File size: 13,666 Bytes
eb8ddce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include "cute/tensor.hpp"
#include <cutlass/cutlass.h>
#include <cutlass/arch/reg_reconfig.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include <cutlass/kernel_hardware_info.h>
#include "cutlass/pipeline/pipeline.hpp"
#include "utils.h"
namespace flash {
using namespace cute;
template <class CollectiveMainloop_, class CollectiveEpilogue_, class TileScheduler_>
class FlashAttnBwdSm90 {
public:
// Type Aliases
static constexpr bool Is_causal = CollectiveMainloop_::Is_causal;
static constexpr bool Is_local = CollectiveMainloop_::Is_local;
static_assert(CollectiveMainloop_::Varlen == CollectiveEpilogue_::Varlen);
static constexpr bool Varlen = CollectiveMainloop_::Varlen;
// Mainloop derived types
using CollectiveMainloop = CollectiveMainloop_;
using TileShape_MNK = typename CollectiveMainloop::TileShape_MNK;
using TiledMmaSdP = typename CollectiveMainloop::TiledMmaSdP;
using TiledMmadKV = typename CollectiveMainloop::TiledMmadKV;
using ArchTag = typename CollectiveMainloop::ArchTag;
using ClusterShape = typename CollectiveMainloop::ClusterShape;
using MainloopArguments = typename CollectiveMainloop::Arguments;
using MainloopParams = typename CollectiveMainloop::Params;
static constexpr bool dKV_swapAB = CollectiveMainloop::dKV_swapAB;
// Epilogue derived types
using CollectiveEpilogue = CollectiveEpilogue_;
using EpilogueArguments = typename CollectiveEpilogue::Arguments;
using EpilogueParams = typename CollectiveEpilogue::Params;
static_assert(ArchTag::kMinComputeCapability >= 90);
using TileScheduler = TileScheduler_;
using TileSchedulerArguments = typename flash::TileSchedulerArguments;
using TileSchedulerParams = typename TileScheduler::Params;
static constexpr uint32_t NumLoadWarpGroups = 1;
static constexpr uint32_t NumMmaWarpGroups = CUTE_STATIC_V(size(TiledMmaSdP{})) / cutlass::NumThreadsPerWarpGroup;
static constexpr uint32_t MaxThreadsPerBlock = CUTE_STATIC_V(size(TiledMmaSdP{})) + (NumLoadWarpGroups * cutlass::NumThreadsPerWarpGroup);
static constexpr uint32_t MinBlocksPerMultiprocessor = 1;
static_assert(NumMmaWarpGroups == 2 || NumMmaWarpGroups == 3);
/// Register requirement for Load and Math WGs
static constexpr uint32_t LoadRegisterRequirement = NumMmaWarpGroups == 2 ? 24 : 32;
static constexpr uint32_t MmaRegisterRequirement = NumMmaWarpGroups == 2 ? 240 : 160;
// If you want to print from the producer warp, you'd need to increase the number of registers
// Otherwise you'll get CUDA error.
// static constexpr uint32_t LoadRegisterRequirement = 40;
// static constexpr uint32_t MmaRegisterRequirement = NumMmaWarpGroups == 2 ? 232 : 152;
// Kernel level shared memory storage
struct SharedStorage {
struct TensorStorage : cute::aligned_struct<128> {
union {
typename CollectiveMainloop::TensorStorage mainloop;
typename CollectiveEpilogue::TensorStorage epilogue;
};
} tensors;
struct PipelineStorage : cute::aligned_struct<16> {
alignas(16) cutlass::arch::ClusterTransactionBarrier barrier_KV;
alignas(16) typename CollectiveMainloop::MainloopPipeline::SharedStorage pipeline_q;
alignas(16) typename CollectiveMainloop::MainloopPipeline_dO::SharedStorage pipeline_do;
alignas(16) typename TileScheduler::SharedStorage smem_scheduler;
} pipelines;
};
static constexpr int SharedStorageSize = sizeof(SharedStorage);
// Device side arguments
struct Arguments {
MainloopArguments mainloop{};
EpilogueArguments epilogue{};
cutlass::KernelHardwareInfo hw_info{};
TileSchedulerArguments scheduler{};
};
// Kernel entry point API
struct Params {
MainloopParams mainloop{};
EpilogueParams epilogue{};
cutlass::KernelHardwareInfo hw_info{};
TileSchedulerParams scheduler{};
};
//
// Methods
//
// Convert to underlying arguments. In this case, a simple copy for the aliased type.
static
Params
to_underlying_arguments(Arguments const& args) {
CUTLASS_TRACE_HOST("to_underlying_arguments():");
// Get SM count if needed, otherwise use user supplied SM count
int sm_count = args.hw_info.sm_count;
if (sm_count <= 0) {
CUTLASS_TRACE_HOST(" WARNING: Arguments do not include a valid SM count.\n"
" For optimal performance, populate the arguments KernelHardwareInfo struct with the SM count.");
sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(args.hw_info.device_id);
}
CUTLASS_TRACE_HOST("to_underlying_arguments(): Setting persistent grid SM count to " << sm_count);
cutlass::KernelHardwareInfo hw_info{args.hw_info.device_id, sm_count};
return {
CollectiveMainloop::to_underlying_arguments(args.mainloop),
CollectiveEpilogue::to_underlying_arguments(args.epilogue),
hw_info,
TileScheduler::to_underlying_arguments(args.scheduler)
};
}
// Computes the kernel launch grid shape based on runtime parameters
static dim3
get_grid_shape(Params const& params) {
return TileScheduler::get_grid_shape(params.scheduler, params.hw_info.sm_count);
}
static dim3
get_block_shape() {
return dim3(MaxThreadsPerBlock, 1, 1);
}
CUTLASS_DEVICE
void
operator()(Params const& params, char* smem_buf) {
static constexpr int NumMmaThreads = NumMmaWarpGroups * cutlass::NumThreadsPerWarpGroup;
static constexpr int NumCopyThreads = NumLoadWarpGroups * cutlass::NumThreadsPerWarpGroup;
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
using MainloopPipeline = typename CollectiveMainloop::MainloopPipeline;
using PipelineParams = typename MainloopPipeline::Params;
using PipelineState = typename MainloopPipeline::PipelineState;
using MainloopPipeline_dO = typename CollectiveMainloop::MainloopPipeline_dO;
using PipelineParams_dO = typename MainloopPipeline_dO::Params;
using PipelineState_dO = typename MainloopPipeline_dO::PipelineState;
static constexpr bool Q_dO_same_stages = std::is_same_v<MainloopPipeline, MainloopPipeline_dO>;
SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(smem_buf);
int const lane_predicate = cute::elect_one_sync();
int const warp_idx = cutlass::canonical_warp_idx_sync();
// Issue Tma Descriptor Prefetch from a single thread
if (warp_idx == 0 && lane_predicate) {
CollectiveMainloop::prefetch_tma_descriptors(params.mainloop);
CollectiveEpilogue::prefetch_tma_descriptors(params.epilogue);
}
// Obtain warp index
int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;
PipelineParams pipeline_params;
pipeline_params.transaction_bytes = CollectiveMainloop::TmaTransactionBytesQ + CollectiveMainloop::TmaTransactionBytesLSE;
int warp_group_idx = cutlass::canonical_warp_group_idx();
pipeline_params.role = warp_group_idx == 0
? MainloopPipeline::ThreadCategory::Producer
: MainloopPipeline::ThreadCategory::Consumer;
pipeline_params.is_leader = warp_group_thread_idx == 0;
pipeline_params.num_consumers = NumMmaThreads;
if (warp_idx == 0 && lane_predicate) {
shared_storage.pipelines.barrier_KV.init(1 /*numThreads*/);
}
// We're counting on pipeline_q to call cutlass::arch::fence_barrier_init();
MainloopPipeline pipeline_q(shared_storage.pipelines.pipeline_q, pipeline_params, ClusterShape{});
auto role_dO = warp_group_idx == 0
? MainloopPipeline_dO::ThreadCategory::Producer
: MainloopPipeline_dO::ThreadCategory::Consumer;
PipelineParams_dO pipeline_params_dO {pipeline_params.transaction_bytes, role_dO, pipeline_params.is_leader, pipeline_params.num_consumers};
MainloopPipeline_dO pipeline_do(shared_storage.pipelines.pipeline_do, cute::conditional_return<Q_dO_same_stages>(pipeline_params, pipeline_params_dO), ClusterShape{});
CollectiveMainloop mainloop;
CollectiveEpilogue epilogue;
// We need this to guarantee that the Pipeline init is visible to all producers and consumer blocks in the Cluster
if constexpr (size(ClusterShape{}) > 1) {
cute::cluster_arrive_relaxed();
cute::cluster_wait();
} else {
__syncthreads();
}
TileScheduler scheduler(reinterpret_cast<typename TileScheduler::SharedStorage*>(&shared_storage.pipelines.smem_scheduler));
if (warp_group_idx == 0) { // Producer
cutlass::arch::warpgroup_reg_dealloc<LoadRegisterRequirement>();
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
if (warp_idx_in_warpgroup == 0) { // Load K, V, and do TMA on Q and dO
PipelineState smem_pipe_write = cutlass::make_producer_start_state<MainloopPipeline>();
PipelineState_dO smem_pipe_write_do = cutlass::make_producer_start_state<MainloopPipeline_dO>();
for (auto work_tile_info = scheduler.template get_initial_work</*IsProducerWarp=*/true>(params.scheduler);
work_tile_info.is_valid(params.scheduler);
work_tile_info = scheduler.template get_next_work</*IsProducerWarp=*/true>(params.scheduler, work_tile_info)) {
auto block_coord_ = work_tile_info.get_block_coord(params.scheduler);
auto [n_block, bidh, bidb, _ /*split_idx*/] = block_coord_;
cute::tuple<int32_t, int32_t, int32_t> block_coord = {n_block, bidh, bidb};
auto scheduler_prefetch = [&scheduler, ¶ms, &work_tile_info]() {
scheduler.prefetch_next_work(params.scheduler, work_tile_info);
};
mainloop.load(params.mainloop, pipeline_q, pipeline_do, smem_pipe_write,
smem_pipe_write_do, shared_storage, scheduler_prefetch, block_coord);
}
mainloop.load_tail(pipeline_q, pipeline_do, smem_pipe_write, smem_pipe_write_do);
} else if (warp_idx_in_warpgroup == 1) {
for (auto work_tile_info = scheduler.template get_initial_work</*IsProducerWarp=*/false>(params.scheduler);
work_tile_info.is_valid(params.scheduler);
work_tile_info = scheduler.template get_next_work</*IsProducerWarp=*/false>(params.scheduler, work_tile_info)) {
auto block_coord_ = work_tile_info.get_block_coord(params.scheduler);
auto [n_block, bidh, bidb, _ /*split_idx*/] = block_coord_;
cute::tuple<int32_t, int32_t, int32_t> block_coord = {n_block, bidh, bidb};
mainloop.store_dq(params.mainloop, shared_storage, block_coord);
}
}
} else { // Consumer
cutlass::arch::warpgroup_reg_alloc<MmaRegisterRequirement>();
// Initialize matmul objects.
TiledMmadKV tiled_mma_dKV;
PipelineState smem_pipe_read;
PipelineState_dO smem_pipe_read_do;
mainloop.mma_init();
scheduler.init_consumer();
int work_idx = 0;
CUTLASS_PRAGMA_NO_UNROLL
for (auto work_tile_info = scheduler.template get_initial_work</*IsProducerWarp=*/false>(params.scheduler);
work_tile_info.is_valid(params.scheduler);
work_tile_info = scheduler.template get_next_work</*IsProducerWarp=*/false>(params.scheduler, work_tile_info)) {
auto block_coord_ = work_tile_info.get_block_coord(params.scheduler);
auto [n_block, bidh, bidb, _ /*split_idx*/] = block_coord_;
cute::tuple<int32_t, int32_t, int32_t> block_coord = {n_block, bidh, bidb};
// dK and dV output accumulator.
Tensor tdKrdK = partition_fragment_C(tiled_mma_dKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));
Tensor tdVrdV = partition_fragment_C(tiled_mma_dKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));
bool tile_valid = mainloop.mma(
params.mainloop, pipeline_q, pipeline_do, smem_pipe_read, smem_pipe_read_do,
tdKrdK, tdVrdV, threadIdx.x - NumCopyThreads, work_idx, block_coord, shared_storage);
if (tile_valid) {
epilogue.store(params.epilogue, tdKrdK, tdVrdV, shared_storage, tiled_mma_dKV,
threadIdx.x - NumCopyThreads, block_coord);
} else {
epilogue.store_zero(params.epilogue, threadIdx.x - NumCopyThreads, block_coord);
}
}
epilogue.store_tail();
}
}
};
} // namespace flash
|