kernel
File size: 6,842 Bytes
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/******************************************************************************
 * Copyright (c) 2024, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/kernel_hardware_info.h>

#include "utils.h"

namespace flash {

using namespace cute;

template <class CollectiveMainloop_, class CollectiveEpilogue_, class TileScheduler_>
class FlashAttnBwdSm80 {

public:

    // Type Aliases
    static constexpr bool Is_causal = CollectiveMainloop_::Is_causal;
    static constexpr bool Is_local = CollectiveMainloop_::Is_local;
    static_assert(CollectiveMainloop_::Varlen == CollectiveEpilogue_::Varlen);
    static constexpr bool Varlen = CollectiveMainloop_::Varlen;

    // Mainloop derived types
    using CollectiveMainloop = CollectiveMainloop_;
    using TileShape_MNK = typename CollectiveMainloop::TileShape_MNK;
    using TiledMmaSdP = typename CollectiveMainloop::TiledMmaSdP;
    using TiledMmadKV = typename CollectiveMainloop::TiledMmadKV;
    using ArchTag = typename CollectiveMainloop::ArchTag;
    using MainloopArguments = typename CollectiveMainloop::Arguments;
    using MainloopParams = typename CollectiveMainloop::Params;
    static constexpr bool dKV_swapAB = CollectiveMainloop::dKV_swapAB;

    // Epilogue derived types
    using CollectiveEpilogue = CollectiveEpilogue_;
    using EpilogueArguments = typename CollectiveEpilogue::Arguments;
    using EpilogueParams = typename CollectiveEpilogue::Params;

    static_assert(ArchTag::kMinComputeCapability >= 80);

    using TileScheduler = TileScheduler_;
    using TileSchedulerArguments = typename flash::TileSchedulerArguments;
    using TileSchedulerParams = typename TileScheduler::Params;

    static constexpr uint32_t NumThreads = CUTE_STATIC_V(size(TiledMmaSdP{}));
    static constexpr uint32_t MaxThreadsPerBlock = CUTE_STATIC_V(size(TiledMmaSdP{}));
    static constexpr uint32_t MinBlocksPerMultiprocessor = 1;

    // Kernel level shared memory storage
    struct SharedStorage {
        struct TensorStorage : cute::aligned_struct<128> {
            union {
                typename CollectiveMainloop::TensorStorage mainloop;
                typename CollectiveEpilogue::TensorStorage epilogue;
            };
        } tensors;

        alignas(16) typename TileScheduler::SharedStorage smem_scheduler;

    };

    static constexpr int SharedStorageSize = sizeof(SharedStorage);

    // Device side arguments
    struct Arguments {
        MainloopArguments mainloop{};
        EpilogueArguments epilogue{};
        cutlass::KernelHardwareInfo hw_info{};
        TileSchedulerArguments scheduler{};
    };

    // Kernel entry point API
    struct Params {
        MainloopParams mainloop{};
        EpilogueParams epilogue{};
        cutlass::KernelHardwareInfo hw_info{};
        TileSchedulerParams scheduler{};
    };

    //
    // Methods
    //

    // Convert to underlying arguments. In this case, a simple copy for the aliased type.
    static
    Params
    to_underlying_arguments(Arguments const& args) {
        CUTLASS_TRACE_HOST("to_underlying_arguments():");

        // Get SM count if needed, otherwise use user supplied SM count
        int sm_count = args.hw_info.sm_count;
        if (sm_count <= 0) {
            CUTLASS_TRACE_HOST("  WARNING: Arguments do not include a valid SM count.\n"
                "  For optimal performance, populate the arguments KernelHardwareInfo struct with the SM count.");
            sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(args.hw_info.device_id);
        }

        CUTLASS_TRACE_HOST("to_underlying_arguments(): Setting persistent grid SM count to " << sm_count);

        cutlass::KernelHardwareInfo hw_info{args.hw_info.device_id, sm_count};
        return {
            CollectiveMainloop::to_underlying_arguments(args.mainloop),
            CollectiveEpilogue::to_underlying_arguments(args.epilogue),
            hw_info,
            TileScheduler::to_underlying_arguments(args.scheduler)
        };
    }

    // Computes the kernel launch grid shape based on runtime parameters
    static dim3
    get_grid_shape(Params const& params) {
        return TileScheduler::get_grid_shape(params.scheduler, params.hw_info.sm_count);
    }

    static dim3
    get_block_shape() {
        return dim3(MaxThreadsPerBlock, 1, 1);
    }

    CUTLASS_DEVICE
    void
    operator()(Params const& params, char* smem_buf) {

        static constexpr int kBlockM = get<0>(TileShape_MNK{});
        static constexpr int kBlockN = get<1>(TileShape_MNK{});

        SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(smem_buf);

        CollectiveMainloop mainloop;
        CollectiveEpilogue epilogue;

        TileScheduler scheduler(reinterpret_cast<typename TileScheduler::SharedStorage*>(&shared_storage.smem_scheduler));
        // Initialize matmul objects.
        TiledMmadKV tiled_mma_dKV;

        scheduler.init_consumer();

        int warp_idx = cutlass::canonical_warp_idx_sync();
        CUTLASS_PRAGMA_NO_UNROLL
        for (auto work_tile_info = warp_idx == 0 ? scheduler.template get_initial_work</*IsProducerWarp=*/true>(params.scheduler) : scheduler.template get_initial_work</*IsProducerWarp=*/false>(params.scheduler);
             work_tile_info.is_valid(params.scheduler);
             work_tile_info = warp_idx == 0 ? scheduler.template get_next_work</*IsProducerWarp=*/true>(params.scheduler, work_tile_info) : scheduler.template get_next_work</*IsProducerWarp=*/false>(params.scheduler, work_tile_info)) {

            auto block_coord_ = work_tile_info.get_block_coord(params.scheduler);
            auto [n_block, bidh, bidb, _ /*split_idx*/] = block_coord_;
            cute::tuple<int32_t, int32_t, int32_t> block_coord = {n_block, bidh, bidb};

            // dK and dV output accumulator.
            Tensor tdKrdK = partition_fragment_C(tiled_mma_dKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));
            Tensor tdVrdV = partition_fragment_C(tiled_mma_dKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));
            bool tile_valid = mainloop.mma(params.mainloop, tdKrdK, tdVrdV, threadIdx.x,
                                           block_coord, shared_storage);
            scheduler.prefetch_next_work(params.scheduler, work_tile_info);
            if (tile_valid) {
                epilogue.store(params.epilogue, tdKrdK, tdVrdV, shared_storage, tiled_mma_dKV,
                               threadIdx.x, block_coord);
            } else {
                epilogue.store_zero(params.epilogue, threadIdx.x, block_coord);
            }
        }

    }

};

} // namespace flash