kernel
File size: 24,654 Bytes
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

#include "cutlass/device_kernel.h"  // For device_kernel
#include "cutlass/kernel_launch.h"  // For kernel_launch
#include "cutlass/cluster_launch.hpp"  // For ClusterLauncher

#include "static_switch.h"
#include "flash.h"
#include "flash_bwd_preprocess_kernel.h"
#include "flash_bwd_postprocess_kernel.h"
#include "tile_scheduler.hpp"
#include "mainloop_bwd_sm90_tma_gmma_ws.hpp"
#include "mainloop_bwd_sm80.hpp"
#include "epilogue_bwd.hpp"
#include "flash_bwd_kernel_sm90.h"
#include "flash_bwd_kernel_sm80.h"

using namespace cute;

template <int Arch, int kHeadDim, int kBlockM, int kBlockN, typename Element,
          bool Is_causal, bool Is_local, bool Has_softcap, bool Varlen, bool Deterministic, bool GQA,
          int Stages_dO=2, int Stages_dS_or_QSm80=2,
          bool SdP_swapAB=true, bool dKV_swapAB=false, bool dQ_swapAB=false,
          int NumMmaWarpGroups=2, int AtomLayoutMSdP=1, int AtomLayoutNdKV=2, int AtomLayoutMdQ=1,
          bool V_in_regs=false>
void run_flash_bwd(Flash_bwd_params &params, cudaStream_t stream) {
    static_assert(!(Is_causal && Is_local), "Is_causal and Is_local cannot be true at the same time.");
    using ElementAccum = float;
    using ArchTag = std::conditional_t<Arch >= 90, cutlass::arch::Sm90, cutlass::arch::Sm80>;

    int const total_q_padded_rounded = cute::round_up(params.total_q + params.b * kBlockM, kBlockM);
    int const total_k_padded_rounded = cute::round_up(params.total_k + params.b * kBlockN, kBlockN);
    bool const is_varlen_q = params.cu_seqlens_q;
    bool const is_varlen_k = params.cu_seqlens_k;
    int seqlen_q = !is_varlen_q ? params.seqlen_q : params.total_q;
    int seqlen_k = !is_varlen_k ? params.seqlen_k : params.total_k;
    int seqlen_q_rounded = !is_varlen_q ? params.seqlen_q_rounded : total_q_padded_rounded;
    int seqlen_k_rounded = !is_varlen_k ? params.seqlen_k_rounded : total_k_padded_rounded;
    int batch_q = !is_varlen_q ? params.b : 1;
    int batch_k = !is_varlen_k ? params.b : 1;

    using TileShape_MK = cute::Shape<Int<kBlockM>, Int<kHeadDim>>;
    using PreprocessKernel = flash::FlashAttnBwdPreprocess<TileShape_MK, Element, ElementAccum, ArchTag, /*Clear_dQaccum=*/true, Varlen>;
    typename PreprocessKernel::Arguments preprocess_args {
        static_cast<Element const*>(params.o_ptr),
        {seqlen_q, params.dv, params.h, batch_q},  // shape_O
        {params.o_row_stride, _1{}, params.o_head_stride, !is_varlen_q ? params.o_batch_stride : 0},  // stride_O
        static_cast<Element const*>(params.do_ptr),
        {params.do_row_stride, _1{}, params.do_head_stride, !is_varlen_q ? params.do_batch_stride : 0},  // stride_dO
        static_cast<float*>(params.dsoftmax_sum),
        {seqlen_q_rounded, params.h, batch_q},  // shape_dPsum
        {_1{}, seqlen_q_rounded, !is_varlen_q ? params.h * params.seqlen_q_rounded : 0},  // stride_dPsum
        static_cast<float*>(params.softmax_lse_ptr),
        {_1{}, seqlen_q, !is_varlen_q ? params.h * params.seqlen_q : 0},  // stride_LSE
        static_cast<float*>(params.softmax_lse_log2_ptr),
        {_1{}, seqlen_q_rounded, !is_varlen_q ? params.h * params.seqlen_q_rounded : 0},  // stride_LSE_log2
        static_cast<ElementAccum*>(params.dq_accum_ptr),
        {seqlen_q_rounded * params.d_rounded, params.h, batch_q},  // shape_dQaccum
        {_1{}, seqlen_q_rounded * params.d_rounded, !is_varlen_q ? params.d_rounded * seqlen_q_rounded * params.h : 0},  // stride_dQaccum
        params.b,
        params.dq_semaphore,
        params.cu_seqlens_q,
        params.seqused_q
    };
    typename PreprocessKernel::Params preprocess_params = PreprocessKernel::to_underlying_arguments(preprocess_args);
    int num_m_block = cute::ceil_div(params.seqlen_q, kBlockM);
    dim3 grid_m(num_m_block, params.h, params.b);
    cutlass::kernel_launch<PreprocessKernel>(grid_m, PreprocessKernel::MaxThreadsPerBlock, PreprocessKernel::SharedStorageSize, stream, preprocess_params, false /*launch_with_pdl*/);
    CHECK_CUDA_KERNEL_LAUNCH();

    using TileShape_MNK = cute::Shape<Int<kBlockM>, Int<kBlockN>, Int<kHeadDim>>;
    using ClusterShape = cute::Shape<_1, Int<1>, _1>;  // Currently doesn't not support cluster
    // Stages_dS_or_QSm80 is Stages_dS if Sm90 and Stages if Sm80
    static constexpr int Stages = Arch >= 90 ? 2 : Stages_dS_or_QSm80;
    static constexpr int Stages_dS = Arch >= 90 ? Stages_dS_or_QSm80 : 1;
    using CollectiveMainloop = std::conditional_t<
        Arch >= 90,
        flash::CollectiveMainloopBwdSm90<Stages, Stages_dO, Stages_dS, ClusterShape, TileShape_MNK, Element, ElementAccum, cutlass::arch::Sm90,
            Is_causal, Is_local, Has_softcap, Varlen, Deterministic,
            SdP_swapAB, dKV_swapAB, dQ_swapAB, NumMmaWarpGroups, AtomLayoutMSdP, AtomLayoutNdKV, AtomLayoutMdQ, V_in_regs>,
        flash::CollectiveMainloopBwdSm80<Stages, Stages_dO, TileShape_MNK, Element, ElementAccum, cutlass::arch::Sm80,
            Is_causal, Is_local, Has_softcap, Varlen, Deterministic,
            SdP_swapAB, dKV_swapAB, dQ_swapAB, NumMmaWarpGroups, AtomLayoutMSdP, AtomLayoutNdKV, AtomLayoutMdQ, V_in_regs>
    >;
    using CollectiveEpilogue = std::conditional_t<
        !GQA,
        flash::CollectiveEpilogueBwd<TileShape_MNK, Element, ArchTag, CollectiveMainloop::NumMmaThreads, Varlen, dKV_swapAB, NumMmaWarpGroups * (Arch >= 90 ? 1 : cutlass::NumWarpsPerWarpGroup) / AtomLayoutNdKV>,
        flash::CollectiveEpilogueBwdGQA<TileShape_MNK, ElementAccum, ArchTag, CollectiveMainloop::NumMmaThreads, Varlen, Deterministic>
    >;
    using Scheduler = std::conditional_t<
        Is_causal && !Varlen,
        flash::SingleTileBwdLPTScheduler,
        flash::SingleTileScheduler<Varlen, false /*Split*/, false /*PackGQA*/, kBlockN>
    >;
    using AttnKernel = std::conditional_t<
        Arch >= 90,
        flash::enable_sm90_or_later<flash::FlashAttnBwdSm90<CollectiveMainloop, CollectiveEpilogue, Scheduler>>,
        flash::enable_sm80_to_sm89<flash::FlashAttnBwdSm80<CollectiveMainloop, CollectiveEpilogue, Scheduler>>
    >;

    typename CollectiveMainloop::Arguments mainloop_args {
        static_cast<Element const*>(params.q_ptr),
        {seqlen_q, params.d, params.h, batch_q},  // shape_Q
        {params.q_row_stride, _1{}, params.q_head_stride, !is_varlen_q ? params.q_batch_stride : 0},  // stride_Q
        static_cast<Element const*>(params.k_ptr),
        {seqlen_k, params.d, params.h_k, batch_k},  // shape_K
        {params.k_row_stride, _1{}, params.k_head_stride, !is_varlen_k ? params.k_batch_stride : 0},  // stride_K
        static_cast<Element const*>(params.v_ptr),
        {seqlen_k, params.dv, params.h_k, batch_k},  // shape_V
        {params.v_row_stride, _1{}, params.v_head_stride, !is_varlen_k ? params.v_batch_stride : 0},  // stride_V
        static_cast<Element const*>(params.do_ptr),
        {seqlen_q, params.dv, params.h, batch_q},  // shape_dO
        {params.do_row_stride, _1{}, params.do_head_stride, !is_varlen_q ? params.do_batch_stride : 0},  // stride_dO
        static_cast<ElementAccum*>(params.dq_accum_ptr),
        {seqlen_q_rounded * params.d_rounded, params.h, batch_q},  // shape_dQaccum
        {_1{}, seqlen_q_rounded * params.d_rounded, !is_varlen_q ? params.d_rounded * params.seqlen_q_rounded * params.h : 0}, // stride_dQaccum
        static_cast<float*>(params.softmax_lse_log2_ptr),
        {seqlen_q_rounded, params.h, batch_q},  // shape_LSE
        {_1{}, seqlen_q_rounded, !is_varlen_q ? params.h * params.seqlen_q_rounded : 0},  // stride_LSE_log2
        static_cast<float*>(params.dsoftmax_sum),
        {_1{}, seqlen_q_rounded, !is_varlen_q ? params.h * params.seqlen_q_rounded : 0},  // stride_dPsum
        params.scale_softmax,
        params.window_size_left, params.window_size_right, 0 /*attention_chunk*/,
        params.softcap,
        params.b,
        params.dq_semaphore,
        params.cu_seqlens_q, params.cu_seqlens_k,
        params.seqused_q, params.seqused_k
    };
    // The case work with GQA is ugly but idk how to fix it.
    typename CollectiveEpilogue::Arguments epilogue_args {
        static_cast<typename CollectiveEpilogue::Element*>(!GQA ? params.dk_ptr : params.dk_accum_ptr),
        [&] {
            if constexpr (!GQA) {
                return typename CollectiveEpilogue::ShapedKV {seqlen_k, params.d, params.h, batch_k};  // shape_dK
            } else {
                return typename CollectiveEpilogue::ShapedKV {seqlen_k_rounded * params.d_rounded, params.h_k, batch_k};  // shape_dKaccum
            }
        }(),
        [&] {
            if constexpr (!GQA) {
                return typename CollectiveEpilogue::StridedKV {params.dk_row_stride, _1{}, params.dk_head_stride, !is_varlen_k ? params.dk_batch_stride : 0};  // stride_dK
            } else {
                return typename CollectiveEpilogue::StridedKV {_1{}, params.d_rounded * seqlen_k_rounded, !is_varlen_k ? params.h_k * params.d_rounded * params.seqlen_k_rounded : 0};  // stride_dKaccum
            }
        }(),
        static_cast<typename CollectiveEpilogue::Element*>(!GQA ? params.dv_ptr : params.dv_accum_ptr),
        [&] {
            if constexpr (!GQA) {
                return typename CollectiveEpilogue::ShapedKV {seqlen_k, params.dv, params.h, batch_k};  // shape_dV
            } else {
                return typename CollectiveEpilogue::ShapedKV {seqlen_k_rounded * params.dv_rounded, params.h_k, batch_k};  // shape_dVaccum
            }
        }(),
        [&] {
            if constexpr (!GQA) {
                return typename CollectiveEpilogue::StridedKV {params.dv_row_stride, _1{}, params.dv_head_stride, !is_varlen_k ? params.dv_batch_stride : 0};  // stride_dV
            } else {
                return typename CollectiveEpilogue::StridedKV {_1{}, params.dv_rounded * seqlen_k_rounded, !is_varlen_k ? params.h_k * params.dv_rounded * params.seqlen_k_rounded : 0};  // stride_dVaccum
            }
        }(),
        params.h,
        params.dk_semaphore,
        params.dv_semaphore,
        params.cu_seqlens_k,
        params.seqused_k,
    };

    int num_blocks_n = cutlass::ceil_div(params.seqlen_k, get<1>(TileShape_MNK{}));
    num_blocks_n = cutlass::round_up(num_blocks_n, size<1>(ClusterShape{}));
    typename flash::TileSchedulerArguments scheduler_args {
        num_blocks_n, params.h, params.b, 1 /*num_splits*/,
        params.h / params.h_k,
        params.seqlen_k,
        params.seqlen_q, params.d, params.dv, sizeof(Element),
        params.tile_count_semaphore, params.cu_seqlens_k, params.seqused_k
    };

    int device;
    cudaGetDevice(&device);
    typename AttnKernel::Params kernel_params = AttnKernel::to_underlying_arguments({
        mainloop_args, epilogue_args, {device, params.num_sm}, scheduler_args
    });

    dim3 grid_dims = AttnKernel::get_grid_shape(kernel_params);
    dim3 block_dims = AttnKernel::get_block_shape();
    int smem_size = AttnKernel::SharedStorageSize;
    // int smem_size_q = sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_q));
    // int smem_size_do = sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_do));
    // int smem_size_ds = sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_ds));
    // int smem_size_dqacc = [&] {
    //     if constexpr (Arch >= 90) {
    //         return sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_dqacc));
    //     } else {
    //         return 0;
    //     }
    // }();
    // int smem_size_k = sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_k));
    // int smem_size_v = sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_v));
    // int smem_size_lse = sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_lse));
    // int smem_size_dpsum = sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_dpsum));
    // printf("smem_size = %d, q = %d, k = %d, v = %d, do = %d, ds = %d, dqacc = %d, lse = %d, dpsum = %d\n", smem_size, smem_size_q, smem_size_k, smem_size_v, smem_size_do, smem_size_ds, smem_size_dqacc, smem_size_lse, smem_size_dpsum);
    if constexpr (size(ClusterShape{}) > 1) {
        void const* kernel = (void const*) cutlass::device_kernel<AttnKernel>;
        if (smem_size >= 48 * 1024) {
            CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
        }
        dim3 cluster_dims(size<0>(ClusterShape{}), size<1>(ClusterShape{}), size<2>(ClusterShape{}));
        cutlass::ClusterLauncher::launch(
            grid_dims, cluster_dims, block_dims, smem_size, stream, kernel, kernel_params, false /*launch_with_pdl*/);
    } else {
        if (smem_size >= 48 * 1024) {
            CHECK_CUDA(cudaFuncSetAttribute(cutlass::device_kernel<AttnKernel>, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
        }
        cutlass::kernel_launch<AttnKernel>(grid_dims, block_dims, smem_size, stream, kernel_params, false /*launch_with_pdl*/);
    }
    CHECK_CUDA_KERNEL_LAUNCH();

    using PostprocessKernel = flash::FlashAttnBwdPostprocessConvertdQ<TileShape_MK, Element, ElementAccum, ArchTag,
        AttnKernel::CollectiveMainloop::NumMmaThreads,
        typename AttnKernel::CollectiveMainloop::TiledMmadQ,
        AttnKernel::CollectiveMainloop::dQ_swapAB
        >;
    typename PostprocessKernel::Arguments postprocess_args {
        static_cast<ElementAccum const*>(params.dq_accum_ptr),
        {seqlen_q_rounded * params.d_rounded, params.h, batch_q},  // shape_dQaccum
        {_1{}, seqlen_q_rounded * params.d_rounded, !is_varlen_q ? params.d_rounded * params.seqlen_q_rounded * params.h : 0}, // stride_dQaccum
        static_cast<Element*>(params.dq_ptr),
        {seqlen_q, params.d, params.h, batch_q},  // shape_dQ
        {params.dq_row_stride, _1{}, params.dq_head_stride, params.dq_batch_stride},  // stride_dQ
        params.scale_softmax,
        params.cu_seqlens_q,
        params.seqused_q
    };
    typename PostprocessKernel::Params postprocess_params = PostprocessKernel::to_underlying_arguments(postprocess_args);
    int num_m_block_postprocess = cute::ceil_div(params.seqlen_q, get<0>(TileShape_MK{}));
    dim3 grid_m_postprocess(num_m_block_postprocess, params.h, params.b);
    int smem_size_postprocess = PostprocessKernel::SharedStorageSize;
    if (smem_size_postprocess >= 48 * 1024) {
        CHECK_CUDA(cudaFuncSetAttribute(cutlass::device_kernel<PostprocessKernel>, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size_postprocess));
    }
    cutlass::kernel_launch<PostprocessKernel>(grid_m_postprocess, PostprocessKernel::MaxThreadsPerBlock, smem_size_postprocess, stream, postprocess_params, false /*launch_with_pdl*/);
    CHECK_CUDA_KERNEL_LAUNCH();

    if constexpr (GQA) {
        using TileShape_NK = cute::Shape<Int<kBlockN>, Int<kHeadDim>>;
        using PostprocessKerneldKV = flash::FlashAttnBwdPostprocessConvertdQ<TileShape_NK, Element, ElementAccum, ArchTag,
            AttnKernel::CollectiveEpilogue::NumEpilogueThreads,
            typename AttnKernel::CollectiveMainloop::TiledMmadKV,
            AttnKernel::CollectiveMainloop::dKV_swapAB
            >;
        typename PostprocessKerneldKV::Arguments postprocess_dK_args {
            static_cast<ElementAccum const*>(params.dk_accum_ptr),
            {seqlen_k_rounded * params.d_rounded, params.h_k, batch_k},  // shape_dKaccum
            {_1{}, seqlen_k_rounded * params.d_rounded, !is_varlen_k ? params.d_rounded * params.seqlen_k_rounded * params.h_k : 0},  // stride_dKaccum
            static_cast<Element*>(params.dk_ptr),
            {seqlen_k, params.d, params.h_k, batch_k},  // shape_dK
            {params.dk_row_stride, _1{}, params.dk_head_stride, params.dk_batch_stride},  // stride_dK
            1.f,
            params.cu_seqlens_k,
            params.seqused_k
        };
        typename PostprocessKerneldKV::Params postprocess_dK_params = PostprocessKerneldKV::to_underlying_arguments(postprocess_dK_args);
        typename PostprocessKerneldKV::Arguments postprocess_dV_args {
            static_cast<ElementAccum const*>(params.dv_accum_ptr),
            {seqlen_k_rounded * params.dv_rounded, params.h_k, batch_k},  // shape_dVaccum
            {_1{}, seqlen_k_rounded * params.dv_rounded, !is_varlen_k ? params.dv_rounded * params.seqlen_k_rounded * params.h_k : 0},  // stride_dVaccum
            static_cast<Element*>(params.dv_ptr),
            {seqlen_k, params.dv, params.h_k, batch_k},  // shape_dV
            {params.dv_row_stride, _1{}, params.dv_head_stride, params.dv_batch_stride},  // stride_dV
            1.f,
            params.cu_seqlens_k,
            params.seqused_k
        };
        typename PostprocessKerneldKV::Params postprocess_dV_params = PostprocessKerneldKV::to_underlying_arguments(postprocess_dV_args);
        int num_n_block_postprocess = cute::ceil_div(params.seqlen_k, get<0>(TileShape_NK{}));
        dim3 grid_n_postprocess(num_n_block_postprocess, params.h_k, params.b);
        int smem_size_postprocess = PostprocessKerneldKV::SharedStorageSize;
        if (smem_size_postprocess >= 48 * 1024) {
            CHECK_CUDA(cudaFuncSetAttribute(cutlass::device_kernel<PostprocessKerneldKV>, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size_postprocess));
        }
        cutlass::kernel_launch<PostprocessKerneldKV>(grid_n_postprocess, PostprocessKerneldKV::MaxThreadsPerBlock, smem_size_postprocess, stream, postprocess_dK_params, false /*launch_with_pdl*/);
        CHECK_CUDA_KERNEL_LAUNCH();
        cutlass::kernel_launch<PostprocessKerneldKV>(grid_n_postprocess, PostprocessKerneldKV::MaxThreadsPerBlock, smem_size_postprocess, stream, postprocess_dV_params, false /*launch_with_pdl*/);
        CHECK_CUDA_KERNEL_LAUNCH();
    }

}

template<int Arch, typename T, int kBlockM, int kBlockN, int kHeadDim, bool Is_causal, bool Is_local, bool Has_softcap,
         int Stages_dO=2, int Stages_dS_or_QSm80=2,
         bool SdP_swapAB=true, bool dKV_swapAB=false, bool dQ_swapAB=false,
         int NumMmaWarpGroups=2, int AtomLayoutMSdP=1, int AtomLayoutNdKV=2, int AtomLayoutMdQ=1,
         bool V_in_regs=false>
void run_mha_bwd_dispatch(Flash_bwd_params &params, cudaStream_t stream) {
    VARLEN_SWITCH(params.cu_seqlens_q != nullptr || params.cu_seqlens_k != nullptr, Varlen, [&] {
        BOOL_SWITCH(params.h != params.h_k, GQA, [&] {
//             BOOL_SWITCH(params.deterministic, Deterministic, [&] {
            // run_flash_bwd<kHeadDim, kBlockM, kBlockN, T, Is_causal, Is_local, Has_softcap, Varlen, false, GQA, Stages_dO, Stages_dS_or_QSm80, SdP_swapAB, dKV_swapAB, dQ_swapAB, NumMmaWarpGroups, AtomLayoutMSdP, AtomLayoutNdKV, AtomLayoutMdQ>(params, stream);
            run_flash_bwd<Arch, kHeadDim, kBlockM, kBlockN, T, Is_causal, Is_local, Has_softcap, Varlen /*Varlen*/, false /*Deterministic*/, GQA, Stages_dO, Stages_dS_or_QSm80, SdP_swapAB, dKV_swapAB, dQ_swapAB, NumMmaWarpGroups, AtomLayoutMSdP, AtomLayoutNdKV, AtomLayoutMdQ, V_in_regs>(params, stream);
//             });
        });
    });
}


template<int Arch, typename T, bool Has_softcap>
void run_mha_bwd_hdim64(Flash_bwd_params &params, cudaStream_t stream) {
    CAUSAL_LOCAL_SWITCH(params.is_causal, params.is_local, Is_causal, Is_local, [&] {
        if constexpr (Arch >= 90) {
            if constexpr (Is_causal && Has_softcap) {
                // register spill with 128 x 128
                run_mha_bwd_dispatch<Arch, T, 96, 128, 64, Is_causal, Is_local, Has_softcap, 2, 2, true, false, true, 2, 1, 2, 2, false>(params, stream);
            } else {
                // With ShuffleStats we no longer have register spilling when Has_softcap and using 128 x 128 block.
                run_mha_bwd_dispatch<Arch, T, 128, 128, 64, Is_causal, Is_local, Has_softcap, 2, 2, true, false, false, 2, 1, 2, 2, false>(params, stream);
            }
        } else if constexpr (Arch == 86 || Arch == 89) {
            run_mha_bwd_dispatch<Arch, T, 64, 128, 64, Is_causal, Is_local, Has_softcap, 2, 2, false, false, false, 2, 2, 4, 2, true>(params, stream);
            // run_mha_bwd_dispatch<Arch, T, 96, 96, 64, Is_causal, Is_local, Has_softcap, 1, 2, false, true, true, 2, 2, 4, 4, false>(params, stream);
            // run_mha_bwd_dispatch<Arch, T, 80, 128, 64, Is_causal, Is_local, Has_softcap, 1, 2, true, false, true, 2, 2, 4, 2, true>(params, stream);
            // run_mha_bwd_dispatch<Arch, T, 96, 128, 64, Is_causal, Is_local, Has_softcap, 1, 2, true, false, true, 2, 1, 8, 4, false>(params, stream);
        } else {
            run_mha_bwd_dispatch<Arch, T, 128, 128, 64, Is_causal, Is_local, Has_softcap, 2, 2, false, false, false, 2, 4, 4, 4, false>(params, stream);
        }
    });
}

template<int Arch, typename T, bool Has_softcap>
void run_mha_bwd_hdim96(Flash_bwd_params &params, cudaStream_t stream) {
    CAUSAL_LOCAL_SWITCH(params.is_causal, params.is_local, Is_causal, Is_local, [&] {
        if constexpr (Arch >= 90) {
            run_mha_bwd_dispatch<Arch, T, 64, 128, 96, Is_causal, Is_local, Has_softcap, 2, 2, true, false, false, 2, 1, 2, 1, true>(params, stream);
        } else if constexpr (Arch == 86 || Arch == 89) {
            run_mha_bwd_dispatch<Arch, T, 64, 128, 96, Is_causal, Is_local, Has_softcap, 1, 2, false, false, false, 2, 2, 4, 2, true>(params, stream);
        } else {
            run_mha_bwd_dispatch<Arch, T, 64, 128, 96, Is_causal, Is_local, Has_softcap, 2, 2, false, false, false, 2, 2, 4, 2, false>(params, stream);
        }
    });
}

template<int Arch, typename T, bool Has_softcap>
void run_mha_bwd_hdim128(Flash_bwd_params &params, cudaStream_t stream) {
    CAUSAL_LOCAL_SWITCH(params.is_causal, params.is_local, Is_causal, Is_local, [&] {
        if constexpr (Arch >= 90) {
            if constexpr (Is_causal || Is_local || Has_softcap) {
                run_mha_bwd_dispatch<Arch, T, 64, 128, 128, Is_causal, Is_local, Has_softcap, 2, 2, true, false, false, 2, 1, 2, 1, false>(params, stream);
            } else {
                run_mha_bwd_dispatch<Arch, T, 80, 128, 128, Is_causal, Is_local, Has_softcap, 2, 2, true, false, true, 2, 1, 2, 1, false>(params, stream);
            }
        } else if constexpr (Arch == 86 || Arch == 89) {
            run_mha_bwd_dispatch<Arch, T, 64, 96, 128, Is_causal, Is_local, Has_softcap, 1, 2, false, false, false, 2, 2, 2, 2, true>(params, stream);
        } else {
            run_mha_bwd_dispatch<Arch, T, 64, 128, 128, Is_causal, Is_local, Has_softcap, 2, 2, false, false, false, 2, 2, 2, 2, false>(params, stream);
        }
    });
}

template<int Arch, typename T, bool Has_softcap>
void run_mha_bwd_hdim192(Flash_bwd_params &params, cudaStream_t stream) {
    CAUSAL_LOCAL_SWITCH(params.is_causal, params.is_local, Is_causal, Is_local, [&] {
        if constexpr (Arch >= 90) {
            run_mha_bwd_dispatch<Arch, T, 64, 96, 192, Is_causal, Is_local, Has_softcap, 1, 1, false, true, false, 3, 1, 1, 1, false>(params, stream);
        } else if constexpr (Arch == 86 || Arch == 89) {
            run_mha_bwd_dispatch<Arch, T, 64, 64, 192, Is_causal, Is_local, Has_softcap, 1, 1, false, false, false, 2, 2, 2, 2, true>(params, stream);
        } else {
            run_mha_bwd_dispatch<Arch, T, 64, 80, 192, Is_causal, Is_local, Has_softcap, 1, 2, false, true, false, 2, 4, 2, 2, false>(params, stream);
        }
    });
}

template<int Arch, typename T, bool Has_softcap>
void run_mha_bwd_hdim256(Flash_bwd_params &params, cudaStream_t stream) {
    CAUSAL_LOCAL_SWITCH(params.is_causal, params.is_local, Is_causal, Is_local, [&] {
        if constexpr (Arch >= 90) {
            run_mha_bwd_dispatch<Arch, T, 64, 80, 256, Is_causal, Is_local, Has_softcap, 1, 1, false, true, true, 2, 1, 1, 1, false>(params, stream);
        } else if constexpr (Arch == 86 || Arch == 89) {
            run_mha_bwd_dispatch<Arch, T, 32, 64, 256, Is_causal, Is_local, Has_softcap, 1, 1, false, false, false, 2, 2, 2, 1, true>(params, stream);
            // run_mha_bwd_dispatch<Arch, T, 64, 32, 256, Is_causal, Is_local, Has_softcap, 1, 1, false, false, false, 2, 4, 1, 2, true>(params, stream);
        } else {
            run_mha_bwd_dispatch<Arch, T, 64, 64, 256, Is_causal, Is_local, Has_softcap, 1, 1, false, false, false, 2, 4, 2, 2, false>(params, stream);
        }
    });
}