File size: 25,620 Bytes
eb8ddce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include "cute/tensor.hpp"
#include <cutlass/cutlass.h>
#include <cutlass/arch/memory.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cutlass/arch/grid_dependency_control.h"
#include "seqlen.h"
#include "utils.h"
namespace flash {
using namespace cute;
template <class TileShape_MK_, int kLogMaxSplits_, int kNThreads, int AlignmentLSE_,
bool Is_even_K, bool Varlen, class Element, class ElementPartial, class ArchTag_>
class FlashAttnFwdCombine {
public:
// Type Aliases
using TileShape_MK = TileShape_MK_;
using ArchTag = ArchTag_;
static constexpr int kMaxSplits = 1 << kLogMaxSplits_;
static constexpr int AlignmentLSE = std::min(AlignmentLSE_, int(128 / 8 / sizeof(float)));
static_assert(AlignmentLSE >= 1);
static constexpr int kStages = 4;
static_assert(ArchTag::kMinComputeCapability >= 75);
static constexpr bool Has_cp_async = ArchTag::kMinComputeCapability >= 80;
static constexpr uint32_t MaxThreadsPerBlock = kNThreads;
static constexpr uint32_t MinBlocksPerMultiprocessor = 2;
static constexpr int kBlockM = get<0>(TileShape_MK{});
static constexpr int kBlockK = get<1>(TileShape_MK{});
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(ElementPartial);
static_assert(kBlockK % kGmemElemsPerLoad == 0, "kBlockK must be a multiple of kGmemElemsPerLoad");
static constexpr int kBlockKGmem = kBlockK % 128 == 0 ? 128 : (kBlockK % 64 == 0 ? 64 : 32);
static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
static_assert(MaxThreadsPerBlock % kGmemThreadsPerRow == 0, "MaxThreadsPerBlock must be a multiple of kGmemThreadsPerRow");
using GmemCopyAtom = std::conditional_t<
Has_cp_async,
cute::Copy_Atom<SM80_CP_ASYNC_CACHEGLOBAL<uint128_t>, ElementPartial>,
cute::Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementPartial>
>;
using GmemLayoutAtom = Layout<Shape <Int<MaxThreadsPerBlock / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
static_assert(kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0);
using GmemTiledCopyAccum = decltype(
make_tiled_copy(GmemCopyAtom{},
GmemLayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 4 vals per load
using GmemTiledCopy = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 4 vals per load
using AlignmentTypeLSE = cute::uint_byte_t<static_cast<int>(sizeof(float)) * AlignmentLSE>;
static constexpr int kGmemElemsPerLoadLSE = sizeof(AlignmentTypeLSE) / sizeof(float);
static_assert(kBlockM % kGmemElemsPerLoadLSE == 0, "kBlockM must be a multiple of kGmemElemsPerLoadLSE");
static_assert(kBlockM % 8 == 0, "kBlockM must be a multiple of 8");
static constexpr int kBlockMSmem = kBlockM % 128 == 0 ? 128 : (kBlockM % 64 == 0 ? 64 : (kBlockM % 32 == 0 ? 32 : (kBlockM % 16 == 0 ? 16 : 8)));
static constexpr int kGmemThreadsPerRowLSE = kBlockMSmem / kGmemElemsPerLoadLSE;
static_assert(MaxThreadsPerBlock % kGmemThreadsPerRowLSE == 0, "MaxThreadsPerBlock must be a multiple of kGmemThreadsPerRowLSE");
using GmemLayoutAtomLSE = Layout<Shape <Int<MaxThreadsPerBlock / kGmemThreadsPerRowLSE>, Int<kGmemThreadsPerRowLSE>>,
Stride<Int<kGmemThreadsPerRowLSE>, _1>>;
static_assert(kMaxSplits % CUTE_STATIC_V(shape<0>(GmemLayoutAtomLSE{})) == 0);
using GmemCopyAtomLSE = std::conditional_t<
Has_cp_async,
cute::Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<AlignmentTypeLSE>, float>,
cute::Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<AlignmentLSE * sizeof(float) * 8>, float>
>;
using GmemTiledCopyLSE = decltype(
make_tiled_copy(GmemCopyAtomLSE{},
GmemLayoutAtomLSE{},
Layout<Shape<_1, Int<kGmemElemsPerLoadLSE>>>{})); // Val layout, 4 vals per load
// Otherwise we get IMA when some threads access sLSE, as we're not doing any masking
static_assert((kBlockM * kMaxSplits * AlignmentLSE) % kNThreads == 0, "kNThreads must divide kBlockM * kMaxSplits * AlignmentLSE");
// This works for kBlockMSmem = 8, 16, 32, 64, 128, no bank conflicts
using SmemLSESwizzle = std::conditional_t<
kBlockMSmem == 8,
Swizzle<5, 0, 5>,
std::conditional_t<kBlockMSmem == 16, Swizzle<4, 0, 4>, Swizzle<3, 2, 3>>
>;
using SmemLayoutAtomLSE =
decltype(composition(SmemLSESwizzle{},
Layout<Shape<Int<8>, Int<kBlockMSmem>>,
Stride<Int<kBlockMSmem>, _1>>{}));
using SmemLayoutLSE = decltype(tile_to_shape(SmemLayoutAtomLSE{}, Shape<Int<kMaxSplits>, Int<kBlockM>>{}));
using SmemLayoutO = Layout<Shape<Int<kBlockM>, Int<kBlockK>, Int<kStages>>,
Stride<Int<kBlockK>, _1, Int<kBlockM * kBlockK>>>;
// We want each column (kMaxSplits) to be processed by threads in the same warp.
// To reduce the number of shuffles, we want as few threads on the same column as possible.
// E.g., if kBlockM is divisible by 64, and there are 256 threads, we want 4 threads (0, 1, 2, 4) per column
// have have 64 such quads.
static_assert(MaxThreadsPerBlock % kBlockMSmem == 0, "MaxThreadsPerBlock must be a multiple of kBlockMSmem");
static constexpr int kSmemThreadsPerColLSEt = MaxThreadsPerBlock / kBlockMSmem;
static_assert(cutlass::NumThreadsPerWarp % kSmemThreadsPerColLSEt == 0, "kSmemThreadsPerColLSEt must divide NumThreadsPerWarp");
using S2RLayoutAtomLSE = Layout<Shape<Int<kSmemThreadsPerColLSEt>, Int<MaxThreadsPerBlock / kSmemThreadsPerColLSEt>>>;
using S2RTiledCopyLSE = decltype(make_tiled_copy(cute::Copy_Atom<cute::DefaultCopy, float>{}, S2RLayoutAtomLSE{}, Layout<_1>{}));
using ShapeOPartial = cute::Shape<int32_t, int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, num_splits, head, batch)
using StrideOPartial = cute::Stride<int64_t, _1, int64_t, int64_t, int64_t>;
using ShapeLSEPartial = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, num_splits, head, batch)
using StrideLSEPartial = cute::Stride<_1, int64_t, int64_t, int64_t>; // (seqlen, num_splits, head, batch)
using ShapeO = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, head, batch)
using StrideO = cute::Stride<int64_t, _1, int64_t, int64_t>;
using ShapeLSE = cute::Shape<int32_t, int32_t, int32_t>; // (seqlen, head, batch)
using StrideLSE = cute::Stride<_1, int64_t, int64_t>; // (seqlen, head, batch)
struct SharedStorage : cute::aligned_struct<128> {
cute::array_aligned<float, cute::cosize_v<SmemLayoutLSE>> smem_lse_partial;
cute::array_aligned<int, kBlockM> smem_max_valid_split;
cute::array_aligned<ElementPartial, cute::cosize_v<SmemLayoutO>> smem_o_partial;
};
static constexpr int SharedStorageSize = sizeof(SharedStorage);
// Device side arguments
struct Arguments {
ElementPartial const* const ptr_O_partial;
ShapeOPartial const shape_O_partial;
StrideOPartial const stride_O_partial;
float const* const ptr_LSE_partial;
ShapeLSEPartial const shape_LSE_partial;
StrideLSEPartial const stride_LSE_partial;
Element* const ptr_O;
StrideO const stride_O;
float* const ptr_LSE;
StrideLSE const stride_LSE;
int const* const cu_seqlens = nullptr;
int const* const seqused = nullptr;
int const* const num_splits_dynamic_ptr = nullptr;
int* const semaphore_to_reset = nullptr;
};
// Kernel entry point API
struct Params {
ElementPartial const* const ptr_O_partial;
ShapeOPartial const shape_O_partial;
StrideOPartial const stride_O_partial;
float const* const ptr_LSE_partial;
ShapeLSEPartial const shape_LSE_partial;
StrideLSEPartial const stride_LSE_partial;
Element* const ptr_O;
StrideO const stride_O;
float* const ptr_LSE;
StrideLSE const stride_LSE;
cutlass::FastDivmod seqlen_divmod, head_divmod;
int const* const cu_seqlens = nullptr;
int const* const seqused = nullptr;
int const* const num_splits_dynamic_ptr = nullptr;
int* const semaphore_to_reset = nullptr;
};
// Convert to underlying arguments. In this case, a simple copy for the aliased type.
static
Params
to_underlying_arguments(Arguments const& args) {
assert(get<1>(args.shape_LSE_partial) <= kMaxSplits);
return {
args.ptr_O_partial,
args.shape_O_partial,
args.stride_O_partial,
args.ptr_LSE_partial,
args.shape_LSE_partial,
args.stride_LSE_partial,
args.ptr_O,
args.stride_O,
args.ptr_LSE,
args.stride_LSE,
cutlass::FastDivmod(get<0>(args.shape_LSE_partial)), cutlass::FastDivmod(get<2>(args.shape_LSE_partial)),
args.cu_seqlens,
args.seqused,
args.num_splits_dynamic_ptr,
args.semaphore_to_reset
};
}
CUTLASS_DEVICE
void
operator()(Params const& params, char* smem_buf) {
SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(smem_buf);
Tensor sLSE = make_tensor(make_smem_ptr(shared_storage.smem_lse_partial.data()), SmemLayoutLSE{});
Tensor sMaxValidSplit = make_tensor(make_smem_ptr(shared_storage.smem_max_valid_split.data()), Shape<Int<kBlockM>>{});
Tensor sO = make_tensor(make_smem_ptr(shared_storage.smem_o_partial.data()), SmemLayoutO{});
int const thread_idx = threadIdx.x;
int const m_block = blockIdx.x;
int const k_block = blockIdx.y;
int const batch = blockIdx.z;
int const num_splits = params.num_splits_dynamic_ptr ? params.num_splits_dynamic_ptr[batch] : get<1>(params.shape_LSE_partial);
if (params.semaphore_to_reset && threadIdx.x == 0 && blockIdx.x == gridDim.x - 1 && blockIdx.y == gridDim.y - 1 && blockIdx.z == gridDim.z - 1) {
cutlass::arch::wait_on_dependent_grids();
*params.semaphore_to_reset = 0;
}
if (num_splits <= 1) { return; }
flash::SeqlenInfo<Varlen, kBlockM> seqlen_info{batch, size<0>(params.shape_LSE_partial), params.cu_seqlens, params.seqused};
int const offset = seqlen_info.offset;
int const seqlen = seqlen_info.seqlen;
int max_idx = seqlen * get<2>(params.shape_LSE_partial);
if constexpr (Varlen) {
if (m_block * kBlockM >= max_idx) { return; }
}
cutlass::FastDivmod seqlen_divmod_dynamic(seqlen);
// Step 1: load LSE_partial from gmem -> smem
Tensor mLSEpartial = make_tensor(make_gmem_ptr(params.ptr_LSE_partial + offset * get<0>(params.stride_LSE_partial)),
select<1, 0, 2, 3>(params.shape_LSE_partial),
select<1, 0, 2, 3>(params.stride_LSE_partial))(_, _, _, !Varlen ? batch : 0); // (num_splits, seqlen, head)
Tensor mLSEpartial_copy = cute::tiled_divide(mLSEpartial, Shape<_1, Int<kGmemElemsPerLoadLSE>>{});
GmemTiledCopyLSE gmem_tiled_copy_LSE;
auto gmem_thr_copy_LSE = gmem_tiled_copy_LSE.get_thread_slice(thread_idx);
Tensor tLSEsLSE = gmem_thr_copy_LSE.partition_D(sLSE);
// Construct identity layout for sLSE
Tensor cLSE = make_identity_tensor(make_shape(size<0>(sLSE), size<1>(sLSE))); // (NUM_SPLITS, BLK_M) -> (num_splits, blk_m)
// Repeat the partitioning with identity layouts
Tensor tLSEcLSE = gmem_thr_copy_LSE.partition_S(cLSE);
cutlass::arch::wait_on_dependent_grids();
#pragma unroll
for (int m = 0; m < size<2>(tLSEcLSE); ++m) {
int mi = int(get<1>(tLSEcLSE(_0{}, _0{}, m)));
int idx = m_block * kBlockM + mi;
if (idx < max_idx) {
int m_idx, bidh;
if constexpr (!Varlen) {
bidh = params.seqlen_divmod.divmod(m_idx, idx);
} else {
bidh = seqlen_divmod_dynamic.divmod(m_idx, idx);
}
Tensor mLSEpartial_cur_copy = mLSEpartial_copy(_, _, m_idx, bidh);
#pragma unroll
for (int s = 0; s < size<1>(tLSEcLSE); ++s) {
int si = get<0>(tLSEcLSE(_0{}, s, _0{}));
// if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && thread_idx < 32) { printf("thread_idx = %d, m = %d, s = %d, addr = %p, bank = %d\n", thread_idx, m, s, reinterpret_cast<float *>(&(tLSEsLSE(_0{}, s, m))), reinterpret_cast<int>(&(tLSEsLSE(_0{}, s, m))) / 4 % 32);}
if (si < num_splits) {
cute::copy(gmem_tiled_copy_LSE, mLSEpartial_cur_copy(_, si), tLSEsLSE(_, s, m));
} else {
cute::fill(tLSEsLSE(_, s, m), -INFINITY);
}
}
} else {
// We don't need to zero out the rest of the LSEs, as we will not write the output to gmem
// cute::fill(tLSEsLSE(_, _, m), -INFINITY);
}
}
if constexpr (Has_cp_async) { cute::cp_async_fence(); }
// Step 2: Load O_partial from gmem -> smem for split = 0, 1, ..., kStages - 2.
// We want these async loads to be in flight as we compute the LSE.
GmemTiledCopyAccum gmem_tiled_copy_O_partial;
auto gmem_thr_copy_O_partial = gmem_tiled_copy_O_partial.get_thread_slice(thread_idx);
// Construct identity layout for gO
Tensor cO = cute::make_identity_tensor(TileShape_MK{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_O_partial.partition_D(cO);
Tensor mOpartial = make_tensor(make_gmem_ptr(params.ptr_O_partial + offset * get<0>(params.stride_O_partial)),
params.shape_O_partial, params.stride_O_partial)(_, _, _, _, !Varlen ? batch : 0); // (seqlen, d, num_splits, head)
// Precompute these values to avoid recomputing them in the loop
Tensor tOmidx = make_tensor<int>(make_shape(size<1>(tOcO)));
Tensor tObidh = make_tensor<int>(make_shape(size<1>(tOcO)));
Tensor tOrOptr = make_tensor<ElementPartial const*>(make_shape(size<1>(tOcO)));
#pragma unroll
for (int m = 0; m < size<1>(tOcO); ++m) {
int mi = get<0>(tOcO(_0{}, m, _0{}));
int idx = m_block * kBlockM + mi;
if constexpr (!Varlen) {
tObidh(m) = params.seqlen_divmod.divmod(tOmidx(m), idx);
} else {
tObidh[m] = seqlen_divmod_dynamic.divmod(tOmidx(m), idx);
}
tOrOptr[m] = &mOpartial(tOmidx(m), k_block * kBlockK, _0{}, tObidh(m));
if (idx >= max_idx) {
tObidh[m] = -1;
}
}
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOcO)));
if constexpr (!(Is_even_K)) {
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(params.shape_O_partial) - k_block * kBlockK; }
}
Tensor tOsOpartial = gmem_thr_copy_O_partial.partition_D(sO);
auto load_O_partial = [&] (int split, int stage) {
Tensor tOsOpartial_cur = tOsOpartial(_, _, _, stage);
#pragma unroll
for (int m = 0; m < size<1>(tOcO); ++m) {
if (tObidh(m) >= 0) {
Tensor mOpartial_cur = make_tensor(make_gmem_ptr(tOrOptr[m]), mOpartial(_0{}, _, _, _0{}).layout());
Tensor mOpartial_cur_copy = cute::tiled_divide(mOpartial_cur, Shape<Int<kGmemElemsPerLoad>>{});
#pragma unroll
for (int k = 0; k < size<2>(tOcO); ++k) {
int k_idx = get<1>(tOcO(_0{}, _0{}, k)) / kGmemElemsPerLoad;
if (Is_even_K || tOpO(k)) {
cute::copy(gmem_tiled_copy_O_partial, mOpartial_cur_copy(_, k_idx, split), tOsOpartial_cur(_, m, k));
}
}
}
}
};
for (int s = 0; s < kStages - 1; ++s) {
if (s < num_splits) { load_O_partial(s, s); }
if constexpr (Has_cp_async) { cute::cp_async_fence(); }
}
// Step 3: load and transpose LSE_partial from smem -> rmem
if constexpr (Has_cp_async) { cutlass::arch::cp_async_wait<kStages - 1>(); }
__syncthreads();
S2RTiledCopyLSE s2r_tiled_copy_LSE;
auto s2r_thr_copy_LSE = s2r_tiled_copy_LSE.get_thread_slice(thread_idx);
Tensor ts2rsLSE = s2r_thr_copy_LSE.partition_S(sLSE);
Tensor ts2rrLSE = make_fragment_like(ts2rsLSE);
cute::copy(s2r_tiled_copy_LSE, ts2rsLSE, ts2rrLSE);
// Step 4: compute the final LSE along the split dimension
Tensor lse_sum = make_tensor<float>(make_shape(size<2>(ts2rrLSE)));
Tensor ts2rcLSE = s2r_thr_copy_LSE.partition_D(cLSE);
// We compute the max valid split for each row to short-circuit the computation later
Tensor max_valid_split = make_tensor<int>(make_shape(size<2>(ts2rrLSE)));
static_assert(CUTE_STATIC_V(size<0>(ts2rrLSE)) == 1);
#pragma unroll
for (int m = 0; m < size<2>(ts2rrLSE); ++m) {
float lse_max = ts2rrLSE(_0{}, _0{}, m);
#pragma unroll
for (int s = 1; s < size<1>(ts2rrLSE); ++s) { lse_max = max(lse_max, ts2rrLSE(_0{}, s, m)); }
MaxOp<float> max_op;
lse_max = Allreduce<kSmemThreadsPerColLSEt>::run(lse_max, max_op);
int max_valid_idx = -1;
#pragma unroll
for (int s = 0; s < size<1>(ts2rrLSE); ++s) {
if (ts2rrLSE(_0{}, s, m) != -INFINITY) { max_valid_idx = get<0>(ts2rcLSE(_0{}, s, _0{})); }
}
MaxOp<int> max_int_op;
max_valid_split[m] = Allreduce<kSmemThreadsPerColLSEt>::run(max_valid_idx, max_int_op);
float lse_max_cur = lse_max == -INFINITY ? 0.0f : lse_max; // In case all local LSEs are -inf
float lse_sum_cur = 0.f;
#pragma unroll
for (int s = 0; s < size<1>(ts2rrLSE); ++s) {
float scale = expf(ts2rrLSE(_0{}, s, m) - lse_max_cur);
lse_sum_cur += scale;
// if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && thread_idx < 32) { printf("thread_idx = %d, m = %d, s = %d, addr = %p, bank = %d\n", thread_idx, m, s, reinterpret_cast<float *>(&(ts2rsLSE(_0{}, s, m))), reinterpret_cast<int>(&(ts2rsLSE(_0{}, s, m))) / 4 % 32);}
// ts2rsLSE(_0{}, m, s) = scale;
ts2rrLSE(_0{}, s, m) = scale;
}
SumOp<float> sum_op;
lse_sum_cur = Allreduce<kSmemThreadsPerColLSEt>::run(lse_sum_cur, sum_op);
lse_sum(m) = logf(lse_sum_cur) + lse_max;
float inv_sum = (lse_sum_cur == 0.f || lse_sum_cur != lse_sum_cur) ? 0.f : 1.f / lse_sum_cur;
#pragma unroll
for (int s = 0; s < size<1>(ts2rrLSE); ++s) { ts2rrLSE(_0{}, s, m) *= inv_sum; }
}
// Store the scales exp(lse - lse_logsum) back to smem
cute::copy(s2r_tiled_copy_LSE, ts2rrLSE, ts2rsLSE);
// Store max_valid_split to smem
#pragma unroll
for (int m = 0; m < size<2>(ts2rrLSE); ++m) {
if (get<0>(ts2rcLSE(_0{}, _0{}, m)) == 0) { // Only the thread responsible for s=0 writes to smem
int mi = int(get<1>(ts2rcLSE(_0{}, _0{}, m)));
if (mi < kBlockM) { sMaxValidSplit[mi] = max_valid_split[m]; }
}
}
// Step 5: store final LSE back to gmem
if (k_block == 0) {
auto shape_LSE = select<0, 2, 3>(params.shape_LSE_partial);
Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE + offset * get<0>(params.stride_LSE)), shape_LSE, params.stride_LSE)(_, _, !Varlen ? batch : 0);
#pragma unroll
for (int m = 0; m < size<2>(ts2rrLSE); ++m) {
if (get<0>(ts2rcLSE(_0{}, _0{}, m)) == 0) { // Only the thread responsible for s=0 writes to gmem
int mi = int(get<1>(ts2rcLSE(_0{}, _0{}, m)));
int idx = m_block * kBlockM + mi;
if (idx < max_idx) {
int m_idx, bidh;
if constexpr (!Varlen) {
bidh = params.seqlen_divmod.divmod(m_idx, idx);
} else {
bidh = seqlen_divmod_dynamic.divmod(m_idx, idx);
}
// printf("thread_idx = %d, m = %d, mi = %d, idx = %d, m_idx = %d, bidh = %d, bidb = %d, lse_sum = %f\n", thread_idx, m, mi, idx, m_idx, bidh, bidb, lse_sum(m));
mLSE(m_idx, bidh) = lse_sum(m);
}
}
}
}
// Step 6: read O_partial from gmem -> smem -> rmem and accumulate the final O
__syncthreads();
int thr_max_valid_split = sMaxValidSplit[get<0>(tOcO(_0{}, _0{}, _0{}))];
#pragma unroll
for (int m = 1; m < size<1>(tOcO); ++m) { thr_max_valid_split = max(thr_max_valid_split, sMaxValidSplit[get<0>(tOcO(_0{}, m, _0{}))]); }
Layout tOrOpartial_layout = gmem_thr_copy_O_partial.partition_S(make_tensor<ElementPartial>(TileShape_MK{})).layout();
Tensor tOrOpartial = make_fragment_like<ElementPartial>(tOrOpartial_layout);
Tensor tOrO = make_fragment_like<float>(tOrOpartial);
clear(tOrO);
int stage_load = kStages - 1, stage_compute = 0;
#pragma unroll 4 // Already tuned for speed
for (int s = 0; s <= thr_max_valid_split; ++s) {
Tensor scale = make_tensor<float>(make_shape(size<1>(tOrOpartial)));
#pragma unroll
for (int m = 0; m < size<1>(tOrOpartial); ++m) { scale(m) = sLSE(s, get<0>(tOcO(_0{}, m, _0{}))); }
if (s + kStages - 1 <= thr_max_valid_split) { load_O_partial(s + kStages - 1, stage_load); }
if constexpr (Has_cp_async) { cute::cp_async_fence(); }
stage_load = stage_load < kStages - 1 ? stage_load + 1 : 0;
if constexpr (Has_cp_async) { cutlass::arch::cp_async_wait<kStages - 1>(); }
// We don't need __syncthreads() because each thread is just reading its own data from smem
cute::copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementPartial>{},
tOsOpartial(_, _, _, stage_compute), tOrOpartial);
stage_compute = stage_compute < kStages - 1 ? stage_compute + 1 : 0;
#pragma unroll
for (int m = 0; m < size<1>(tOrOpartial); ++m) {
if (tObidh(m) >= 0 && scale(m) > 0.f) {
#pragma unroll
for (int k = 0; k < size<2>(tOrOpartial); ++k) {
if (Is_even_K || tOpO(k)) {
Tensor rOpartial = make_tensor_like<float>(tOrOpartial(_, m, k));
flash::convert_type_out(tOrOpartial(_, m, k), rOpartial);
#pragma unroll
for (int i = 0; i < size<0>(tOrOpartial); ++i) {
tOrO(i, m, k) += scale(m) * rOpartial[i];
}
}
}
}
}
}
// Step 7: Write the final O to gmem
Tensor rO = make_tensor_like<Element>(tOrO);
flash::convert_type_out(tOrO, rO);
auto shape_O = make_shape(get<0>(params.shape_O_partial), get<1>(params.shape_O_partial) - k_block * kBlockK, get<3>(params.shape_O_partial), get<4>(params.shape_O_partial));
Tensor mO = make_tensor(make_gmem_ptr(params.ptr_O + offset * get<0>(params.stride_O) + k_block * kBlockK * get<1>(params.stride_O)),
shape_O, params.stride_O)(_, _, _, !Varlen ? batch : 0);
Tensor mO_copy = cute::tiled_divide(mO, Shape<_1, Int<kGmemElemsPerLoad>>{});
GmemTiledCopy gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx);
#pragma unroll
for (int m = 0; m < size<1>(tOcO); ++m) {
if (tObidh(m) >= 0) {
#pragma unroll
for (int k = 0; k < size<2>(tOcO); ++k) {
int k_idx = get<1>(tOcO(_0{}, _0{}, k)) / kGmemElemsPerLoad;
if (Is_even_K || tOpO(k)) {
cute::copy(gmem_tiled_copy_O, rO(_, m, k), mO_copy(_, tOmidx(m), k_idx, tObidh(m)));
}
}
}
}
}
};
} // namespace flash
|