File size: 10,007 Bytes
eb8ddce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#pragma once
#include "cute/tensor.hpp"
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/kernel_hardware_info.h>
#include "seqlen.h"
#include "utils.h"
#include "softmax.h"
namespace flash {
using namespace cute;
template <class CollectiveMainloop_, class CollectiveEpilogue_, class TileScheduler_>
class FlashAttnFwdSm80 {
public:
// Type Aliases
using CollectiveMainloop = CollectiveMainloop_;
using CollectiveEpilogue = CollectiveEpilogue_;
static constexpr bool Is_causal = CollectiveMainloop::Is_causal;
static constexpr bool Is_local = CollectiveMainloop::Is_local;
static_assert(CollectiveMainloop::Varlen == CollectiveEpilogue::Varlen);
static constexpr bool Has_softcap = CollectiveMainloop::Has_softcap;
static constexpr bool Varlen = CollectiveMainloop::Varlen;
static constexpr bool PagedKV = CollectiveMainloop::PagedKV;
static constexpr bool Split = CollectiveMainloop::Split;
static constexpr bool Is_FP8 = CollectiveMainloop::Is_FP8;
static constexpr bool Transpose_V = CollectiveMainloop::Transpose_V;
static constexpr bool AppendKV = CollectiveMainloop::AppendKV;
static constexpr bool PackGQA = CollectiveMainloop::PackGQA;
static constexpr int NumProducerThreads = CollectiveMainloop::NumProducerThreads;
using SeqlenInfo_t = typename CollectiveMainloop::SeqlenInfo_t;
// Mainloop derived types
using TileShape_MNK = typename CollectiveMainloop::TileShape_MNK;
using TiledMma = typename CollectiveMainloop::TiledMma;
using ArchTag = typename CollectiveMainloop::ArchTag;
using MainloopArguments = typename CollectiveMainloop::Arguments;
using MainloopParams = typename CollectiveMainloop::Params;
// Epilogue derived types
using EpilogueArguments = typename CollectiveEpilogue::Arguments;
using EpilogueParams = typename CollectiveEpilogue::Params;
static_assert(ArchTag::kMinComputeCapability >= 80);
using TileScheduler = TileScheduler_;
using TileSchedulerArguments = typename flash::TileSchedulerArguments;
using TileSchedulerParams = typename TileScheduler::Params;
static constexpr uint32_t NumThreads = CUTE_STATIC_V(size(TiledMma{}));
static constexpr uint32_t MaxThreadsPerBlock = CUTE_STATIC_V(size(TiledMma{}));
static constexpr uint32_t MinBlocksPerMultiprocessor = NumThreads == 128 ? 2 : 1;
// Kernel level shared memory storage
// We overlap the shared memory for the mainloop and epilogue. However, we only want smem_o to overlap with smem_v + smem_k and not smem_q
// and nothing else, so we'll pad in case sizeof(smem_o) > sizeof(smem_v) + sizeof(smem_k).
static constexpr int mainloop_smem_padding_ = int(sizeof(typename CollectiveEpilogue::TensorStorage))
- int(sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_v)))
- int(sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_k)));
static constexpr int mainloop_smem_padding = mainloop_smem_padding_ < 0 ? 0 : mainloop_smem_padding_;
struct SharedStorage {
struct TensorStorage : cute::aligned_struct<128> {
union {
struct {
cute::array<uint32_t, mainloop_smem_padding / sizeof(uint32_t)> padding_;
typename CollectiveMainloop::TensorStorage mainloop;
};
// We want smem_o to line up with the start of smem_v
typename CollectiveEpilogue::TensorStorage epilogue;
};
} tensors;
alignas(16) typename TileScheduler::SharedStorage smem_scheduler;
};
static constexpr int SharedStorageSize = sizeof(SharedStorage);
// Device side arguments
struct Arguments {
MainloopArguments mainloop{};
EpilogueArguments epilogue{};
cutlass::KernelHardwareInfo hw_info{};
TileSchedulerArguments scheduler{};
};
// Kernel entry point API
struct Params {
MainloopParams mainloop{};
EpilogueParams epilogue{};
cutlass::KernelHardwareInfo hw_info{};
TileSchedulerParams scheduler{};
};
//
// Methods
//
// Convert to underlying arguments. In this case, a simple copy for the aliased type.
static
Params
to_underlying_arguments(Arguments const& args) {
CUTLASS_TRACE_HOST("to_underlying_arguments():");
// Get SM count if needed, otherwise use user supplied SM count
int sm_count = args.hw_info.sm_count;
if (sm_count <= 0) {
CUTLASS_TRACE_HOST(" WARNING: Arguments do not include a valid SM count.\n"
" For optimal performance, populate the arguments KernelHardwareInfo struct with the SM count.");
sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(args.hw_info.device_id);
}
CUTLASS_TRACE_HOST("to_underlying_arguments(): Setting persistent grid SM count to " << sm_count);
cutlass::KernelHardwareInfo hw_info{args.hw_info.device_id, sm_count};
return {
CollectiveMainloop::to_underlying_arguments(args.mainloop),
CollectiveEpilogue::to_underlying_arguments(args.epilogue),
hw_info,
TileScheduler::to_underlying_arguments(args.scheduler)
};
}
// Computes the kernel launch grid shape based on runtime parameters
static dim3
get_grid_shape(Params const& params) {
return TileScheduler::get_grid_shape(params.scheduler, params.hw_info.sm_count * MinBlocksPerMultiprocessor);
}
static dim3
get_block_shape() {
return dim3(MaxThreadsPerBlock, 1, 1);
}
CUTLASS_DEVICE
void
operator()(Params const& params, char* smem_buf) {
static constexpr int kBlockM = get<0>(TileShape_MNK{});
SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(smem_buf);
CollectiveMainloop mainloop;
CollectiveEpilogue epilogue;
TileScheduler scheduler(reinterpret_cast<typename TileScheduler::SharedStorage*>(&shared_storage.smem_scheduler));
// Initialize matmul objects.
TiledMma tiled_mma;
scheduler.init_consumer();
int warp_idx = cutlass::canonical_warp_idx_sync();
CUTLASS_PRAGMA_NO_UNROLL
for (auto work_tile_info = warp_idx == 0 ? scheduler.template get_initial_work</*IsProducerWarp=*/true>(params.scheduler) : scheduler.template get_initial_work</*IsProducerWarp=*/false>(params.scheduler);
work_tile_info.is_valid(params.scheduler);
work_tile_info = warp_idx == 0 ? scheduler.template get_next_work</*IsProducerWarp=*/true>(params.scheduler, work_tile_info) : scheduler.template get_next_work</*IsProducerWarp=*/false>(params.scheduler, work_tile_info)) {
// Attention output (GEMM-II) accumulator.
Tensor tOrO = partition_fragment_C(tiled_mma, select<0, 2>(TileShape_MNK{}));
float softmax_scale_log2 = params.mainloop.softmax_scale_log2;
// If there's tanh softcap, the scaling will be done before tanh.
auto block_coord = work_tile_info.get_block_coord(params.scheduler);
int const bidb = get<2>(block_coord);
if constexpr (Is_FP8 && !Has_softcap) {
int const bidh = get<1>(block_coord);
int const bidh_kv = !PackGQA ? params.mainloop.qhead_per_khead_divmod.divide(bidh) : bidh;
float const q_descale = params.mainloop.ptr_q_descale == nullptr ? 1.0f : params.mainloop.ptr_q_descale[bidb * get<0>(params.mainloop.stride_q_descale) + bidh_kv * get<1>(params.mainloop.stride_q_descale)];
float const k_descale = params.mainloop.ptr_k_descale == nullptr ? 1.0f : params.mainloop.ptr_k_descale[bidb * get<0>(params.mainloop.stride_k_descale) + bidh_kv * get<1>(params.mainloop.stride_k_descale)];
softmax_scale_log2 *= q_descale * k_descale;
}
flash::Softmax<2 * (2 * kBlockM / NumThreads), /*Max_offset=*/!Is_FP8 ? 0 : 8> softmax(softmax_scale_log2);
SeqlenInfo_t seqlen_info{
bidb,
get<0>(params.mainloop.shape_Q),
!PagedKV ? size<0>(params.mainloop.shape_K) : size<0>(params.mainloop.shape_K) * size<1>(params.mainloop.shape_pagetable),
get<0>(params.mainloop.shape_K_new),
params.mainloop.cu_seqlens_q, params.mainloop.cu_seqlens_k, params.mainloop.cu_seqlens_k_new,
params.mainloop.seqused_q, params.mainloop.seqused_k, params.mainloop.leftpad_k,
params.mainloop.seqlens_rotary
};
if constexpr (AppendKV) {
bool tile_new_valid = mainloop.store_kv_new(
params.mainloop, threadIdx.x, shared_storage, seqlen_info, block_coord);
if (tile_new_valid) { __syncthreads(); }
}
bool tile_valid = mainloop.mma(
params.mainloop, tOrO, softmax, threadIdx.x, seqlen_info, block_coord,
shared_storage);
scheduler.prefetch_next_work(params.scheduler, work_tile_info);
if (tile_valid) {
// if (threadIdx.x == 128) { printf("Before epilogue, bid.x = %d, bid.y = %d, bid.z = %d, m_block = %d, bidb = %d, split_idx = %d\n", blockIdx.x, blockIdx.y, blockIdx.z, m_block, bidb, split_idx); }
epilogue.store(params.epilogue, tOrO, softmax.row_sum, shared_storage, tiled_mma,
threadIdx.x, block_coord);
} else {
// Write 0 to gO and -inf to gLSE.
epilogue.store_zero(params.epilogue, threadIdx.x, block_coord);
}
}
}
};
} // namespace flash
|