kernel
File size: 15,126 Bytes
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

#include "cutlass/cutlass.h"
#include "cutlass/device_kernel.h"  // For device_kernel
#include <cutlass/kernel_hardware_info.h>
#include "cutlass/cluster_launch.hpp"
#include "cutlass/kernel_launch.h"

#include "static_switch.h"
#include "flash.h"
#include "tile_size.h"
#include "tile_scheduler.hpp"
#include "flash_fwd_kernel_sm90.h"
#include "flash_fwd_kernel_sm80.h"
#include "mainloop_fwd_sm90_tma_gmma_ws.hpp"
#include "mainloop_fwd_sm80.hpp"
#include "epilogue_fwd.hpp"

using namespace cute;

template <int Arch, int kHeadDim, int kHeadDimV, int ClusterM, typename Element, typename ElementOut,
          bool Is_causal, bool Is_local, bool Has_softcap, bool Varlen, bool PagedKVNonTMA, bool AppendKV, bool HasQv,
          bool PackGQA, bool Split, bool V_colmajor>
void run_flash_fwd(Flash_fwd_params &params, cudaStream_t stream) {
    static_assert(!(Is_causal && Is_local), "Causal and Local cannot be enabled at the same time");
    static_assert(!(AppendKV && V_colmajor), "AppendKV and V_colmajor cannot be enabled at the same time");
    static_assert(!(AppendKV && !Varlen), "AppendKV requires Varlen");
    static constexpr bool Is_FP8 = cute::is_same_v<Element, cutlass::float_e4m3_t> || cute::is_same_v<Element, cutlass::float_e5m2_t>;
    static constexpr bool FP8_TransposeV = Is_FP8 && !V_colmajor;
    using ArchTag = std::conditional_t<Arch >= 90, cutlass::arch::Sm90, cutlass::arch::Sm80>;

    // Can't use structured binding since it's not compatible with constexpr
    static constexpr std::tuple<int, int, bool, bool> kBlockMN_RS_IntraWGOverlap = tile_size_fwd_sm90(kHeadDim, kHeadDimV, Is_causal, Is_local, sizeof(Element) /*element_size*/, V_colmajor, PagedKVNonTMA, Has_softcap);
    static constexpr std::tuple<int, int, int, int, bool> kBlockMN_kNWarps_Stages_RS = tile_size_fwd_sm8x(Arch == 86 || Arch == 89, kHeadDim, kHeadDimV, Is_causal, Is_local, sizeof(Element) /*element_size*/, PagedKVNonTMA, Varlen && Split, Has_softcap, AppendKV);
    static constexpr int kBlockM = Arch >= 90 ? std::get<0>(kBlockMN_RS_IntraWGOverlap) : std::get<0>(kBlockMN_kNWarps_Stages_RS);
    static constexpr int kBlockN = Arch >= 90 ? std::get<1>(kBlockMN_RS_IntraWGOverlap) : std::get<1>(kBlockMN_kNWarps_Stages_RS);
    static constexpr bool MmaPV_is_RS = std::get<2>(kBlockMN_RS_IntraWGOverlap);
    static constexpr bool IntraWGOverlap = std::get<3>(kBlockMN_RS_IntraWGOverlap);
    static constexpr int kNWarps = std::get<2>(kBlockMN_kNWarps_Stages_RS);
    static constexpr int kStages = Arch >= 90 ? 2 : std::get<3>(kBlockMN_kNWarps_Stages_RS);
    static constexpr bool Q_in_regs = Arch >= 90 ? false : std::get<4>(kBlockMN_kNWarps_Stages_RS);

    using TileShape_MNK = cute::Shape<Int<kBlockM>, Int<kBlockN>, Int<kHeadDim>>;
    using TileShape_MNK_PV = cute::Shape<Int<kBlockM>, Int<kHeadDimV>, Int<kBlockN>>;
    using ClusterShape = cute::Shape<Int<ClusterM>, _1, _1>;
    using CollectiveMainloop = std::conditional_t<
        Arch >= 90,
        flash::CollectiveMainloopFwdSm90<kStages, ClusterShape, TileShape_MNK, kHeadDimV, Element, float, cutlass::arch::Sm90, Is_causal, Is_local, Has_softcap, Varlen, PagedKVNonTMA, AppendKV, HasQv, MmaPV_is_RS, IntraWGOverlap, PackGQA, Split, V_colmajor>,
        flash::CollectiveMainloopFwdSm80<kNWarps, kStages, Q_in_regs, TileShape_MNK, kHeadDimV, Element, float, cutlass::arch::Sm80, Is_causal, Is_local, Has_softcap, Varlen, PagedKVNonTMA, AppendKV, PackGQA, Split>
    >;
    using CollectiveEpilogue = flash::CollectiveEpilogueFwd<TileShape_MNK_PV, ClusterShape, ElementOut, ArchTag, CollectiveMainloop::NumMmaThreads, Varlen, PackGQA, Split, FP8_TransposeV>;

    static constexpr int NumProducerThreads = Arch >= 90 ? CollectiveMainloop::NumProducerThreads : CollectiveMainloop::NumMmaThreads;
    using SchedulerPersistent = std::conditional_t<Varlen,
        flash::VarlenDynamicPersistentTileScheduler<kBlockM, CollectiveMainloop::NumMmaThreads, NumProducerThreads, Split, PackGQA, Arch >= 90 /*WarpSpecialized*/>,
        std::conditional_t<!Is_causal && !Is_local,
            flash::StaticPersistentTileScheduler<Split>,
            flash::DynamicPersistentTileScheduler<CollectiveMainloop::NumMmaThreads, NumProducerThreads, Split, PackGQA, Arch >= 90 /*WarpSpecialized*/>
        >
    >;
    using SchedulerSingleTile = flash::SingleTileScheduler<Varlen, Split, PackGQA, kBlockM>;
    // If Split then we probably don't have enough work for PersistentScheduler to be useful.
    // However, if Varlen (e.g., during decode where we have max_seqlens), using PersistentScheduler is better
    // since we'll avoid launching a bunch of thread blocks that immediately exit.
    // On Sm80, noncausal persistent seems a bit slower.
    static constexpr bool UsePersistentScheduler = Arch >= 90 ? !(Split && !Varlen) : ((Is_causal && !Varlen) || (Varlen && Split));
    using Scheduler = std::conditional_t<!UsePersistentScheduler, SchedulerSingleTile, SchedulerPersistent>;
    using AttnKernel = std::conditional_t<
        Arch >= 90,
        flash::enable_sm90_or_later<flash::FlashAttnFwdSm90<CollectiveMainloop, CollectiveEpilogue, Scheduler>>,
        flash::enable_sm80_to_sm89<flash::FlashAttnFwdSm80<CollectiveMainloop, CollectiveEpilogue, Scheduler>>
    >;

    bool const is_varlen_q = params.cu_seqlens_q;
    bool const is_varlen_k = params.cu_seqlens_k;
    bool const is_varlen_k_new = params.cu_seqlens_knew;
    int seqlen_q = !is_varlen_q ? params.seqlen_q : params.total_q;
    int batch_q = !is_varlen_q ? params.b : 1;
    int batch_k = !is_varlen_k ? (params.kv_batch_idx ? params.b_k : params.b) : 1;
    typename CollectiveMainloop::StrideV v_strides =
        cute::conditional_return<!V_colmajor>(
            make_stride(params.v_row_stride, _1{}, params.v_head_stride, !is_varlen_k ? params.v_batch_stride : 0),
            make_stride(_1{}, params.v_dim_stride, params.v_head_stride, !is_varlen_k ? params.v_batch_stride : 0));
    typename CollectiveMainloop::Arguments mainloop_args {
        static_cast<Element const*>(params.q_ptr),
        {seqlen_q, params.d, params.h, batch_q},  // shape_Q
        {params.q_row_stride, _1{}, params.q_head_stride, !is_varlen_q ? params.q_batch_stride : 0},  // stride_Q
        static_cast<Element*>(params.k_ptr),
        {!params.page_table ? (!is_varlen_k ? params.seqlen_k : params.total_k) : params.page_size,
         params.d, params.h_k, !params.page_table ? batch_k : params.num_pages},  // shape_K
        {params.k_row_stride, _1{}, params.k_head_stride, !is_varlen_k ? params.k_batch_stride : 0},  // stride_K
        static_cast<Element*>(params.v_ptr),
        params.dv,  // headdim_v
        v_strides,  // stride_V
        static_cast<Element const*>(params.knew_ptr),
        {!is_varlen_k_new ? params.seqlen_knew : params.total_knew, params.d, params.h_k, !is_varlen_k_new ? params.b : 1},  // shape_K_new
        {params.knew_row_stride, _1{}, params.knew_head_stride, !is_varlen_k_new ? params.knew_batch_stride : 0},  // stride_K_new
        static_cast<Element const*>(params.vnew_ptr),
        {params.vnew_row_stride, _1{}, params.vnew_head_stride, !is_varlen_k_new ? params.vnew_batch_stride : 0}, // stride_V_new
        static_cast<Element const*>(params.qv_ptr),
        {params.qv_row_stride, _1{}, params.qv_head_stride, !is_varlen_q ? params.qv_batch_stride : 0},  // stride_Qv
        static_cast<Element const*>(params.rotary_cos_ptr),
        {params.seqlen_k, params.rotary_dim / 2},  // shape_rotary, the seqlen shape doesn't matter
        {params.rotary_dim / 2, _1{}},  // stride_rotary_cos
        static_cast<Element const*>(params.rotary_sin_ptr),
        {params.rotary_dim / 2, _1{}},  // stride_rotary_sin
        params.is_rotary_interleaved,
        params.page_table,
        // if page_size is not set, avoid dividing by zero
        {params.kv_batch_idx ? params.b_k : params.b, !params.page_table ? 0 : params.seqlen_k / params.page_size}, // shape_page_table
        {params.page_table_batch_stride, _1{}},  // stride_page_table
        params.scale_softmax,
        params.q_descale_ptr, params.k_descale_ptr, params.v_descale_ptr,
        {params.q_descale_batch_stride, params.q_descale_head_stride},
        {params.k_descale_batch_stride, params.k_descale_head_stride},
        {params.v_descale_batch_stride, params.v_descale_head_stride},
        params.window_size_left, params.window_size_right, params.attention_chunk,
        params.softcap,
        params.num_splits,
        params.kv_batch_idx,
        params.cu_seqlens_q, params.cu_seqlens_k, params.cu_seqlens_knew,
        params.seqused_q, params.seqused_k,
        params.leftpad_k, params.seqlens_rotary
    };
    typename CollectiveEpilogue::Arguments epilogue_args {
        static_cast<ElementOut*>(params.o_ptr),
        {seqlen_q, params.dv, params.h, batch_q, params.num_splits},  // shape_O
        {params.o_row_stride, _1{}, params.o_head_stride, !is_varlen_q ? params.o_batch_stride : 0, 0}, // stride_O
        static_cast<float*>(params.oaccum_ptr),
        {params.oaccum_row_stride, _1{}, params.oaccum_head_stride, !is_varlen_q ? params.oaccum_batch_stride : 0, params.oaccum_split_stride}, // stride_O_partial
        static_cast<float*>(params.softmax_lse_ptr),
        {_1{}, seqlen_q, !is_varlen_q ? params.h * seqlen_q : 0, 0},  // stride_LSE
        static_cast<float*>(params.softmax_lseaccum_ptr),
        {_1{}, seqlen_q, !is_varlen_q ? params.h * seqlen_q : 0, params.h * seqlen_q * batch_q},  // stride_LSE_partial
        params.h_k,
        params.cu_seqlens_q, params.seqused_q
    };

    int qhead_per_khead = !PackGQA ? 1 : cutlass::ceil_div(params.h, params.h_k);
    int num_blocks_m = cutlass::ceil_div(params.seqlen_q * qhead_per_khead, get<0>(TileShape_MNK{}));
    num_blocks_m = cutlass::round_up(num_blocks_m, size<0>(ClusterShape{}));
    typename flash::TileSchedulerArguments scheduler_args {
        num_blocks_m, !PackGQA ? params.h : params.h_k, params.b, params.num_splits,
        params.h / params.h_k,
        params.seqlen_q,
        params.seqlen_k, params.d, params.dv, sizeof(Element),
        params.tile_count_semaphore, params.cu_seqlens_q, params.seqused_q,
        // params.num_m_blocks_ptr,
        params.num_splits_dynamic_ptr,
    };

    if (Varlen && params.num_splits_dynamic_ptr && !params.skip_scheduler_metadata_computation) {
        prepare_varlen_num_blocks(params, stream, PackGQA, kBlockM, kBlockN, Arch >= 90 /*enable_pdl*/);
        CHECK_CUDA_KERNEL_LAUNCH();
    }

    int device;
    CHECK_CUDA(cudaGetDevice(&device));
    typename AttnKernel::Params kernel_params = AttnKernel::to_underlying_arguments({
        mainloop_args, epilogue_args, {device, params.num_sm}, scheduler_args
    });

    dim3 grid_dims = AttnKernel::get_grid_shape(kernel_params);
    dim3 block_dims = AttnKernel::get_block_shape();
    int smem_size = AttnKernel::SharedStorageSize;
    // int smem_size_q = sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_q));
    // int smem_size_k = sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_k));
    // int smem_size_v = sizeof(decltype((typename CollectiveMainloop::TensorStorage{}).smem_v));
    // printf("smem_size = %d, q = %d, k = %d, v = %d\n", smem_size, smem_size_q, smem_size_k, smem_size_v);
    // Get the ptr to kernel function.
    if constexpr (size(ClusterShape{}) > 1) {
        void const* kernel = (void const*) cutlass::device_kernel<AttnKernel>;
        if (smem_size >= 48 * 1024) {
            CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
        }
        dim3 cluster_dims(size<0>(ClusterShape{}), size<1>(ClusterShape{}), size<2>(ClusterShape{}));
        cutlass::ClusterLaunchParams launch_params{grid_dims, block_dims, cluster_dims, smem_size, stream};
        cutlass::launch_kernel_on_cluster(launch_params, kernel, kernel_params);
    } else {
        auto kernel = cutlass::device_kernel<AttnKernel>;
        if (smem_size >= 48 * 1024) {
            CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
        }
        // kernel<<<grid_dims, block_dims, smem_size, stream>>>(kernel_params);
        cutlass::kernel_launch<AttnKernel>(grid_dims, block_dims, smem_size, stream, kernel_params,
                                           Arch >= 90 && Varlen && params.num_splits_dynamic_ptr && !params.skip_scheduler_metadata_computation /*launch_with_pdl*/);
    }
    CHECK_CUDA_KERNEL_LAUNCH();
}

template<int Arch, typename T, int kHeadDim, int kHeadDimV, bool Split, bool PagedKVNonTMA, bool Has_softcap, bool PackGQA>
void run_mha_fwd_(Flash_fwd_params &params, cudaStream_t stream) {
    static_assert(sizeof(T) == 2 || sizeof(T) == 1, "Only 16bit and 8bit are supported");
    static constexpr bool Is_FP8 = cute::is_same_v<T, cutlass::float_e4m3_t> || cute::is_same_v<T, cutlass::float_e5m2_t>;
    using T_out = std::conditional_t<!Is_FP8, T, cutlass::bfloat16_t>;
    CAUSAL_LOCAL_SWITCH(params.is_causal, params.is_local, Is_causal, Is_local, [&] {
        VCOLMAJOR_SWITCH(params.v_dim_stride != 1, V_colmajor_, [&] {
            static constexpr bool V_colmajor = V_colmajor_ && sizeof(T) == 1;
            VARLEN_SWITCH(params.cu_seqlens_q || params.cu_seqlens_k || params.seqused_q || params.seqused_k || params.leftpad_k, Varlen, [&] {
                // Only needed here to decide if we should use cluster
                static constexpr int kBlockM = Arch >= 90 ? std::get<0>(tile_size_fwd_sm90(kHeadDim, kHeadDimV, Is_causal, Is_local, sizeof(T) /*element_size*/, V_colmajor, PagedKVNonTMA, Has_softcap)) : 128;

                static constexpr bool Enable_cluster = Arch == 90 && (sizeof(T) == 2 ? (kHeadDim >= 128) : (kHeadDim == 192)) && !Is_causal && !Is_local && !Split && !PagedKVNonTMA && !Varlen;
                BOOL_SWITCH(params.qv_ptr, HasQV_, [&] {
                    static constexpr bool HasQv = HasQV_ && Arch == 90 && !Is_FP8 && kHeadDim == 64 && kHeadDimV >= 256;
                    APPENDKV_SWITCH(params.knew_ptr, AppendKV, [&] {
                        // Only use Cluster if number of tiles along seqlen_q is even and not varlen
                        CLUSTER_SWITCH(cutlass::ceil_div(params.seqlen_q * (!PackGQA ? 1 : params.h / params.h_k), kBlockM) % 2 == 0, Use_cluster, [&] {
                            static constexpr int ClusterM = Enable_cluster && Use_cluster ? 2 : 1;
                            run_flash_fwd<Arch, kHeadDim, kHeadDimV, ClusterM, T, T_out, Is_causal, Is_local, Has_softcap, Varlen, PagedKVNonTMA, AppendKV && Varlen, HasQv, PackGQA, Split, V_colmajor>(params, stream);
                        });
                    });
                });
            });
        });
    });
}