
-
46
-
47
- class FastGELU(nn.Module):
48
- def forward(self, x: torch.Tensor) -> torch.Tensor:
49
- out = torch.empty_like(x)
50
- ops.gelu_fast(out, x)
51
- return out
52
-
53
-
54
- class NewGELU(nn.Module):
55
- def forward(self, x: torch.Tensor) -> torch.Tensor:
56
- out = torch.empty_like(x)
57
- ops.gelu_new(out, x)
58
- return out
59
-
60
-
61
- class QuickGELU(nn.Module):
62
- def forward(self, x: torch.Tensor) -> torch.Tensor:
63
- out = torch.empty_like(x)
64
- ops.gelu_quick(out, x)
65
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch26-cxx11-cu126-x86_64-linux/activation/_activation_78448fa.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:11a11d0f4119edc5c637bab04ebd5669750a0e4f4000f58ab1bf5be2d8d9ab0b
3
- size 2518568
 
 
 
 
build/{torch27-cxx11-cu126-x86_64-linux/activation/_activation_78448fa.abi3.so → torch26-cxx11-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:22ed530294eb70c8261e581615bd9da0d2dc1ba8c3f0dcc3696cff9be62580cb
3
  size 2518600
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70e544ad6448a5576d26147f48403f3e9e593f4a2e24167dc8acb81ce3b7932e
3
  size 2518600
build/torch26-cxx11-cu126-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_78448fa
3
- ops = torch.ops._activation_78448fa
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_78448fa::{op_name}"
 
1
  import torch
2
+ from . import _activation_e99cc09_dirty
3
+ ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_e99cc09_dirty::{op_name}"
build/torch26-cxx11-cu126-x86_64-linux/activation/layers.py CHANGED
@@ -5,6 +5,8 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
@@ -14,6 +16,8 @@ class SiluAndMul(nn.Module):
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
@@ -23,6 +27,8 @@ class GeluAndMul(nn.Module):
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
@@ -32,6 +38,8 @@ class GeluTanhAndMul(nn.Module):
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
@@ -45,6 +53,8 @@ class FatreluAndMul(nn.Module):
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
@@ -52,6 +62,8 @@ class FastGELU(nn.Module):
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
@@ -59,6 +71,8 @@ class NewGELU(nn.Module):
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
+ can_torch_compile: bool = True
9
+
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
 
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
+ can_torch_compile: bool = True
20
+
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
 
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
+ can_torch_compile: bool = True
31
+
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
 
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
+ can_torch_compile: bool = True
42
+
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
 
53
 
54
 
55
  class FastGELU(nn.Module):
56
+ can_torch_compile: bool = True
57
+
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
 
62
 
63
 
64
  class NewGELU(nn.Module):
65
+ can_torch_compile: bool = True
66
+
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
 
71
 
72
 
73
  class QuickGELU(nn.Module):
74
+ can_torch_compile: bool = True
75
+
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
build/torch26-cxx98-cu118-x86_64-linux/activation/_activation_78448fa.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:56dcc985761e309cbef3fc2a201f26e800583128d6e5a3fc1b23800fb0b8b48c
3
- size 2440544
 
 
 
 
build/{torch25-cxx11-cu124-x86_64-linux/activation/_activation_78448fa.abi3.so → torch26-cxx98-cu118-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:28eea3907055742f99bc9d7d4260add848adc2f6464e97029f37cd42a5c6bd0a
3
- size 2509832
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fd224c33657558f03be5be57cc8d35ade23225b1abd71557b170c8a7010cd1
3
+ size 2440576
build/torch26-cxx98-cu118-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_78448fa
3
- ops = torch.ops._activation_78448fa
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_78448fa::{op_name}"
 
1
  import torch
2
+ from . import _activation_e99cc09_dirty
3
+ ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_e99cc09_dirty::{op_name}"
build/torch26-cxx98-cu118-x86_64-linux/activation/layers.py CHANGED
@@ -5,6 +5,8 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
@@ -14,6 +16,8 @@ class SiluAndMul(nn.Module):
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
@@ -23,6 +27,8 @@ class GeluAndMul(nn.Module):
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
@@ -32,6 +38,8 @@ class GeluTanhAndMul(nn.Module):
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
@@ -45,6 +53,8 @@ class FatreluAndMul(nn.Module):
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
@@ -52,6 +62,8 @@ class FastGELU(nn.Module):
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
@@ -59,6 +71,8 @@ class NewGELU(nn.Module):
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
+ can_torch_compile: bool = True
9
+
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
 
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
+ can_torch_compile: bool = True
20
+
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
 
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
+ can_torch_compile: bool = True
31
+
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
 
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
+ can_torch_compile: bool = True
42
+
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
 
53
 
54
 
55
  class FastGELU(nn.Module):
56
+ can_torch_compile: bool = True
57
+
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
 
62
 
63
 
64
  class NewGELU(nn.Module):
65
+ can_torch_compile: bool = True
66
+
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
 
71
 
72
 
73
  class QuickGELU(nn.Module):
74
+ can_torch_compile: bool = True
75
+
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_78448fa.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:03c5f08322796d0736024412babe5d7f13bb1126387976ae12a80485a40d3883
3
- size 2502240
 
 
 
 
build/{torch25-cxx98-cu118-x86_64-linux/activation/_activation_78448fa.abi3.so → torch26-cxx98-cu124-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d5609ad07903b98c83c297bfb64f0d944df5edfe1c611fee23ec6c8fbd952604
3
- size 2440392
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e364773259dc1b91f3c0d3b076da83c5a9c6ee18ffdace30315c602dffd1dabe
3
+ size 2502264
build/torch26-cxx98-cu124-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_78448fa
3
- ops = torch.ops._activation_78448fa
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_78448fa::{op_name}"
 
1
  import torch
2
+ from . import _activation_e99cc09_dirty
3
+ ops = torch.ops._activation_e99cc09_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_e99cc09_dirty::{op_name}"
build/torch26-cxx98-cu124-x86_64-linux/activation/layers.py CHANGED
@@ -5,6 +5,8 @@ from ._ops import ops
5
 
6
 
7
  class SiluAndMul(nn.Module):
 
 
8
  def forward(self, x: torch.Tensor):
9
  d = x.shape[-1] // 2
10
  output_shape = x.shape[:-1] + (d,)
@@ -14,6 +16,8 @@ class SiluAndMul(nn.Module):
14
 
15
 
16
  class GeluAndMul(nn.Module):
 
 
17
  def forward(self, x: torch.Tensor):
18
  d = x.shape[-1] // 2
19
  output_shape = x.shape[:-1] + (d,)
@@ -23,6 +27,8 @@ class GeluAndMul(nn.Module):
23
 
24
 
25
  class GeluTanhAndMul(nn.Module):
 
 
26
  def forward(self, x: torch.Tensor):
27
  d = x.shape[-1] // 2
28
  output_shape = x.shape[:-1] + (d,)
@@ -32,6 +38,8 @@ class GeluTanhAndMul(nn.Module):
32
 
33
 
34
  class FatreluAndMul(nn.Module):
 
 
35
  def __init__(self, threshold: float = 0.0):
36
  super().__init__()
37
  self.threshold = threshold
@@ -45,6 +53,8 @@ class FatreluAndMul(nn.Module):
45
 
46
 
47
  class FastGELU(nn.Module):
 
 
48
  def forward(self, x: torch.Tensor) -> torch.Tensor:
49
  out = torch.empty_like(x)
50
  ops.gelu_fast(out, x)
@@ -52,6 +62,8 @@ class FastGELU(nn.Module):
52
 
53
 
54
  class NewGELU(nn.Module):
 
 
55
  def forward(self, x: torch.Tensor) -> torch.Tensor:
56
  out = torch.empty_like(x)
57
  ops.gelu_new(out, x)
@@ -59,6 +71,8 @@ class NewGELU(nn.Module):
59
 
60
 
61
  class QuickGELU(nn.Module):
 
 
62
  def forward(self, x: torch.Tensor) -> torch.Tensor:
63
  out = torch.empty_like(x)
64
  ops.gelu_quick(out, x)
 
5
 
6
 
7
  class SiluAndMul(nn.Module):
8
+ can_torch_compile: bool = True
9
+
10
  def forward(self, x: torch.Tensor):
11
  d = x.shape[-1] // 2
12
  output_shape = x.shape[:-1] + (d,)
 
16
 
17
 
18
  class GeluAndMul(nn.Module):
19
+ can_torch_compile: bool = True
20
+
21
  def forward(self, x: torch.Tensor):
22
  d = x.shape[-1] // 2
23
  output_shape = x.shape[:-1] + (d,)
 
27
 
28
 
29
  class GeluTanhAndMul(nn.Module):
30
+ can_torch_compile: bool = True
31
+
32
  def forward(self, x: torch.Tensor):
33
  d = x.shape[-1] // 2
34
  output_shape = x.shape[:-1] + (d,)
 
38
 
39
 
40
  class FatreluAndMul(nn.Module):
41
+ can_torch_compile: bool = True
42
+
43
  def __init__(self, threshold: float = 0.0):
44
  super().__init__()
45
  self.threshold = threshold
 
53
 
54
 
55
  class FastGELU(nn.Module):
56
+ can_torch_compile: bool = True
57
+
58
  def forward(self, x: torch.Tensor) -> torch.Tensor:
59
  out = torch.empty_like(x)
60
  ops.gelu_fast(out, x)
 
62
 
63
 
64
  class NewGELU(nn.Module):
65
+ can_torch_compile: bool = True
66
+
67
  def forward(self, x: torch.Tensor) -> torch.Tensor:
68
  out = torch.empty_like(x)
69
  ops.gelu_new(out, x)
 
71
 
72
 
73
  class QuickGELU(nn.Module):
74
+ can_torch_compile: bool = True
75
+
76
  def forward(self, x: torch.Tensor) -> torch.Tensor:
77
  out = torch.empty_like(x)
78
  ops.gelu_quick(out, x)
build/torch26-cxx98-cu126-aarch64-linux/activation/__init__.py DELETED
@@ -1,52 +0,0 @@
1
- import torch
2
-
3
- from ._ops import ops
4
-
5
- from . import layers
6
-
7
-
8
- def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
- ops.silu_and_mul(out, x)
10
- return out
11
-
12
-
13
- def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
14
- ops.gelu_and_mul(out, x)
15
- return out
16
-
17
-
18
- def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
- ops.gelu_tanh_and_mul(out, x)
20
- return out
21
-
22
-
23
- def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
24
- ops.fatrelu_and_mul(out, x, threshold)
25
- return out
26
-
27
-
28
- def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
29
- ops.gelu_fast(out, x)
30
- return out
31
-
32
-
33
- def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
34
- ops.gelu_new(out, x)
35
- return out
36
-
37
-
38
- def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
39
- ops.gelu_quick(out, x)
40
- return out
41
-
42
-
43
- __all__ = [
44
- "silu_and_mul",
45
- "gelu_and_mul",
46
- "gelu_tanh_and_mul",
47
- "fatrelu_and_mul",
48
- "gelu_fast",
49
- "gelu_new",
50
- "gelu_quick",
51
- "layers",
52
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch26-cxx98-cu126-aarch64-linux/activation/_activation_bbdc1b4_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f6afd50526ff4221cddd52cb947900cdf6bb95ad0a6bffcd1a86bda4d3f52349
3
- size 2628128
 
 
 
 
build/torch26-cxx98-cu126-aarch64-linux/activation/_ops.py DELETED
@@ -1,9 +0,0 @@
1
- import torch
2
- from . import _activation_bbdc1b4_dirty
3
- ops = torch.ops._activation_bbdc1b4_dirty
4
-
5
- def add_op_namespace_prefix(op_name: str):
6
- """
7
- Prefix op by namespace.
8
- """
9
- return f"_activation_bbdc1b4_dirty::{op_name}"
 
 
 
 
 
 
 
 
 
 
build/torch26-cxx98-cu126-aarch64-linux/activation/layers.py DELETED
@@ -1,65 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from ._ops import ops
5
-
6
-
7
- class SiluAndMul(nn.Module):
8
- def forward(self, x: torch.Tensor):
9
- d = x.shape[-1] // 2
10
- output_shape = x.shape[:-1] + (d,)
11
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
12
- ops.silu_and_mul(out, x)
13
- return out
14
-
15
-
16
- class GeluAndMul(nn.Module):
17
- def forward(self, x: torch.Tensor):
18
- d = x.shape[-1] // 2
19
- output_shape = x.shape[:-1] + (d,)
20
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
21
- ops.gelu_and_mul(out, x)
22
- return out
23
-
24
-
25
- class GeluTanhAndMul(nn.Module):
26
- def forward(self, x: torch.Tensor):
27
- d = x.shape[-1] // 2
28
- output_shape = x.shape[:-1] + (d,)
29
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
30
- ops.gelu_tanh_and_mul(out, x)
31
- return out
32
-
33
-
34
- class FatreluAndMul(nn.Module):
35
- def __init__(self, threshold: float = 0.0):
36
- super().__init__()
37
- self.threshold = threshold
38
-
39
- def forward(self, x: torch.Tensor):
40
- d = x.shape[-1] // 2
41
- output_shape = x.shape[:-1] + (d,)
42
- out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
43
- ops.fatrelu_and_mul(out, x, self.threshold)
44
- return out
45
-
46
-
47
- class FastGELU(nn.Module):
48
- def forward(self, x: torch.Tensor) -> torch.Tensor:
49
- out = torch.empty_like(x)
50
- ops.gelu_fast(out, x)
51
- return out
52
-
53
-
54
- class NewGELU(nn.Module):
55
- def forward(self, x: torch.Tensor) -> torch.Tensor:
56
- out = torch.empty_like(x)
57
- ops.gelu_new(out, x)
58
- return out
59
-
60
-
61
- class QuickGELU(nn.Module):
62
- def forward(self, x: torch.Tensor) -> torch.Tensor:
63
- out = torch.empty_like(x)
64
- ops.gelu_quick(out, x)
65
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_78448fa.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f6eae5c895c564fbd2524ce488f4e91e65dc63402cd41a8bc74474b7437b2e62
3
- size 2506784
 
 
 
 
build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_e99cc09_dirty.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ac88cc0d3c65ab283d20608f3a097be29ee572e7856f10f8d7919536efd95b4
3
+ size 2506808