kernel
File size: 26,008 Bytes
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

#include <cutlass/cutlass.h>
#include <cutlass/arch/reg_reconfig.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include <cutlass/kernel_hardware_info.h>
#include "cutlass/pipeline/pipeline.hpp"

#include "cutlass/arch/grid_dependency_control.h"

#include "seqlen.h"
#include "utils.h"
#include "softmax.h"

namespace flash {

using namespace cute;

template <class CollectiveMainloop_, class CollectiveEpilogue_, class TileScheduler_>
class FlashAttnFwdSm90 {

public:

    // Type Aliases
    using CollectiveMainloop = CollectiveMainloop_;
    using CollectiveEpilogue = CollectiveEpilogue_;
    static constexpr bool Is_causal = CollectiveMainloop::Is_causal;
    static constexpr bool Is_local = CollectiveMainloop::Is_local;
    static_assert(CollectiveMainloop::Varlen == CollectiveEpilogue::Varlen);
    static constexpr bool Has_softcap = CollectiveMainloop::Has_softcap;
    static constexpr bool Varlen = CollectiveMainloop::Varlen;
    static constexpr bool Split = CollectiveMainloop::Split;
    static constexpr bool Is_FP8 = CollectiveMainloop::Is_FP8;
    static constexpr bool Transpose_V = CollectiveMainloop::Transpose_V;
    static constexpr bool AppendKV = CollectiveMainloop::AppendKV;
    static constexpr bool HasQv = CollectiveMainloop::HasQv;
    static constexpr bool Use_TMA_Q = CollectiveMainloop::Use_TMA_Q;
    static constexpr bool Use_TMA_KV = CollectiveMainloop::Use_TMA_KV;
    static constexpr bool Use_TMA_O = CollectiveEpilogue::Use_TMA_O;
    static constexpr bool PackGQA = CollectiveMainloop::PackGQA;
    static constexpr int NumProducerThreads = CollectiveMainloop::NumProducerThreads;
    static constexpr bool SameHeadDim = CollectiveMainloop::SameHeadDim;
    static constexpr bool LargeHeadDimV = CollectiveMainloop::LargeHeadDimV;
    static_assert(CollectiveMainloop::LargeHeadDimV == CollectiveEpilogue::LargeHeadDimV);
    using SeqlenInfo_t = typename CollectiveMainloop::SeqlenInfo_t;

    // Mainloop derived types
    using TileShape_MNK_PV = typename CollectiveMainloop::TileShape_MNK_PV;
    using TiledMmaPV = typename CollectiveMainloop::TiledMmaPV;
    using ArchTag = typename CollectiveMainloop::ArchTag;
    using ClusterShape = typename CollectiveMainloop::ClusterShape;
    using MainloopArguments = typename CollectiveMainloop::Arguments;
    using MainloopParams = typename CollectiveMainloop::Params;
    using BarrierQ = std::conditional_t<Use_TMA_Q, cutlass::arch::ClusterTransactionBarrier, cutlass::arch::ClusterBarrier>;

    // Epilogue derived types
    using EpilogueArguments = typename CollectiveEpilogue::Arguments;
    using EpilogueParams = typename CollectiveEpilogue::Params;

    static_assert(ArchTag::kMinComputeCapability >= 90);

    using TileScheduler = TileScheduler_;
    using TileSchedulerArguments = typename flash::TileSchedulerArguments;
    using TileSchedulerParams = typename TileScheduler::Params;

    static constexpr uint32_t NumLoadWarpGroups = 1;
    static constexpr uint32_t NumMmaWarpGroups = CUTE_STATIC_V(size(TiledMmaPV{})) / cutlass::NumThreadsPerWarpGroup;
    static constexpr uint32_t MaxThreadsPerBlock = CUTE_STATIC_V(size(TiledMmaPV{})) + (NumLoadWarpGroups * cutlass::NumThreadsPerWarpGroup);
    static constexpr uint32_t MinBlocksPerMultiprocessor = 1;
    static_assert(NumMmaWarpGroups == 1 || NumMmaWarpGroups == 2 || NumMmaWarpGroups == 3);

    /// Register requirement for Load and Math WGs
    // If we use cp.async to load K and V, we need more registers for the producer WG.
    static constexpr uint32_t LoadRegisterRequirement = NumMmaWarpGroups == 1 ? 56 : (NumMmaWarpGroups == 2 ? (Use_TMA_KV ? 24 : 40) : 32);
    static constexpr uint32_t MmaRegisterRequirement = NumMmaWarpGroups == 1 ? 256 : (NumMmaWarpGroups == 2 ? (Use_TMA_KV ? 240 : 232) : 160);
    // If you want to print from the producer warp, you'd need to increase the number of registers
    // Otherwise you'll get CUDA error.
    // static constexpr uint32_t LoadRegisterRequirement = 40;
    // static constexpr uint32_t MmaRegisterRequirement = NumMmaWarpGroups == 2 ? 232 : 152;

    // Kernel level shared memory storage
    // We overlap the shared memory for the mainloop and epilogue. However, we only want smem_o to overlap with smem_v
    // and nothing else, so we'll pad in case sizeof(smem_o) > sizeof(smem_v).
    static constexpr int mainloop_smem_padding_ = int(sizeof(typename CollectiveEpilogue::TensorStorage)) - int(sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_v)));
    static constexpr int mainloop_smem_padding = mainloop_smem_padding_ < 0 ? 0 : mainloop_smem_padding_;
    struct SharedStorage {
        struct TensorStorage : cute::aligned_struct<128, _1> {
            union {
                struct {
                    cute::array<uint32_t, mainloop_smem_padding / sizeof(uint32_t)> padding_;
                    typename CollectiveMainloop::TensorStorage mainloop;
                };
                // We want smem_o to line up with the start of smem_v
                typename CollectiveEpilogue::TensorStorage epilogue;
            };
        } tensors;
        struct PipelineStorage : cute::aligned_struct<16, _1> {
            alignas(16) BarrierQ barrier_Q;
            alignas(16) BarrierQ barrier_Qv;
            alignas(16) cutlass::arch::ClusterBarrier barrier_O;
            alignas(16) typename CollectiveMainloop::MainloopPipelineK::SharedStorage pipeline_k;
            alignas(16) typename CollectiveMainloop::MainloopPipelineV::SharedStorage pipeline_v;
            alignas(16) typename CollectiveMainloop::MainloopPipelineVt::SharedStorage pipeline_vt;
            alignas(16) typename CollectiveMainloop::MainloopPipelineKVNew::SharedStorage pipeline_k_new;
            alignas(16) typename CollectiveMainloop::MainloopPipelineKVNew::SharedStorage pipeline_v_new;
            alignas(16) typename TileScheduler::SharedStorage smem_scheduler;
        } pipelines;

    };

    static constexpr int SharedStorageSize = sizeof(SharedStorage);

    // Device side arguments
    struct Arguments {
        MainloopArguments mainloop{};
        EpilogueArguments epilogue{};
        cutlass::KernelHardwareInfo hw_info{};
        TileSchedulerArguments scheduler{};
    };

    // Kernel entry point API
    struct Params {
        MainloopParams mainloop{};
        EpilogueParams epilogue{};
        cutlass::KernelHardwareInfo hw_info{};
        TileSchedulerParams scheduler{};
    };

    //
    // Methods
    //

    // Convert to underlying arguments. In this case, a simple copy for the aliased type.
    static
    Params
    to_underlying_arguments(Arguments const& args) {
        CUTLASS_TRACE_HOST("to_underlying_arguments():");

        // Get SM count if needed, otherwise use user supplied SM count
        int sm_count = args.hw_info.sm_count;
        if (sm_count <= 0) {
            CUTLASS_TRACE_HOST("  WARNING: Arguments do not include a valid SM count.\n"
                "  For optimal performance, populate the arguments KernelHardwareInfo struct with the SM count.");
            sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(args.hw_info.device_id);
        }

        CUTLASS_TRACE_HOST("to_underlying_arguments(): Setting persistent grid SM count to " << sm_count);

        cutlass::KernelHardwareInfo hw_info{args.hw_info.device_id, sm_count};
        return {
            CollectiveMainloop::to_underlying_arguments(args.mainloop),
            CollectiveEpilogue::to_underlying_arguments(args.epilogue),
            hw_info,
            TileScheduler::to_underlying_arguments(args.scheduler)
        };
    }

    // Computes the kernel launch grid shape based on runtime parameters
    static dim3
    get_grid_shape(Params const& params) {
        return TileScheduler::get_grid_shape(params.scheduler, params.hw_info.sm_count);
    }

    static dim3
    get_block_shape() {
        return dim3(MaxThreadsPerBlock, 1, 1);
    }

    CUTLASS_DEVICE
    void
    operator()(Params const& params, char* smem_buf) {

        static constexpr int NumMmaThreads = NumMmaWarpGroups * cutlass::NumThreadsPerWarpGroup;
        static constexpr int MmaThreadOffset = NumLoadWarpGroups * cutlass::NumThreadsPerWarpGroup;
        static constexpr int kBlockM = get<0>(TileShape_MNK_PV{});

        using MainloopPipelineK = typename CollectiveMainloop::MainloopPipelineK;
        using MainloopPipelineV = typename CollectiveMainloop::MainloopPipelineV;
        using MainloopPipelineVt = typename CollectiveMainloop::MainloopPipelineVt;
        using MainloopPipelineKVNew = typename CollectiveMainloop::MainloopPipelineKVNew;
        using PipelineState = typename CollectiveMainloop::PipelineState;
        using PipelineParamsK = typename MainloopPipelineK::Params;
        using PipelineParamsV = typename MainloopPipelineV::Params;
        using PipelineParamsVt = typename MainloopPipelineVt::Params;
        using PipelineParamsKVNew = typename MainloopPipelineKVNew::Params;

        SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(smem_buf);

        int const lane_predicate = cute::elect_one_sync();
        int const warp_idx = cutlass::canonical_warp_idx_sync();

        // Issue Tma Descriptor Prefetch from a single thread
        if (warp_idx == 0 && lane_predicate) {
            CollectiveMainloop::prefetch_tma_descriptors(params.mainloop);
            CollectiveEpilogue::prefetch_tma_descriptors(params.epilogue);
        }

        // Obtain warp index
        int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;
        int warp_group_idx = cutlass::canonical_warp_group_idx();

        if (warp_idx == 0 && lane_predicate) {
            shared_storage.pipelines.barrier_Q.init(Use_TMA_Q ? 1 : NumProducerThreads /*numThreads*/);
            if constexpr (HasQv) {
                shared_storage.pipelines.barrier_Qv.init(Use_TMA_Q ? 1 : NumProducerThreads /*numThreads*/);
            }
            shared_storage.pipelines.barrier_O.init(size(ClusterShape{}) * (Use_TMA_O ? 1 : NumMmaThreads) /*numThreads*/);
        }

        // We're counting on pipeline_k to call cutlass::arch::fence_barrier_init();
        PipelineParamsK pipeline_params_k;
        pipeline_params_k.role = warp_group_idx == 0
            ? MainloopPipelineK::ThreadCategory::Producer
            : MainloopPipelineK::ThreadCategory::Consumer;
        if constexpr (Use_TMA_KV) {
            pipeline_params_k.transaction_bytes = CollectiveMainloop::TmaTransactionBytesK;
            pipeline_params_k.is_leader = warp_group_thread_idx == 0;
            pipeline_params_k.num_consumers = !LargeHeadDimV ? NumMmaThreads : cutlass::NumThreadsPerWarpGroup;
        } else {
            pipeline_params_k.consumer_arv_count = !LargeHeadDimV ? NumMmaThreads : cutlass::NumThreadsPerWarpGroup;
            pipeline_params_k.producer_arv_count = NumProducerThreads;
        }

        static_assert(is_same_v<PipelineParamsK, PipelineParamsVt>);
        PipelineParamsVt pipeline_params_vt = pipeline_params_k;
        if constexpr (Use_TMA_KV && !SameHeadDim) {
            pipeline_params_vt.transaction_bytes = CollectiveMainloop::TmaTransactionBytesV;
            if constexpr (LargeHeadDimV) { pipeline_params_vt.num_consumers = NumMmaThreads; }
        } else {
            if constexpr (LargeHeadDimV) { pipeline_params_vt.consumer_arv_count = NumMmaThreads; }
        }

        MainloopPipelineK pipeline_k = [&] {
            if constexpr (Use_TMA_KV) {
                return MainloopPipelineK(shared_storage.pipelines.pipeline_k, pipeline_params_k, ClusterShape{});
            } else {
                return MainloopPipelineK(shared_storage.pipelines.pipeline_k, pipeline_params_k);
            }
        }();
        // MainloopPipelineV pipeline_v(shared_storage.pipelines.pipeline_v, pipeline_params_v, ClusterShape{});
        MainloopPipelineV pipeline_v = [&] {
            if constexpr (!Transpose_V) {
                static_assert(is_same_v<PipelineParamsK, PipelineParamsV>);
                if constexpr (Use_TMA_KV) {
                    return MainloopPipelineV(shared_storage.pipelines.pipeline_v, pipeline_params_vt, ClusterShape{});
                } else {
                    return MainloopPipelineV(shared_storage.pipelines.pipeline_v, pipeline_params_vt);
                }
            } else {
                PipelineParamsV pipeline_params_v;
                pipeline_params_v.role = warp_group_idx == 0
                    ? MainloopPipelineV::ThreadCategory::Producer
                    : MainloopPipelineV::ThreadCategory::Consumer;
                pipeline_params_v.producer_arv_count = NumProducerThreads;
                pipeline_params_v.consumer_arv_count = NumMmaThreads;
                return MainloopPipelineV(shared_storage.pipelines.pipeline_v, pipeline_params_v);
            }
        }();
        // If we need to transpose V (e.g. FP8 and V is row-major), we use pipeline_vt for the TMA, then
        // the producer WG will read from pipeline_vt and write to pipeline_v.
        // If we don't need to transpose V, we use pipeline_v for the TMA, and pipeline_vt won't be used.
        // Technically for pipeline_params_vt, warp0 of WG0 is the producer and all of WG0 are consumers.
        // However, the thread role isn't used in the pipeline implementation.
        MainloopPipelineVt pipeline_vt = [&] {
            if constexpr (Use_TMA_KV) {
                pipeline_params_vt.num_consumers = NumProducerThreads; // TMA_V is only consumed by the producer WG
                return MainloopPipelineVt(shared_storage.pipelines.pipeline_vt, pipeline_params_vt, ClusterShape{});
            } else {
                pipeline_params_vt.consumer_arv_count = NumProducerThreads; // TMA_V is only consumed by the producer WG
                return MainloopPipelineVt(shared_storage.pipelines.pipeline_vt, pipeline_params_vt);
            }
        }();

        PipelineParamsKVNew pipeline_params_kv_new;
        pipeline_params_kv_new.role = warp_group_idx == 0
            ? MainloopPipelineKVNew::ThreadCategory::Producer
            : MainloopPipelineKVNew::ThreadCategory::Consumer;
        pipeline_params_kv_new.transaction_bytes = CollectiveMainloop::TmaTransactionBytesK;
        pipeline_params_kv_new.is_leader = warp_group_thread_idx == 0;
        pipeline_params_kv_new.num_consumers = NumMmaThreads;
        auto pipeline_k_new = cute::conditional_return<AppendKV>(MainloopPipelineKVNew(shared_storage.pipelines.pipeline_k_new, pipeline_params_kv_new, ClusterShape{}), nullptr);
        if constexpr (!SameHeadDim) {
            pipeline_params_kv_new.transaction_bytes = CollectiveMainloop::TmaTransactionBytesV;
        }
        auto pipeline_v_new = cute::conditional_return<AppendKV>(MainloopPipelineKVNew(shared_storage.pipelines.pipeline_v_new, pipeline_params_kv_new, ClusterShape{}), nullptr);

        CollectiveMainloop mainloop;
        CollectiveEpilogue epilogue;

        // We need this to guarantee that the Pipeline init is visible to all producers and consumer blocks in the Cluster
        if constexpr (size(ClusterShape{}) > 1) {
            cute::cluster_arrive_relaxed();
            cute::cluster_wait();
        } else {
            __syncthreads();
        }

        TileScheduler scheduler(reinterpret_cast<typename TileScheduler::SharedStorage*>(&shared_storage.pipelines.smem_scheduler));

        if (warp_group_idx == 0) {  // Producer
            cutlass::arch::warpgroup_reg_dealloc<LoadRegisterRequirement>();

            // The pipelines for AppendKV and main attention are different, since e.g. main attention
            // might use cp.async to load KV (if PagedKVNonTMA) while AppendKV always uses TMA to load
            // KV_new. Since the pipeline states are different, we have to manually sync to make
            // sure the two pipelines don't race when accessing smem_k and smem_v.
            PipelineState smem_pipe_write = cutlass::make_producer_start_state<MainloopPipelineK>();
            PipelineState smem_pipe_write_new = cutlass::make_producer_start_state<MainloopPipelineKVNew>();
            int work_idx = 0;
            int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
            static constexpr bool SingleProducerWarp = NumProducerThreads == cutlass::NumThreadsPerWarp;
            if constexpr (SingleProducerWarp) {
                if (warp_idx_in_warpgroup != 0) { return; }
            }
            if (!SingleProducerWarp && warp_idx_in_warpgroup != 0) { scheduler.init_consumer(); }

            cutlass::arch::wait_on_dependent_grids();

            // Load Q, K, V
            for (auto work_tile_info = SingleProducerWarp || warp_idx_in_warpgroup == 0 ? scheduler.template get_initial_work</*IsProducerWarp=*/true>(params.scheduler) : scheduler.template get_initial_work</*IsProducerWarp=*/false>(params.scheduler);
                 work_tile_info.is_valid(params.scheduler);
                 work_tile_info = SingleProducerWarp || warp_idx_in_warpgroup == 0 ? scheduler.template get_next_work</*IsProducerWarp=*/true>(params.scheduler, work_tile_info) : scheduler.template get_next_work</*IsProducerWarp=*/false>(params.scheduler, work_tile_info)) {

                auto block_coord = work_tile_info.get_block_coord(params.scheduler);
                SeqlenInfo_t seqlen_info{
                    get<2>(block_coord) /*bidb*/,
                    get<0>(params.mainloop.shape_Q),
                    !params.mainloop.ptr_pagetable ? size<0>(params.mainloop.shape_K) : size<0>(params.mainloop.shape_K) * size<1>(params.mainloop.shape_pagetable),
                    get<0>(params.mainloop.shape_K_new),
                    params.mainloop.cu_seqlens_q, params.mainloop.cu_seqlens_k, params.mainloop.cu_seqlens_k_new,
                    params.mainloop.seqused_q, params.mainloop.seqused_k, params.mainloop.leftpad_k,
                    params.mainloop.seqlens_rotary
                };
                if constexpr (AppendKV) {
                    bool tile_new_valid = mainloop.load_kv_new(
                        params.mainloop, pipeline_k_new, pipeline_v_new,
                        smem_pipe_write_new, shared_storage, seqlen_info, block_coord, work_idx);
                    if (tile_new_valid) {
                        // if (threadIdx.x == 0) { printf("Producer: Before sync\n"); }
                        cutlass::arch::NamedBarrier::sync(NumMmaThreads + NumProducerThreads, static_cast<uint32_t>(FwdNamedBarriers::AppendKV) /*id*/);
                        // if (threadIdx.x == 0) { printf("Producer: After sync\n"); }
                    }
                }
                auto scheduler_prefetch = [&scheduler, &params, &work_tile_info]() {
                    scheduler.prefetch_next_work(params.scheduler, work_tile_info);
                };
                // pipeline_vt won't be used if we don't need to transpose V.
                mainloop.load(params.mainloop, pipeline_k, pipeline_v, pipeline_vt, smem_pipe_write,
                                         shared_storage, scheduler_prefetch, seqlen_info, block_coord, work_idx);
            }
            mainloop.load_tail(pipeline_k, pipeline_v, pipeline_vt, smem_pipe_write, shared_storage, work_idx);
        } else {  // Consumer
            cutlass::arch::warpgroup_reg_alloc<MmaRegisterRequirement>();

            // Initialize matmul objects.
            TiledMmaPV tiled_mma_pv;

            PipelineState smem_pipe_read;
            PipelineState smem_pipe_read_new;
            // We don't need separate variables smem_pipe_release_k and smem_pipe_release_v
            // (like in Cutlass's gemm) because the read and release pipeline states are always the same.

            scheduler.init_consumer();
            mainloop.mma_init();

            int work_idx = 0;
            CUTLASS_PRAGMA_NO_UNROLL
            for (auto work_tile_info = scheduler.template get_initial_work</*IsProducerWarp=*/false>(params.scheduler);
                 work_tile_info.is_valid(params.scheduler);
                 // get_next_work will be called before the epilogue
                 ) {
                auto block_coord = work_tile_info.get_block_coord(params.scheduler);
                int const bidb = get<2>(block_coord);
                SeqlenInfo_t seqlen_info{
                    bidb,
                    get<0>(params.mainloop.shape_Q),
                    !params.mainloop.ptr_pagetable ? size<0>(params.mainloop.shape_K) : size<0>(params.mainloop.shape_K) * size<1>(params.mainloop.shape_pagetable),
                    get<0>(params.mainloop.shape_K_new),
                    params.mainloop.cu_seqlens_q, params.mainloop.cu_seqlens_k, params.mainloop.cu_seqlens_k_new,
                    params.mainloop.seqused_q, params.mainloop.seqused_k, params.mainloop.leftpad_k,
                    params.mainloop.seqlens_rotary
                };
                if constexpr (AppendKV) {
                    bool tile_new_valid = mainloop.store_kv_new(
                        params.mainloop, pipeline_k_new, pipeline_v_new, smem_pipe_read_new,
                        threadIdx.x - MmaThreadOffset, shared_storage, seqlen_info, block_coord);
                    if (tile_new_valid) {
                        // if (threadIdx.x == 128) { printf("Consumer: Before sync\n"); }
                        // We need this sync so that the gmem write from the consumers is visible to the producer
                        // that might do TMA read after that.
                        asm volatile ("fence.proxy.async.global;");
                        cutlass::arch::NamedBarrier::arrive(NumMmaThreads + NumProducerThreads, static_cast<uint32_t>(FwdNamedBarriers::AppendKV) /*id*/);
                        // arrive is enough, we don't need sync. The producer will sync, which means
                        // after that sync we're guaranteed that the AppendKV pipeline have finished
                        // loading and consumer smem_k and smem_v.
                        // if (threadIdx.x == 128) { printf("Consumer: After sync\n"); }
                    }
                }
                // If there's tanh softcap, the scaling will be done before tanh.
                float softmax_scale_log2 = params.mainloop.softmax_scale_log2;
                if constexpr (Is_FP8 && !Has_softcap) {
                    int const bidh = get<1>(block_coord);
                    int const bidh_kv = !PackGQA ? params.mainloop.qhead_per_khead_divmod.divide(bidh) : bidh;
                    float const q_descale = params.mainloop.ptr_q_descale == nullptr ? 1.0f : params.mainloop.ptr_q_descale[bidb * get<0>(params.mainloop.stride_q_descale) + bidh_kv * get<1>(params.mainloop.stride_q_descale)];
                    float const k_descale = params.mainloop.ptr_k_descale == nullptr ? 1.0f : params.mainloop.ptr_k_descale[bidb * get<0>(params.mainloop.stride_k_descale) + bidh_kv * get<1>(params.mainloop.stride_k_descale)];
                    softmax_scale_log2 *= q_descale * k_descale;
                }
                flash::Softmax<!LargeHeadDimV ? 2 * (2 * kBlockM / NumMmaThreads) : 2, /*Max_offset=*/!Is_FP8 ? 0 : 8> softmax(softmax_scale_log2);
                // Attention output (GEMM-II) accumulator.
                Tensor tOrO = partition_fragment_C(tiled_mma_pv, select<0, 1>(TileShape_MNK_PV{}));
                bool tile_valid;
                if constexpr (!LargeHeadDimV) {
                    tile_valid = mainloop.mma(
                        params.mainloop, pipeline_k, pipeline_v, smem_pipe_read,
                        tOrO, softmax, threadIdx.x - MmaThreadOffset, work_idx, seqlen_info, block_coord, shared_storage);
                } else {  // mma_pv might not compile if !LargeHeadDimV
                    if (warp_group_idx == 1) {
                        tile_valid = mainloop.mma(
                            params.mainloop, pipeline_k, pipeline_v, smem_pipe_read,
                            tOrO, softmax, threadIdx.x - MmaThreadOffset, work_idx, seqlen_info, block_coord, shared_storage);
                    } else {
                        tile_valid = mainloop.mma_pv(
                            params.mainloop, pipeline_v, smem_pipe_read,
                            tOrO, softmax, threadIdx.x - MmaThreadOffset, seqlen_info, block_coord, shared_storage);
                    }
                }
                // Do this here before the epilogue so that the next tile is ready to go.
                work_tile_info = scheduler.template get_next_work</*IsProducerWarp=*/false>(params.scheduler, work_tile_info);
                if constexpr (Split && Varlen) {
                    if (!work_tile_info.is_valid(params.scheduler)) {  // Last tile
                        cutlass::arch::launch_dependent_grids();
                    }
                }
                if (tile_valid) {
                    // if (threadIdx.x == 128) { printf("Before epilogue, bid.x = %d, bid.y = %d, bid.z = %d, m_block = %d, bidb = %d, split_idx = %d\n", blockIdx.x, blockIdx.y, blockIdx.z, m_block, bidb, split_idx); }
                    epilogue.store(params.epilogue, tOrO, softmax.row_sum, shared_storage, tiled_mma_pv,
                                   threadIdx.x - MmaThreadOffset, block_coord);
                } else {
                    // Write 0 to gO and -inf to gLSE.
                    epilogue.store_zero(params.epilogue, threadIdx.x - MmaThreadOffset, block_coord);
                }
            }
            epilogue.store_tail();
        }

    }

};

} // namespace flash