kernel
File size: 13,666 Bytes
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

#include <cutlass/cutlass.h>
#include <cutlass/arch/reg_reconfig.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include <cutlass/kernel_hardware_info.h>
#include "cutlass/pipeline/pipeline.hpp"

#include "utils.h"

namespace flash {

using namespace cute;

template <class CollectiveMainloop_, class CollectiveEpilogue_, class TileScheduler_>
class FlashAttnBwdSm90 {

public:

    // Type Aliases
    static constexpr bool Is_causal = CollectiveMainloop_::Is_causal;
    static constexpr bool Is_local = CollectiveMainloop_::Is_local;
    static_assert(CollectiveMainloop_::Varlen == CollectiveEpilogue_::Varlen);
    static constexpr bool Varlen = CollectiveMainloop_::Varlen;

    // Mainloop derived types
    using CollectiveMainloop = CollectiveMainloop_;
    using TileShape_MNK = typename CollectiveMainloop::TileShape_MNK;
    using TiledMmaSdP = typename CollectiveMainloop::TiledMmaSdP;
    using TiledMmadKV = typename CollectiveMainloop::TiledMmadKV;
    using ArchTag = typename CollectiveMainloop::ArchTag;
    using ClusterShape = typename CollectiveMainloop::ClusterShape;
    using MainloopArguments = typename CollectiveMainloop::Arguments;
    using MainloopParams = typename CollectiveMainloop::Params;
    static constexpr bool dKV_swapAB = CollectiveMainloop::dKV_swapAB;

    // Epilogue derived types
    using CollectiveEpilogue = CollectiveEpilogue_;
    using EpilogueArguments = typename CollectiveEpilogue::Arguments;
    using EpilogueParams = typename CollectiveEpilogue::Params;

    static_assert(ArchTag::kMinComputeCapability >= 90);

    using TileScheduler = TileScheduler_;
    using TileSchedulerArguments = typename flash::TileSchedulerArguments;
    using TileSchedulerParams = typename TileScheduler::Params;

    static constexpr uint32_t NumLoadWarpGroups = 1;
    static constexpr uint32_t NumMmaWarpGroups = CUTE_STATIC_V(size(TiledMmaSdP{})) / cutlass::NumThreadsPerWarpGroup;
    static constexpr uint32_t MaxThreadsPerBlock = CUTE_STATIC_V(size(TiledMmaSdP{})) + (NumLoadWarpGroups * cutlass::NumThreadsPerWarpGroup);
    static constexpr uint32_t MinBlocksPerMultiprocessor = 1;
    static_assert(NumMmaWarpGroups == 2 || NumMmaWarpGroups == 3);

    /// Register requirement for Load and Math WGs
    static constexpr uint32_t LoadRegisterRequirement = NumMmaWarpGroups == 2 ? 24 : 32;
    static constexpr uint32_t MmaRegisterRequirement = NumMmaWarpGroups == 2 ? 240 : 160;
    // If you want to print from the producer warp, you'd need to increase the number of registers
    // Otherwise you'll get CUDA error.
    // static constexpr uint32_t LoadRegisterRequirement = 40;
    // static constexpr uint32_t MmaRegisterRequirement = NumMmaWarpGroups == 2 ? 232 : 152;

    // Kernel level shared memory storage
    struct SharedStorage {
        struct TensorStorage : cute::aligned_struct<128> {
            union {
                typename CollectiveMainloop::TensorStorage mainloop;
                typename CollectiveEpilogue::TensorStorage epilogue;
            };
        } tensors;

        struct PipelineStorage : cute::aligned_struct<16> {
            alignas(16) cutlass::arch::ClusterTransactionBarrier barrier_KV;
            alignas(16) typename CollectiveMainloop::MainloopPipeline::SharedStorage pipeline_q;
            alignas(16) typename CollectiveMainloop::MainloopPipeline_dO::SharedStorage pipeline_do;
            alignas(16) typename TileScheduler::SharedStorage smem_scheduler;
        } pipelines;

    };

    static constexpr int SharedStorageSize = sizeof(SharedStorage);

    // Device side arguments
    struct Arguments {
        MainloopArguments mainloop{};
        EpilogueArguments epilogue{};
        cutlass::KernelHardwareInfo hw_info{};
        TileSchedulerArguments scheduler{};
    };

    // Kernel entry point API
    struct Params {
        MainloopParams mainloop{};
        EpilogueParams epilogue{};
        cutlass::KernelHardwareInfo hw_info{};
        TileSchedulerParams scheduler{};
    };

    //
    // Methods
    //

    // Convert to underlying arguments. In this case, a simple copy for the aliased type.
    static
    Params
    to_underlying_arguments(Arguments const& args) {
        CUTLASS_TRACE_HOST("to_underlying_arguments():");

        // Get SM count if needed, otherwise use user supplied SM count
        int sm_count = args.hw_info.sm_count;
        if (sm_count <= 0) {
            CUTLASS_TRACE_HOST("  WARNING: Arguments do not include a valid SM count.\n"
                "  For optimal performance, populate the arguments KernelHardwareInfo struct with the SM count.");
            sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(args.hw_info.device_id);
        }

        CUTLASS_TRACE_HOST("to_underlying_arguments(): Setting persistent grid SM count to " << sm_count);

        cutlass::KernelHardwareInfo hw_info{args.hw_info.device_id, sm_count};
        return {
            CollectiveMainloop::to_underlying_arguments(args.mainloop),
            CollectiveEpilogue::to_underlying_arguments(args.epilogue),
            hw_info,
            TileScheduler::to_underlying_arguments(args.scheduler)
        };
    }

    // Computes the kernel launch grid shape based on runtime parameters
    static dim3
    get_grid_shape(Params const& params) {
        return TileScheduler::get_grid_shape(params.scheduler, params.hw_info.sm_count);
    }

    static dim3
    get_block_shape() {
        return dim3(MaxThreadsPerBlock, 1, 1);
    }

    CUTLASS_DEVICE
    void
    operator()(Params const& params, char* smem_buf) {

        static constexpr int NumMmaThreads = NumMmaWarpGroups * cutlass::NumThreadsPerWarpGroup;
        static constexpr int NumCopyThreads = NumLoadWarpGroups * cutlass::NumThreadsPerWarpGroup;
        static constexpr int kBlockM = get<0>(TileShape_MNK{});
        static constexpr int kBlockN = get<1>(TileShape_MNK{});

        using MainloopPipeline = typename CollectiveMainloop::MainloopPipeline;
        using PipelineParams = typename MainloopPipeline::Params;
        using PipelineState = typename MainloopPipeline::PipelineState;
        using MainloopPipeline_dO = typename CollectiveMainloop::MainloopPipeline_dO;
        using PipelineParams_dO = typename MainloopPipeline_dO::Params;
        using PipelineState_dO = typename MainloopPipeline_dO::PipelineState;
        static constexpr bool Q_dO_same_stages = std::is_same_v<MainloopPipeline, MainloopPipeline_dO>;

        SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(smem_buf);

        int const lane_predicate = cute::elect_one_sync();
        int const warp_idx = cutlass::canonical_warp_idx_sync();

        // Issue Tma Descriptor Prefetch from a single thread
        if (warp_idx == 0 && lane_predicate) {
            CollectiveMainloop::prefetch_tma_descriptors(params.mainloop);
            CollectiveEpilogue::prefetch_tma_descriptors(params.epilogue);
        }

        // Obtain warp index
        int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;

        PipelineParams pipeline_params;
        pipeline_params.transaction_bytes = CollectiveMainloop::TmaTransactionBytesQ + CollectiveMainloop::TmaTransactionBytesLSE;
        int warp_group_idx = cutlass::canonical_warp_group_idx();
        pipeline_params.role = warp_group_idx == 0
            ? MainloopPipeline::ThreadCategory::Producer
            : MainloopPipeline::ThreadCategory::Consumer;
        pipeline_params.is_leader = warp_group_thread_idx == 0;
        pipeline_params.num_consumers = NumMmaThreads;

        if (warp_idx == 0 && lane_predicate) {
            shared_storage.pipelines.barrier_KV.init(1 /*numThreads*/);
        }
        // We're counting on pipeline_q to call cutlass::arch::fence_barrier_init();
        MainloopPipeline pipeline_q(shared_storage.pipelines.pipeline_q, pipeline_params, ClusterShape{});
        auto role_dO = warp_group_idx == 0
            ? MainloopPipeline_dO::ThreadCategory::Producer
            : MainloopPipeline_dO::ThreadCategory::Consumer;
        PipelineParams_dO pipeline_params_dO {pipeline_params.transaction_bytes, role_dO, pipeline_params.is_leader, pipeline_params.num_consumers};
        MainloopPipeline_dO pipeline_do(shared_storage.pipelines.pipeline_do, cute::conditional_return<Q_dO_same_stages>(pipeline_params, pipeline_params_dO), ClusterShape{});

        CollectiveMainloop mainloop;
        CollectiveEpilogue epilogue;

        // We need this to guarantee that the Pipeline init is visible to all producers and consumer blocks in the Cluster
        if constexpr (size(ClusterShape{}) > 1) {
            cute::cluster_arrive_relaxed();
            cute::cluster_wait();
        } else {
            __syncthreads();
        }

        TileScheduler scheduler(reinterpret_cast<typename TileScheduler::SharedStorage*>(&shared_storage.pipelines.smem_scheduler));

        if (warp_group_idx == 0) {  // Producer
            cutlass::arch::warpgroup_reg_dealloc<LoadRegisterRequirement>();

            int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
            if (warp_idx_in_warpgroup == 0) {  // Load K, V, and do TMA on Q and dO
                PipelineState smem_pipe_write = cutlass::make_producer_start_state<MainloopPipeline>();
                PipelineState_dO smem_pipe_write_do = cutlass::make_producer_start_state<MainloopPipeline_dO>();
                for (auto work_tile_info = scheduler.template get_initial_work</*IsProducerWarp=*/true>(params.scheduler);
                     work_tile_info.is_valid(params.scheduler);
                     work_tile_info = scheduler.template get_next_work</*IsProducerWarp=*/true>(params.scheduler, work_tile_info)) {
                    auto block_coord_ = work_tile_info.get_block_coord(params.scheduler);
                    auto [n_block, bidh, bidb, _ /*split_idx*/] = block_coord_;
                    cute::tuple<int32_t, int32_t, int32_t> block_coord = {n_block, bidh, bidb};
                    auto scheduler_prefetch = [&scheduler, &params, &work_tile_info]() {
                        scheduler.prefetch_next_work(params.scheduler, work_tile_info);
                    };
                    mainloop.load(params.mainloop, pipeline_q, pipeline_do, smem_pipe_write,
                                  smem_pipe_write_do, shared_storage, scheduler_prefetch, block_coord);
                }
                mainloop.load_tail(pipeline_q, pipeline_do, smem_pipe_write, smem_pipe_write_do);
            } else if (warp_idx_in_warpgroup == 1) {
                for (auto work_tile_info = scheduler.template get_initial_work</*IsProducerWarp=*/false>(params.scheduler);
                     work_tile_info.is_valid(params.scheduler);
                     work_tile_info = scheduler.template get_next_work</*IsProducerWarp=*/false>(params.scheduler, work_tile_info)) {
                    auto block_coord_ = work_tile_info.get_block_coord(params.scheduler);
                    auto [n_block, bidh, bidb, _ /*split_idx*/] = block_coord_;
                    cute::tuple<int32_t, int32_t, int32_t> block_coord = {n_block, bidh, bidb};
                    mainloop.store_dq(params.mainloop, shared_storage, block_coord);
                }
            }
        } else {  // Consumer
            cutlass::arch::warpgroup_reg_alloc<MmaRegisterRequirement>();
            // Initialize matmul objects.
            TiledMmadKV tiled_mma_dKV;

            PipelineState smem_pipe_read;
            PipelineState_dO smem_pipe_read_do;

            mainloop.mma_init();
            scheduler.init_consumer();

            int work_idx = 0;
            CUTLASS_PRAGMA_NO_UNROLL
            for (auto work_tile_info = scheduler.template get_initial_work</*IsProducerWarp=*/false>(params.scheduler);
                 work_tile_info.is_valid(params.scheduler);
                 work_tile_info = scheduler.template get_next_work</*IsProducerWarp=*/false>(params.scheduler, work_tile_info)) {
                auto block_coord_ = work_tile_info.get_block_coord(params.scheduler);
                auto [n_block, bidh, bidb, _ /*split_idx*/] = block_coord_;
                cute::tuple<int32_t, int32_t, int32_t> block_coord = {n_block, bidh, bidb};

                // dK and dV output accumulator.
                Tensor tdKrdK = partition_fragment_C(tiled_mma_dKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));
                Tensor tdVrdV = partition_fragment_C(tiled_mma_dKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));
                bool tile_valid = mainloop.mma(
                    params.mainloop, pipeline_q, pipeline_do, smem_pipe_read, smem_pipe_read_do,
                    tdKrdK, tdVrdV, threadIdx.x - NumCopyThreads, work_idx, block_coord, shared_storage);
                if (tile_valid) {
                    epilogue.store(params.epilogue, tdKrdK, tdVrdV, shared_storage, tiled_mma_dKV,
                                   threadIdx.x - NumCopyThreads, block_coord);
                } else {
                    epilogue.store_zero(params.epilogue, threadIdx.x - NumCopyThreads, block_coord);
                }

            }
            epilogue.store_tail();
        }

    }

};

} // namespace flash