kernel
File size: 30,808 Bytes
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cutlass/cutlass.h"
#include "cutlass/barrier.h"
#include "cute/tensor.hpp"

#include "cutlass/gemm/collective/builders/sm90_common.inl"

#include "seqlen.h"
#include "named_barrier.hpp"
#include "utils.h"

namespace flash {

using namespace cute;

template <class TileShape_MNK_, class Element_, class ArchTag_,
          int NumEpilogueThreads_, bool Varlen_, bool dKV_swapAB_, int AtomLayoutKdKV=1>
struct CollectiveEpilogueBwd {

    using TileShape_MNK = TileShape_MNK_;
    using Element = Element_;
    using ArchTag = ArchTag_;
    static constexpr int NumEpilogueThreads = NumEpilogueThreads_;
    static constexpr bool Varlen = Varlen_;
    static constexpr bool dKV_swapAB = dKV_swapAB_;
    static constexpr bool Use_TMA = !Varlen && ArchTag::kMinComputeCapability >= 90;

    static_assert(ArchTag::kMinComputeCapability >= 80);

    using GmemTiledCopydKVTMA = cute::SM90_TMA_STORE;

    // These are for storing the output tensor without TMA (e.g., for setting output to zero)
    static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
    static_assert(get<2>(TileShape_MNK{}) % kGmemElemsPerLoad == 0, "Headdim must be a multiple of kGmemElemsPerLoad");
    static constexpr int kHeadDim = get<2>(TileShape_MNK{});
    static constexpr int kGmemThreadsPerRow = cutlass::gcd(kHeadDim / kGmemElemsPerLoad, NumEpilogueThreads);
    static_assert(NumEpilogueThreads % kGmemThreadsPerRow == 0, "NumEpilogueThreads must be a multiple of kGmemThreadsPerRow");
    using GmemLayoutAtom = Layout<Shape <Int<NumEpilogueThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
                                  Stride<Int<kGmemThreadsPerRow>, _1>>;
    using GmemTiledCopydKV = decltype(
        make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
                        GmemLayoutAtom{},
                        Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{}));  // Val layout, 8 or 16 vals per store

    using SmemLayoutAtomdKVTMA = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
                                          // TODO: do we have to change this if dKV_swapAB is true?
                                          decltype(cute::get<1>(TileShape_MNK{})), Int<CUTE_STATIC_V(cute::get<2>(TileShape_MNK{})) / AtomLayoutKdKV>>());
    using SmemLayoutdKVTMA = decltype(tile_to_shape(SmemLayoutAtomdKVTMA{}, select<1, 2>(TileShape_MNK{})));
    using SmemLayoutdKVtTMA =
        decltype(cute::composition(SmemLayoutdKVTMA{},
                                   make_layout(make_shape(get<2>(TileShape_MNK{}), get<1>(TileShape_MNK{})),
                                               make_stride(decltype(get<1>(TileShape_MNK{})){}, _1{}))));

    // If we don't use TMA
    static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : (kHeadDim % 32 == 0 ? 32 : 16);
    static constexpr int kSwizzle = kBlockKSmem == 64 ? 3 : (kBlockKSmem == 32 ? 2 : 1);
    using SmemLayoutAtomdKVSTG =
        decltype(composition(Swizzle<kSwizzle, 3, 3>{},
                             Layout<Shape<Int<8>, Int<kBlockKSmem>>,
                             Stride<Int<kBlockKSmem>, _1>>{}));

    using SmemLayoutAtomdKV = std::conditional_t<Use_TMA, SmemLayoutAtomdKVTMA, SmemLayoutAtomdKVSTG>;
    using SmemLayoutdKV = decltype(tile_to_shape(SmemLayoutAtomdKV{}, select<1, 2>(TileShape_MNK{})));
    using SmemLayoutdKVt =
        decltype(cute::composition(SmemLayoutdKV{},
                                   make_layout(make_shape(get<2>(TileShape_MNK{}), get<1>(TileShape_MNK{})),
                                               make_stride(decltype(get<1>(TileShape_MNK{})){}, _1{}))));

    using SmemCopyAtomdKV = Copy_Atom<
        std::conditional_t<
            ArchTag::kMinComputeCapability >= 90,
            std::conditional_t<!dKV_swapAB, cute::SM90_U32x4_STSM_N, cute::SM90_U16x8_STSM_T>,
            AutoVectorizingCopyWithAssumedAlignment<128>
        >,
        Element>;

    static constexpr size_t SmemAlignmentdKV = ArchTag::kMinComputeCapability >= 90 ? cutlass::detail::alignment_for_swizzle(SmemLayoutdKV{}) : 128;
    static_assert(SmemAlignmentdKV >= 128, "Require at least 128B alignment");

    struct TensorStorage : cute::aligned_struct<SmemAlignmentdKV> {
        cute::array_aligned<Element, cute::cosize_v<SmemLayoutdKV>, SmemAlignmentdKV> smem_dk;
        cute::array_aligned<Element, cute::cosize_v<SmemLayoutdKV>, SmemAlignmentdKV> smem_dv;
    };

    using ShapedKV = cute::Shape<int32_t, int32_t, int32_t, int32_t>;  // (seqlen_k, d, head, batch)
    using StridedKV = cute::Stride<int64_t, _1, int64_t, int64_t>;

    using TMA_dKV = std::conditional_t<
        Use_TMA,
        decltype(make_tma_copy(
            GmemTiledCopydKVTMA{},
            make_tensor(make_gmem_ptr(static_cast<Element*>(nullptr)), ShapedKV{}, StridedKV{}),
            SmemLayoutdKVTMA{},
            select<1, 2>(TileShape_MNK{}),
            _1{})),  // no mcast for dKV
        std::nullptr_t
        >;

    // Host side kernel arguments
    struct Arguments {
        Element* ptr_dK;
        ShapedKV const shape_dK;
        StridedKV const stride_dK;
        Element* ptr_dV;
        ShapedKV const shape_dV;
        StridedKV const stride_dV;
        int const num_heads_q;
        int* dk_semaphore;
        int* dv_semaphore;
        int const* cu_seqlens;
        int const* seqused;
    };

    // Device side kernel params
    struct Params {
        Element* ptr_dK;
        ShapedKV const shape_dK;
        StridedKV const stride_dK;
        Element* ptr_dV;
        ShapedKV const shape_dV;
        StridedKV const stride_dV;
        TMA_dKV tma_store_dK, tma_store_dV;
        int const* cu_seqlens = nullptr;
        int const* seqused = nullptr;
    };

    static Params
    to_underlying_arguments(Arguments const& args) {
        Tensor mdK = make_tensor(make_gmem_ptr(args.ptr_dK), args.shape_dK, args.stride_dK);
        Tensor mdV = make_tensor(make_gmem_ptr(args.ptr_dV), args.shape_dV, args.stride_dV);
        TMA_dKV tma_store_dK = [&] {
            if constexpr (Use_TMA) {
                return make_tma_copy(GmemTiledCopydKVTMA{}, mdK, SmemLayoutdKVTMA{}, select<1, 2>(TileShape_MNK{}), _1{}); // no mcast for dKV
            } else {
                return nullptr;
            }
        }();
        TMA_dKV tma_store_dV = [&] {
            if constexpr (Use_TMA) {
                return make_tma_copy(GmemTiledCopydKVTMA{}, mdV, SmemLayoutdKVTMA{}, select<1, 2>(TileShape_MNK{}), _1{}); // no mcast for dKV
            } else {
                return nullptr;
            }
        }();
        return {args.ptr_dK, args.shape_dK, args.stride_dK, args.ptr_dV, args.shape_dV, args.stride_dV,
                tma_store_dK, tma_store_dV, args.cu_seqlens, args.seqused};
    }

    /// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
    CUTLASS_DEVICE
    static void prefetch_tma_descriptors(Params const& params) {
        if constexpr (Use_TMA) {
            cute::prefetch_tma_descriptor(params.tma_store_dK.get_tma_descriptor());
            cute::prefetch_tma_descriptor(params.tma_store_dV.get_tma_descriptor());
        }
    }

    template <typename SharedStorage, typename FrgTensorO, typename TiledMma>
    CUTLASS_DEVICE void
    store(Params const& params,
          FrgTensorO const& tdKrdK,
          FrgTensorO const& tdVrdV,
          SharedStorage& shared_storage,
          TiledMma tiled_mma,
          int thread_idx,
          cute::tuple<int32_t, int32_t, int32_t> const& block_coord
          ) {

        auto [n_block, bidh, bidb] = block_coord;
        Tensor sdK = cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.epilogue.smem_dk.data()), SmemLayoutdKV{}));
        Tensor sdV = cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.epilogue.smem_dv.data()), SmemLayoutdKV{}));
        Tensor sdKt = cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.epilogue.smem_dk.data()), SmemLayoutdKVt{}));
        Tensor sdVt = cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.epilogue.smem_dv.data()), SmemLayoutdKVt{}));
        auto smem_tiled_copy_dKV = make_tiled_copy_C(SmemCopyAtomdKV{}, tiled_mma);
        auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(thread_idx);

        Tensor tdVrdV_out = make_tensor_like<Element>(tdVrdV);
        flash::convert_type_out(tdVrdV, tdVrdV_out);
        Tensor tdKrdK_out = make_tensor_like<Element>(tdKrdK);
        flash::convert_type_out(tdKrdK, tdKrdK_out);
        Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(tdKrdK_out);        // ((Atom,AtomNum), MMA_M, MMA_N)
        Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(tdVrdV_out);        // ((Atom,AtomNum), MMA_M, MMA_N)
        // if (blockIdx.x == 0 && threadIdx.x == 128) { print(smem_thr_copy_dKV); print(sdK); printf("\n"); print(sdKt); printf("\n"); }
        Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(cute::conditional_return<!dKV_swapAB>(sdK, sdKt));     // ((Atom,AtomNum),PIPE_M,PIPE_N)
        Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(cute::conditional_return<!dKV_swapAB>(sdV, sdVt));     // ((Atom,AtomNum),PIPE_M,PIPE_N)

        // Make sure all WGs have finished reading K and V
        flash::named_barrier_sync(NumEpilogueThreads, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
        cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
        cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
        if constexpr (Use_TMA) {
            cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA
            cutlass::arch::NamedBarrier::arrive(NumEpilogueThreads + cutlass::NumThreadsPerWarp,
                                                cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);

            Tensor mdK = params.tma_store_dK.get_tma_tensor(params.shape_dK);
            Tensor mdV = params.tma_store_dV.get_tma_tensor(params.shape_dV);
            Tensor gdK = local_tile(mdK(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (M, K)
            Tensor gdV = local_tile(mdV(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (M, K)
            auto block_tma_dK = params.tma_store_dK.get_slice(_0{});
            auto block_tma_dV = params.tma_store_dV.get_slice(_0{});
            Tensor tdKgdK = block_tma_dK.partition_D(gdK);  // (TMA, TMA_M, TMA_K)
            Tensor tdKsdK = block_tma_dK.partition_S(sdK); // (TMA, TMA_M, TMA_K)
            Tensor tdVgdV = block_tma_dV.partition_D(gdV);  // (TMA, TMA_M, TMA_K)
            Tensor tdVsdV = block_tma_dV.partition_S(sdV); // (TMA, TMA_M, TMA_K)
            int warp_idx_sync = __shfl_sync(0xffffffff, thread_idx / cutlass::NumThreadsPerWarp, 0);
            if (warp_idx_sync == NumEpilogueThreads / cutlass::NumThreadsPerWarp - 1) {
                cutlass::arch::NamedBarrier::sync(NumEpilogueThreads + cutlass::NumThreadsPerWarp,
                                                cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
                if (cute::elect_one_sync()) {
                    cute::copy(params.tma_store_dV, tdVsdV, tdVgdV);
                    cute::copy(params.tma_store_dK, tdKsdK, tdKgdK);
                    tma_store_arrive();
                }
            }
            tma_store_wait<0>();
            // // Tell warp 0 that smem_k and smem_v are ready
            // cutlass::arch::NamedBarrier::arrive(NumEpilogueThreads + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(BwdNamedBarriers::KVEmpty) /*id*/);

        } else {
            flash::named_barrier_sync(NumEpilogueThreads, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
            static constexpr int kBlockN = get<1>(TileShape_MNK{});
            flash::SeqlenInfo<Varlen, kBlockN> seqlen_info{bidb, size<0>(params.shape_dK), params.cu_seqlens, params.seqused};
            bool const is_varlen = Varlen && params.cu_seqlens;
            Tensor mdK = make_tensor(make_gmem_ptr(params.ptr_dK), params.shape_dK, params.stride_dK)(_, _, bidh, !is_varlen ? bidb : 0);
            Tensor gdK = local_tile(cute::domain_offset(make_coord(seqlen_info.offset, _0{}), mdK), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (M, K)
            Tensor mdV = make_tensor(make_gmem_ptr(params.ptr_dV), params.shape_dV, params.stride_dV)(_, _, bidh, !is_varlen ? bidb : 0);
            Tensor gdV = local_tile(cute::domain_offset(make_coord(seqlen_info.offset, _0{}), mdV), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (M, K)

            GmemTiledCopydKV gmem_tiled_copy_dKV;
            auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(thread_idx);
            Tensor tdKVgdV = gmem_thr_copy_dKV.partition_D(gdV);
            Tensor tdKVsdV = gmem_thr_copy_dKV.partition_S(sdV); // (TMA, TMA_M, TMA_K)
            Tensor tdKVgdK = gmem_thr_copy_dKV.partition_D(gdK);
            Tensor tdKVsdK = gmem_thr_copy_dKV.partition_S(sdK); // (TMA, TMA_M, TMA_K)
            Tensor tdKVrdV = make_fragment_like(tdKVgdV);
            Tensor tdKVrdK = make_fragment_like(tdKVgdK);
            Tensor cdKV = cute::make_identity_tensor(select<1, 2>(TileShape_MNK{}));  // (BLK_N,BLK_K) -> (blk_n,blk_k)
            // Repeat the partitioning with identity layouts
            Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
            Tensor tdKVpdV = make_tensor<bool>(make_shape(size<2>(tdKVgdV)));
            Tensor tdKVpdK = make_tensor<bool>(make_shape(size<2>(tdKVgdK)));
            #pragma unroll
            for (int k = 0; k < size(tdKVpdV); ++k) { tdKVpdV(k) = get<1>(tdKVcdKV(_0{}, _0{}, k)) < get<1>(params.shape_dV); }
            #pragma unroll
            for (int k = 0; k < size(tdKVpdK); ++k) { tdKVpdK(k) = get<1>(tdKVcdKV(_0{}, _0{}, k)) < get<1>(params.shape_dK); }
            // Need to check OOB when reading from smem if kBlockN isn't evenly tiled
            static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(size<0>(GmemLayoutAtom{})) == 0;
            flash::copy</*Is_even_MN=*/EvenN, /*Is_even_K=*/true, /*Clear_OOB_MN=*/false>(
                gmem_tiled_copy_dKV, tdKVsdV, tdKVrdV, tdKVcdKV, tdKVpdV, kBlockN);
            flash::copy</*Is_even_MN=*/EvenN, /*Is_even_K=*/true, /*Clear_OOB_MN=*/false>(
                gmem_tiled_copy_dKV, tdKVsdK, tdKVrdK, tdKVcdKV, tdKVpdK, kBlockN);
            // // Tell warp 0 that smem_k and smem_v are ready
            // cutlass::arch::fence_view_async_shared(); // ensure smem reads are done before next TMA to smem_k/v
            // flash::named_barrier_arrive(NumEpilogueThreads + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(BwdNamedBarriers::KVEmpty) /*id*/);
            // Construct identity layout for gdKV
            // Clear_OOB_K must be false since we don't want to write zeros to gmem
            flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
                gmem_tiled_copy_dKV, tdKVrdV, tdKVgdV, tdKVcdKV, tdKVpdV, std::min(seqlen_info.seqlen - n_block * kBlockN, kBlockN)
            );
            flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
                gmem_tiled_copy_dKV, tdKVrdK, tdKVgdK, tdKVcdKV, tdKVpdK, std::min(seqlen_info.seqlen - n_block * kBlockN, kBlockN)
            );
        }
    }

    CUTLASS_DEVICE void
    store_tail() {
        // if constexpr (Use_TMA) { tma_store_wait<0>(); }
    }

    // Write 0 to dK and dV
    CUTLASS_DEVICE void
    store_zero(
         Params const& params,
         int thread_idx,
         cute::tuple<int32_t, int32_t, int32_t> const& block_coord
         ) {
        static constexpr int kBlockN = get<1>(TileShape_MNK{});
        auto [n_block, bidh, bidb] = block_coord;
        flash::SeqlenInfo<Varlen, kBlockN> seqlen_info{bidb, size<0>(params.shape_dK), params.cu_seqlens, params.seqused};
        bool const is_varlen = Varlen && params.cu_seqlens;
        Tensor mdK = make_tensor(make_gmem_ptr(params.ptr_dK), params.shape_dK, params.stride_dK)(_, _, bidh, !is_varlen ? bidb : 0);
        Tensor gdK = local_tile(cute::domain_offset(make_coord(seqlen_info.offset, _0{}), mdK), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (M, K)
        Tensor mdV = make_tensor(make_gmem_ptr(params.ptr_dV), params.shape_dV, params.stride_dV)(_, _, bidh, !is_varlen ? bidb : 0);
        Tensor gdV = local_tile(cute::domain_offset(make_coord(seqlen_info.offset, _0{}), mdV), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (M, K)

        GmemTiledCopydKV gmem_tiled_copy_dKV;
        auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(thread_idx);
        Tensor tdKVgdK = gmem_thr_copy_dKV.partition_D(gdK);
        Tensor tdKVgdV = gmem_thr_copy_dKV.partition_D(gdV);
        Tensor tdKVrdKV = make_fragment_like(tdKVgdK);
        clear(tdKVrdKV);
        // Construct identity layout for gdKV
        Tensor cdKV = cute::make_identity_tensor(select<1, 2>(TileShape_MNK{}));  // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
        Tensor tdKVpdK = make_tensor<bool>(make_shape(size<2>(tdKVgdK)));
        Tensor tdKVpdV = make_tensor<bool>(make_shape(size<2>(tdKVgdV)));
        #pragma unroll
        for (int k = 0; k < size(tdKVpdK); ++k) { tdKVpdK(k) = get<1>(tdKVcdKV(_0{}, _0{}, k)) < get<1>(params.shape_dK); }
        #pragma unroll
        for (int k = 0; k < size(tdKVpdV); ++k) { tdKVpdV(k) = get<1>(tdKVcdKV(_0{}, _0{}, k)) < get<1>(params.shape_dV); }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_dKV, tdKVrdKV, tdKVgdK, tdKVcdKV, tdKVpdK, seqlen_info.seqlen - n_block * kBlockN
        );
        flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_dKV, tdKVrdKV, tdKVgdV, tdKVcdKV, tdKVpdV, seqlen_info.seqlen - n_block * kBlockN
        );
    }

};

template <class TileShape_MNK_, class ElementAccum, class ArchTag_,
          int NumEpilogueThreads_, bool Varlen_, bool Deterministic>
struct CollectiveEpilogueBwdGQA {

    using TileShape_MNK = TileShape_MNK_;
    using Element = ElementAccum;
    using ArchTag = ArchTag_;
    static constexpr int NumEpilogueThreads = NumEpilogueThreads_;
    static constexpr bool Varlen = Varlen_;
    static constexpr bool Use_TMA = ArchTag::kMinComputeCapability >= 90;

    static_assert(ArchTag::kMinComputeCapability >= 80);

    static constexpr int kBlockN = get<1>(TileShape_MNK{});
    static constexpr int kHeadDim = get<2>(TileShape_MNK{});
    static_assert(NumEpilogueThreads % cutlass::NumThreadsPerWarp == 0, "NumEpilogueThreads must be a multiple of NumThreadsPerWarp");
    static constexpr int NumWarpGroups = NumEpilogueThreads / cutlass::NumThreadsPerWarpGroup;
    // Thread layout, 256 or 384 threads per row
    // We split into NumWarpGroups so that we can use the same postprocessing kernel as dQ
    using R2SLayoutAtomdKVaccum = Layout<Shape<Int<cutlass::NumThreadsPerWarpGroup>, Int<NumWarpGroups>>>;
    using R2STiledCopydKVaccum = decltype(make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{}, R2SLayoutAtomdKVaccum{},
                                                         Layout<Shape < _4>>{}));  // Val layout, 4 vals per store
    // For Sm80
    using R2GLayoutAtomdKVaccum = Layout<Shape<Int<NumEpilogueThreads>>>;
    using R2GTiledCopydKVaccum = decltype(make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{}, R2GLayoutAtomdKVaccum{},
                                                         Layout<Shape < _1>>{}));  // Val layout, 1 vals per store

    using SmemLayoutdKVaccum = Layout<Shape<Int<kBlockN * kHeadDim / NumWarpGroups>, Int<NumWarpGroups>>>;
    using SmemLayoutdKVaccumFlat = Layout<Shape<Int<kBlockN * kHeadDim>>>;

    // Strangely without this SmemAlignment, the total smem for hdim 128 (80 x 128) is 228KB even though we
    // only need 227KB. We use the same alignment as the non-GQA epilogue to avoid this issue.
    static constexpr int SmemAlignment = kHeadDim % 64 == 0 ? 1024 : (kHeadDim % 32 == 0 ? 512 : 256);
    struct TensorStorageTMA : cute::aligned_struct<SmemAlignment> {
        cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutdKVaccum>, SmemAlignment> smem_dkv;
    };
    struct TensorStorageSTG {
        cute::array<ElementAccum, 0> smem_dkv;
    };
    using TensorStorage = std::conditional_t<Use_TMA, TensorStorageTMA, TensorStorageSTG>;

    using ShapedKV = cute::Shape<int32_t, int32_t, int32_t>;  // (seqlen_k_rounded * d, head, batch)
    using StridedKV = cute::Stride<_1, int64_t, int64_t>;

    // Host side kernel arguments
    struct Arguments {
        ElementAccum* ptr_dKaccum;
        ShapedKV const shape_dKaccum;
        StridedKV const stride_dKaccum;
        ElementAccum* ptr_dVaccum;
        ShapedKV const shape_dVaccum;
        StridedKV const stride_dVaccum;
        int num_heads_q;
        int* dk_semaphore;
        int* dv_semaphore;
        int const* cu_seqlens;
        int const* seqused;
    };

    // Device side kernel params
    struct Params {
        ElementAccum* ptr_dKaccum;
        ShapedKV const shape_dKaccum;
        StridedKV const stride_dKaccum;
        ElementAccum* ptr_dVaccum;
        ShapedKV const shape_dVaccum;
        StridedKV const stride_dVaccum;
        cutlass::FastDivmod qhead_per_khead_divmod;
        int* dk_semaphore;
        int* dv_semaphore;
        int const* cu_seqlens = nullptr;
        int const* seqused = nullptr;
    };

    static Params
    to_underlying_arguments(Arguments const& args) {
        if constexpr (Deterministic) {
            assert(args.dk_semaphore != nullptr);
            assert(args.dv_semaphore != nullptr);
        }
        return {args.ptr_dKaccum, args.shape_dKaccum, args.stride_dKaccum, args.ptr_dVaccum, args.shape_dVaccum, args.stride_dVaccum,
                cutlass::FastDivmod(cute::ceil_div(args.num_heads_q, get<1>(args.shape_dKaccum))),
                args.dk_semaphore, args.dv_semaphore,
                args.cu_seqlens, args.seqused};
    }

    /// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
    CUTLASS_DEVICE
    static void prefetch_tma_descriptors(Params const& params) {
    }

    template <typename SharedStorage, typename FrgTensorO, typename TiledMma>
    CUTLASS_DEVICE void
    store(Params const& params,
          FrgTensorO const& tdKrdK,
          FrgTensorO const& tdVrdV,
          SharedStorage& shared_storage,
          TiledMma tiled_mma,
          int thread_idx,
          cute::tuple<int32_t, int32_t, int32_t> const& block_coord
          ) {

        auto [n_block, bidh, bidb] = block_coord;
        int bidh_idx_in_group;
        int bidh_kv = params.qhead_per_khead_divmod.divmod(bidh_idx_in_group, bidh);
        Tensor sdKV = make_tensor(make_smem_ptr(shared_storage.tensors.epilogue.smem_dkv.data()), SmemLayoutdKVaccum{});
        Tensor sdKV_flat = make_tensor(make_smem_ptr(shared_storage.tensors.epilogue.smem_dkv.data()), SmemLayoutdKVaccumFlat{});
        static constexpr int dKV_TMA_num_bytes = CUTE_STATIC_V(size(sdKV_flat)) * sizeof(ElementAccum);

        flash::SeqlenInfo<Varlen, kBlockN> seqlen_info{bidb, size<0>(params.shape_dKaccum), params.cu_seqlens, params.seqused};
        bool const is_varlen = Varlen && params.cu_seqlens;
        Tensor mdKaccum = make_tensor(make_gmem_ptr(params.ptr_dKaccum), params.shape_dKaccum, params.stride_dKaccum)(_, bidh_kv, !is_varlen ? bidb : 0);
        Tensor mdVaccum = make_tensor(make_gmem_ptr(params.ptr_dVaccum), params.shape_dVaccum, params.stride_dVaccum)(_, bidh_kv, !is_varlen ? bidb : 0);
        Tensor gdKaccum = local_tile(domain_offset(make_coord(seqlen_info.offset_padded * kHeadDim), mdKaccum), Shape<Int<kBlockN * kHeadDim>>{}, make_coord(n_block));  // (M * K)
        Tensor gdVaccum = local_tile(domain_offset(make_coord(seqlen_info.offset_padded * kHeadDim), mdVaccum), Shape<Int<kBlockN * kHeadDim>>{}, make_coord(n_block));  // (M * K)

        R2STiledCopydKVaccum r2s_tiled_copy_dKVaccum;
        auto r2s_thr_copy_dKVaccum = r2s_tiled_copy_dKVaccum.get_thread_slice(thread_idx);
        Tensor tdKVsdKVaccum = r2s_thr_copy_dKVaccum.partition_D(sdKV);

        // Only used if !Use_TMA
        R2GTiledCopydKVaccum r2g_tiled_copy_dKVaccum;
        auto r2g_thr_copy_dKVaccum = r2g_tiled_copy_dKVaccum.get_thread_slice(thread_idx);

        // Make sure all WGs have finished reading K and V, otherwise we get racy dQ
        // because smem_q could be changed.
        flash::named_barrier_sync(NumEpilogueThreads, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
        if constexpr (Use_TMA) {
            Tensor taccdKVrdV = r2s_thr_copy_dKVaccum.retile_S(tdVrdV); // ((Atom,AtomNum), MMA_M, MMA_N)
            cute::copy(r2s_tiled_copy_dKVaccum, taccdKVrdV, tdKVsdKVaccum);
        }

        // int const num_batch = params.num_batch;
        int const num_batch = get<2>(params.shape_dKaccum);
        int const num_head_kv = get<1>(params.shape_dKaccum);
        int *lock_ptr = !Deterministic ? nullptr : params.dv_semaphore + bidb * num_head_kv + bidh_kv;
        using Barrier = cutlass::GenericBarrier<cutlass::detail::SyncwarpSync>;

        // if (thread_idx == 0) { printf("blockIdx.x = %d, blockIdx.y = %d, blockIdx.z = %d, bidb = %d, bidh_kv = %d, lock_ptr = %p, dv_semaphore = %p, num_batch = %d, num_head_kv = %d, n_block = %d, bihd_idx_in_group = %d\n", blockIdx.x, blockIdx.y, blockIdx.z, bidb, bidh_kv, lock_ptr, params.dv_semaphore, num_batch, num_head_kv, n_block, bidh_idx_in_group);}

        if constexpr (Deterministic) {
            Barrier::wait_eq(lock_ptr, thread_idx, n_block * num_batch * num_head_kv, bidh_idx_in_group);
        }
        // if (thread_idx == 0) { printf("After barrier blockIdx.x = %d, blockIdx.y = %d, blockIdx.z = %d, bidb = %d, bidh_kv = %d, lock_ptr = %p, dv_semaphore = %p\n", blockIdx.x, blockIdx.y, blockIdx.z, bidb, bidh_kv, lock_ptr, params.dv_semaphore);}
        if constexpr (Use_TMA) {
            cutlass::arch::fence_view_async_shared();
            cutlass::arch::NamedBarrier::sync(NumEpilogueThreads, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
            if (thread_idx == 0) {
                SM90_BULK_REDUCE_ADD::copy(raw_pointer_cast(sdKV_flat.data()), raw_pointer_cast(gdVaccum.data()), dKV_TMA_num_bytes, static_cast<uint64_t>(TMA::CacheHintSm90::EVICT_LAST));
                tma_store_arrive();
                tma_store_wait<0>();
            }
        } else {
            Tensor tdVrdV_atomic = r2g_thr_copy_dKVaccum.retile_S(tdVrdV);
            Tensor tdVgdV_atomic = r2g_thr_copy_dKVaccum.partition_D(gdVaccum);
            static_assert(CUTE_STATIC_V(size(tdVrdV_atomic)) == CUTE_STATIC_V(size(tdVgdV_atomic)));
            #pragma unroll
            for (int i = 0; i < size(tdVrdV_atomic); ++i) { atomicAdd(&tdVgdV_atomic(i), tdVrdV_atomic(i)); }
        }
        if constexpr (Deterministic) {
            Barrier::arrive_inc(lock_ptr, thread_idx, n_block * num_batch * num_head_kv);
        }

        if constexpr (Use_TMA) {
            cutlass::arch::NamedBarrier::sync(NumEpilogueThreads, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
            Tensor taccdKVrdK = r2s_thr_copy_dKVaccum.retile_S(tdKrdK); // ((Atom,AtomNum), MMA_M, MMA_N)
            cute::copy(r2s_tiled_copy_dKVaccum, taccdKVrdK, tdKVsdKVaccum);
        }
        lock_ptr = !Deterministic ? nullptr : params.dk_semaphore + bidb * num_head_kv + bidh_kv;
        // if (thread_idx == 0) { printf("blockIdx.x = %d, blockIdx.y = %d, blockIdx.z = %d, bidb = %d, bidh_kv = %d, lock_ptr = %p, dk_semaphore = %p, num_batch = %d, num_head_kv = %d, n_block = %d, bihd_idx_in_group = %d\n", blockIdx.x, blockIdx.y, blockIdx.z, bidb, bidh_kv, lock_ptr, params.dk_semaphore, num_batch, num_head_kv, n_block, bidh_idx_in_group);}

        if constexpr (Deterministic) {
            Barrier::wait_eq(lock_ptr, thread_idx, n_block * num_batch * num_head_kv, bidh_idx_in_group);
        }
        // if (thread_idx == 0) { printf("After barrier blockIdx.x = %d, blockIdx.y = %d, blockIdx.z = %d, bidb = %d, bidh_kv = %d, lock_ptr = %p, dk_semaphore = %p\n", blockIdx.x, blockIdx.y, blockIdx.z, bidb, bidh_kv, lock_ptr, params.dk_semaphore);}
        if constexpr (Use_TMA) {
            cutlass::arch::fence_view_async_shared();
            cutlass::arch::NamedBarrier::sync(NumEpilogueThreads, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
            if (thread_idx == 0) {
                SM90_BULK_REDUCE_ADD::copy(raw_pointer_cast(sdKV_flat.data()), raw_pointer_cast(gdKaccum.data()), dKV_TMA_num_bytes, static_cast<uint64_t>(TMA::CacheHintSm90::EVICT_LAST));
                tma_store_arrive();
                tma_store_wait<0>();
            }
        } else {
            Tensor tdKrdK_atomic = r2g_thr_copy_dKVaccum.retile_S(tdKrdK);
            Tensor tdKgdK_atomic = r2g_thr_copy_dKVaccum.partition_D(gdKaccum);
            static_assert(CUTE_STATIC_V(size(tdKrdK_atomic)) == CUTE_STATIC_V(size(tdKgdK_atomic)));
            #pragma unroll
            for (int i = 0; i < size(tdKrdK_atomic); ++i) { atomicAdd(&tdKgdK_atomic(i), tdKrdK_atomic(i)); }
        }
        if constexpr (Deterministic) {
            Barrier::arrive_inc(lock_ptr, thread_idx, n_block * num_batch * num_head_kv);
        }
        // // Tell warp 0 that smem_k and smem_v are ready
        // flash::named_barrier_arrive(NumEpilogueThreads + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(BwdNamedBarriers::KVEmpty) /*id*/);
    }

    CUTLASS_DEVICE void
    store_tail() {
    }

    // Write 0 to dK and dV
    CUTLASS_DEVICE void
    store_zero(
         Params const& params,
         int thread_idx,
         cute::tuple<int32_t, int32_t, int32_t> const& block_coord
         ) {
        // Don't need to do anything since dKaccum and dVaccum are already zero-initialized
    }

};

} // namespace flash