kernel
File size: 51,171 Bytes
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
/******************************************************************************
 * Copyright (c) 2024, Tri Dao.
 ******************************************************************************/

#pragma once

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>

#include "cute/tensor.hpp"

#include "seqlen.h"
#include "block.h"
#include "mask.h"
#include "pack_gqa.h"
#include "paged_kv.h"
#include "rotary.h"
#include "utils.h"

namespace flash {

using namespace cute;

template <int kNWarps, int Stages, bool Q_in_regs, class TileShape_MNK_, int kHeadDimV, class Element_, class ElementAccum_, class ArchTag_,
        bool Is_causal_, bool Is_local_, bool Has_softcap_, bool Varlen_, bool PagedKV_, bool AppendKV_,
        bool PackGQA_, bool Split_>
struct CollectiveMainloopFwdSm80 {

    static constexpr int kStages = Stages;
    static_assert(kStages > 0, "kStages must be greater than 0");
    using TileShape_MNK = TileShape_MNK_;
    using TileShape_MNK_PV = Shape<decltype(get<0>(TileShape_MNK{})), Int<kHeadDimV>, decltype(get<1>(TileShape_MNK{}))>;
    using Element = Element_;
    using ElementAccum = ElementAccum_;
    using ArchTag = ArchTag_;
    static constexpr bool Is_FP8 = cute::is_same_v<Element, cutlass::float_e4m3_t> || cute::is_same_v<Element, cutlass::float_e5m2_t>;;
    static constexpr bool Is_causal = Is_causal_;
    static constexpr bool Is_local = Is_local_;
    static constexpr bool Has_softcap = Has_softcap_;
    static constexpr bool Varlen = Varlen_;
    static constexpr bool PagedKV = PagedKV_;
    static constexpr bool AppendKV = AppendKV_;
    static constexpr bool PackGQA = PackGQA_;
    static constexpr bool Split = Split_;
    static constexpr bool Transpose_V = Is_FP8;

    static_assert(ArchTag::kMinComputeCapability >= 80);

    static constexpr bool Has_cp_async = ArchTag::kMinComputeCapability >= 80;

    static constexpr int kBlockM = get<0>(TileShape_MNK{});
    static constexpr int kBlockN = get<1>(TileShape_MNK{});
    static constexpr int kHeadDim = get<2>(TileShape_MNK{});

    using SeqlenInfo_t = flash::SeqlenInfoQKNewK<Varlen, AppendKV>;
    using BlockMN_t = flash::BlockMN<SeqlenInfo_t, kBlockM, kBlockN, Is_causal, Is_local, PackGQA, Split>;

    using MMA_Atom_Arch = std::conditional_t<
        ArchTag::kMinComputeCapability >= 80,
        std::conditional_t<
            std::is_same_v<Element, cutlass::half_t>,
            MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>,
            MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>
        >,
        MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>
    >;
    using TiledMma = TiledMMA<
        MMA_Atom_Arch,
        Layout<Shape<Int<kNWarps>,_1,_1>>,  // 4x1x1 or 8x1x1 thread group
        Tile<Int<16 * kNWarps>, _16, _16>>;

    static constexpr int NumMmaThreads = size(TiledMma{});
    static constexpr int NumProducerThreads = NumMmaThreads;  // For compatibility with TileScheduler

    static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
    static_assert(kHeadDim % kGmemElemsPerLoad == 0, "Headdim must be a multiple of kGmemElemsPerLoad");
    // We want each "row" to have 64 elements (128 bytes, i.e. 1 cache line). E.g. if hdim=128, we want each
    // thread to have 4 loads in the M direction and 2 vectorized load in the K direction.
    static constexpr int kBytePerRow = kHeadDim * sizeof(Element);
    static constexpr int kBlockKGmem = (kBytePerRow % 128 == 0 ? 128 : (kBytePerRow % 64 == 0 ? 64 : 32)) / sizeof(Element);

    static constexpr int kSwizzle = kBlockKGmem == 128 ? 4 : (kBlockKGmem == 64 ? 3 : (kBlockKGmem == 32 ? 2 : 1));
    static constexpr int kSwizzleBase = sizeof(Element) == 4 ? 2 : (sizeof(Element) == 2 ? 3 : 4);
    using SmemLayoutAtomQKV = decltype(
        composition(Swizzle<kSwizzle, kSwizzleBase, kSwizzleBase>{},
                    Layout<Shape<_8, Int<kBlockKGmem>>,
                           Stride<Int<kBlockKGmem>, _1>>{}));
    using SmemLayoutQ = decltype(tile_to_shape(SmemLayoutAtomQKV{}, select<0, 2>(TileShape_MNK{})));

    using SmemLayoutK = decltype(tile_to_shape(
        SmemLayoutAtomQKV{},
        make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));

    using SmemLayoutV = decltype(tile_to_shape(
        SmemLayoutAtomQKV{},
        make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
    using SmemLayoutVt = decltype(
        composition(SmemLayoutV{},
                    make_ordered_layout(make_shape(shape<2>(TileShape_MNK{}), shape<1>(TileShape_MNK{}), Int<kStages>{}),
                                        Step<_2, _1, _3>{})));

    using SmemCopyAtom = Copy_Atom<SM75_U32x4_LDSM_N, Element>;
    using SmemCopyAtomTransposed = Copy_Atom<SM75_U16x8_LDSM_T, Element>;

    // We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
    // from the same address by the same threadblock. This is slightly faster.
    using GmemCopyAtom = Copy_Atom<std::conditional_t<
        Has_cp_async,
        SM80_CP_ASYNC_CACHEGLOBAL_ZFILL<cute::uint128_t>,
        AutoVectorizingCopyWithAssumedAlignment<128>
    >, Element>;

    static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
    static_assert(NumMmaThreads % kGmemThreadsPerRow == 0, "NumMmaThreads must be a multiple of kGmemThreadsPerRow");
    using GmemLayoutAtom = Layout<Shape <Int<NumMmaThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
                                  Stride<Int<kGmemThreadsPerRow>, _1>>;
    using GmemTiledCopyQKV = decltype(
        make_tiled_copy(GmemCopyAtom{},
                        GmemLayoutAtom{},
                        Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{}));  // Val layout, 8 or 16 vals per read
    // So that we don't have to check if we overshot kBlockM when we load Q
    static_assert(kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0);

    // For AppendKV, We want each thread to have at least 2 loads in the K direction since in the case of
    // non-interleaved rotary (combining elements at indices 0 and rotary_dim/2, 1 and rotary_dim/2+1, etc),
    // each thread will load twice from the same row.
    static constexpr int kBytePerHalfRow = kHeadDim / 2 * sizeof(Element);
    static constexpr int kBlockKGmemAppend = (kBytePerHalfRow % 128 == 0 ? 128 : (kBytePerHalfRow % 64 == 0 ? 64 : 32)) / sizeof(Element);
    static constexpr int kGmemThreadsPerRowAppend = kBlockKGmemAppend / kGmemElemsPerLoad;
    static_assert(NumMmaThreads % kGmemThreadsPerRowAppend == 0, "NumMmaThreads must be a multiple of kGmemThreadsPerRowAppend");
    // We assume threads loading the same row are in the same warp. This is for an optimization in PagedKV where
    // these threads share the same page table entry and share the work of computing pointers to paged K and paged V.
    static_assert(cutlass::NumThreadsPerWarp % kGmemThreadsPerRowAppend == 0, "kGmemThreadsPerRowAppend must divide NumThreadsPerWarp");
    using GmemLayoutAtomAppend = Layout<Shape <Int<NumMmaThreads / kGmemThreadsPerRowAppend>, Int<kGmemThreadsPerRowAppend>>,
                                        Stride<Int<kGmemThreadsPerRowAppend>, _1>>;
    // If AppendKV, we'll be loading Q for rotary, and we assume divisibility to avoid predication
    static_assert(!AppendKV || kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtomAppend{})) == 0, "kBlockM must be a multiple of NumMmaThreads / kGmemThreadsPerRowAppend");
    using GmemTiledCopyAppendKV = decltype(
        make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
                        GmemLayoutAtomAppend{},
                        Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{}));  // Val layout, 8 or 16 vals per store

    using ShapeQKV = cute::Shape<int32_t, int32_t, int32_t, int32_t>;  // (seqlen, d, head, batch)
    using StrideQK = cute::Stride<int64_t, _1, int64_t, int64_t>;
    using StrideV = StrideQK;
    // ((qhead_per_khead, seqlen_q), d, nheads_kv, batch, num_splits)
    using ShapeQPacked = std::conditional_t<!PackGQA, ShapeQKV, cute::Shape<cute::Shape<int32_t, int32_t>, int32_t, int32_t, int32_t>>;
    using StrideQPacked = std::conditional_t<!PackGQA, StrideQK, cute::Stride<cute::Stride<int64_t, int64_t>, _1, int64_t, int64_t>>;
    using ShapePageTable = cute::Shape<int32_t, int32_t>;  // (batch, max_num_pages_per_seq)
    using StridePageTable = cute::Stride<int64_t, _1>;
    using ShapeRotary = cute::Shape<int32_t, int32_t>;  // (seqlen_ro, rotary_dim // 2)
    using StrideRotary = cute::Stride<int64_t, _1>;
    using StrideDescale = cute::Stride<int64_t, int64_t>;

    static constexpr bool Share_QV_Smem = Q_in_regs;

    struct TensorStorageSharedQV : cute::aligned_struct<128> {
        union {
            cute::array_aligned<Element, cute::cosize_v<SmemLayoutV>> smem_v;
            cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>> smem_q;
        };
        cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>> smem_k;
    };

    struct TensorStorageSeparateQV : cute::aligned_struct<128> {
        cute::array_aligned<Element, cute::cosize_v<SmemLayoutV>> smem_v;
        cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>> smem_k;
        cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>> smem_q;
    };

    using TensorStorage = std::conditional_t<Share_QV_Smem, TensorStorageSharedQV, TensorStorageSeparateQV>;

    // Host side kernel arguments
    struct Arguments {
        Element const* const ptr_Q;
        ShapeQKV const shape_Q;
        StrideQK const stride_Q;
        Element* const ptr_K;  // Not Element const* since we might append to KV cache in-place
        ShapeQKV const shape_K;
        StrideQK const stride_K;
        Element* const ptr_V;
        int32_t const headdim_v;
        StrideV const stride_V;
        Element const* const ptr_K_new;
        ShapeQKV const shape_K_new;
        StrideQK const stride_K_new;
        Element const* const ptr_V_new;
        StrideV const stride_V_new;
        Element const* const ptr_Qv;
        StrideQK const stride_Qv;
        Element const* const ptr_rotary_cos;
        ShapeRotary const shape_rotary;
        StrideRotary const stride_rotary_cos;
        Element const* const ptr_rotary_sin;
        StrideRotary const stride_rotary_sin;
        bool const is_rotary_interleaved;
        int const* const ptr_pagetable;
        ShapePageTable const shape_pagetable;
        StridePageTable const stride_pagetable;
        float const softmax_scale;
        float const* ptr_q_descale, *ptr_k_descale, *ptr_v_descale;
        StrideDescale const stride_q_descale, stride_k_descale, stride_v_descale;
        int const window_size_left = -1, window_size_right = -1, attention_chunk = 0;
        float const softcap_val;
        int const num_splits;
        int const* const kv_batch_idx = nullptr;
        int const* const cu_seqlens_q = nullptr;
        int const* const cu_seqlens_k = nullptr;
        int const* const cu_seqlens_k_new = nullptr;
        int const* const seqused_q = nullptr;
        int const* const seqused_k = nullptr;
        int const* const leftpad_k = nullptr;
        int const* const seqlens_rotary = nullptr;
    };

    // Device side kernel params
    struct Params {
        Element const* const ptr_Q;
        ShapeQKV const shape_Q;
        StrideQK const stride_Q;
        ShapeQPacked const shape_Q_packed;
        StrideQPacked const stride_Q_packed;
        Element* const ptr_K;
        ShapeQKV const shape_K;
        StrideQK const stride_K;
        Element* const ptr_V;
        int32_t const headdim_v;
        StrideV const stride_V;
        Element const* const ptr_K_new;
        ShapeQKV const shape_K_new;
        StrideQK const stride_K_new;
        Element const* const ptr_V_new;
        StrideV const stride_V_new;
        Element const* const ptr_rotary_cos;
        ShapeRotary const shape_rotary;
        StrideRotary const stride_rotary_cos;
        Element const* const ptr_rotary_sin;
        StrideRotary const stride_rotary_sin;
        bool const is_rotary_interleaved;
        int const* const ptr_pagetable;
        ShapePageTable const shape_pagetable;
        StridePageTable const stride_pagetable;
        cutlass::FastDivmod page_size_divmod;
        cutlass::FastDivmod qhead_per_khead_divmod;
        float const softmax_scale_log2;
        float const* ptr_q_descale, *ptr_k_descale, *ptr_v_descale;
        StrideDescale const stride_q_descale, stride_k_descale, stride_v_descale;
        float const softcap_val;
        int const window_size_left, window_size_right;
        cutlass::FastDivmod attention_chunk_divmod;
        int const num_splits;
        int const* const kv_batch_idx = nullptr;
        int const* const cu_seqlens_q = nullptr;
        int const* const cu_seqlens_k = nullptr;
        int const* const cu_seqlens_k_new = nullptr;
        int const* const seqused_q = nullptr;
        int const* const seqused_k = nullptr;
        int const* const leftpad_k = nullptr;
        int const* const seqlens_rotary = nullptr;
    };

    static Params
    to_underlying_arguments(Arguments const& args) {
        // If PackGQA, reshape Q to be ((qhead_per_khead, seqlen_q), head_size, nhead_k, batch_size)
        int const qhead_per_khead = !PackGQA ? 1 : cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K));
        auto const shape_Q_packed = cute::conditional_return<!PackGQA>(
            args.shape_Q,
            make_shape(make_shape(qhead_per_khead, get<0>(args.shape_Q)), get<1>(args.shape_Q), get<2>(args.shape_K), get<3>(args.shape_Q))
        );
        auto const stride_Q_packed = cute::conditional_return<!PackGQA>(
            args.stride_Q,
            make_stride(make_stride(get<2>(args.stride_Q), get<0>(args.stride_Q)), get<1>(args.stride_Q), get<2>(args.stride_Q) * qhead_per_khead, get<3>(args.stride_Q))
        );
        if (get<1>(args.shape_rotary) > 0) {
            assert(args.ptr_rotary_cos != nullptr && args.ptr_rotary_sin != nullptr);
        }
        assert(args.num_splits >= 1);
        // Avoid dividing by zero
        cutlass::FastDivmod attention_chunk_divmod(args.attention_chunk >= 1 ? args.attention_chunk : 1);
        attention_chunk_divmod.divisor = args.attention_chunk;
        // If there's tanh softcapping, we do tanh(scores * softmax_scale / softcap_val) * softcap_val.
        // Right after this, we multiply by log2(e) before applying exp2.
        // To reduce the number of instructions, we instead pre-multiply softmax_scale / softcap_val
        // (assigning it to params.softcap_val) and pre-multiply softcap_val * log2(e)
        // (assigning it to params.softmax_scale_log2).
        return {args.ptr_Q, args.shape_Q, args.stride_Q, shape_Q_packed, stride_Q_packed,
                args.ptr_K, args.shape_K, args.stride_K, args.ptr_V, args.headdim_v, args.stride_V,
                args.ptr_K_new, args.shape_K_new, args.stride_K_new, args.ptr_V_new, args.stride_V_new,
                args.ptr_rotary_cos, args.shape_rotary, args.stride_rotary_cos,
                args.ptr_rotary_sin, args.stride_rotary_sin, args.is_rotary_interleaved,
                args.ptr_pagetable, args.shape_pagetable, args.stride_pagetable,
                cutlass::FastDivmod(int(get<0>(args.shape_K))),
                cutlass::FastDivmod(cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K))),
                !Has_softcap ? float(args.softmax_scale * M_LOG2E) : float(args.softcap_val * M_LOG2E),
                args.ptr_q_descale, args.ptr_k_descale, args.ptr_v_descale,
                args.stride_q_descale, args.stride_k_descale, args.stride_v_descale,
                !Has_softcap ? 0.f : args.softmax_scale / args.softcap_val,
                args.window_size_left, args.window_size_right, attention_chunk_divmod,
                !Split ? 1 : args.num_splits,
                args.kv_batch_idx,
                args.cu_seqlens_q, args.cu_seqlens_k, args.cu_seqlens_k_new,
                args.seqused_q, args.seqused_k, args.leftpad_k, args.seqlens_rotary};
    }

    template <typename SharedStorage, typename FrgTensorO, typename Softmax>
    CUTLASS_DEVICE bool
    mma(Params const& params,
        FrgTensorO& tOrO,
        Softmax& softmax,
        int const thread_idx,
        SeqlenInfo_t const& seqlen_info,
        cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord,
        SharedStorage& shared_storage
        ) {
        static_assert(is_rmem<FrgTensorO>::value, "O tensor must be rmem resident.");
        static constexpr int kBlockM = get<0>(TileShape_MNK{});
        static constexpr int kBlockN = get<1>(TileShape_MNK{});

        // can't use auto [m_block, ...] = block_coord since structured binding cannot be captured in lambda
        int const m_block = get<0>(block_coord);
        int const bidh = get<1>(block_coord);
        int const bidb = get<2>(block_coord);
        int const split_idx = get<3>(block_coord);
        int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
        auto n_block_min_max = BlockMN_t::get_n_block_min_max(
            seqlen_info, m_block, bidb, split_idx, params.num_splits,
            params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
            params.qhead_per_khead_divmod);
        int const n_block_min = get<0>(n_block_min_max);
        int const n_block_max = get<1>(n_block_min_max);
        // It's possible to have n_block_max <= n_block_min. We don't want to load Q or change any barrier
        if constexpr (Is_causal || Is_local || Varlen || Split) {
            if (n_block_max <= n_block_min) { return false; }
        }

        Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
        Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
        Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutV{});
        Tensor sVt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVt{});

        bool const is_varlen_q = Varlen && params.cu_seqlens_q;
        bool const is_varlen_k = Varlen && params.cu_seqlens_k;

        int const bidb_kv = params.kv_batch_idx == nullptr ? bidb : params.kv_batch_idx[bidb];
        Tensor mQ = make_tensor(make_gmem_ptr(params.ptr_Q + seqlen_info.offset_q * get<0>(params.stride_Q)), params.shape_Q_packed, params.stride_Q_packed)(_, _, bidh, !is_varlen_q ? bidb : 0);
        Tensor gQ = local_tile(mQ, select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{}));  // (M, K)
        Tensor mK = make_tensor(make_gmem_ptr(params.ptr_K + seqlen_info.offset_k * get<0>(params.stride_K)), params.shape_K, params.stride_K)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
        Tensor gK = local_tile(mK, select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (N, K, _)
        Tensor mV = make_tensor(make_gmem_ptr(params.ptr_V + seqlen_info.offset_k * get<0>(params.stride_V)), params.shape_K, params.stride_V)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
        Tensor gV = local_tile(mV, select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (N, K, _)

        GmemTiledCopyQKV gmem_tiled_copy_QKV;
        auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(thread_idx);
        auto gmem_thr0_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(_0{});  // For index calculation

        Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K, nblocksN)
        Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
        Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K, nblocksN)
        Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);

        TiledMma tiled_mma;
        auto thr_mma = tiled_mma.get_slice(thread_idx);

        // Allocate "fragments/descriptors"
        Tensor tSrQ = thr_mma.partition_fragment_A(sQ);

        // Copy Atom retiling
        auto smem_tiled_copy_Q = make_tiled_copy_A(SmemCopyAtom{}, tiled_mma);
        auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(thread_idx);
        auto smem_tiled_copy_K = make_tiled_copy_B(SmemCopyAtom{}, tiled_mma);
        auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(thread_idx);
        auto smem_tiled_copy_V = make_tiled_copy_B(SmemCopyAtomTransposed{}, tiled_mma);
        auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(thread_idx);
        Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
        Tensor tSsK = smem_thr_copy_K.partition_S(sK);
        Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);

        // Predicates
        Tensor cKV = cute::make_identity_tensor(select<1, 2>(TileShape_MNK{}));
        Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);
        Tensor t0KVcKV = gmem_thr0_copy_QKV.partition_S(cKV);
        Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(_0{}, _0{}, k)) < get<1>(params.shape_K); }

        int const seqlen_q = seqlen_info.seqlen_q;
        int const seqlen_k = seqlen_info.seqlen_k;
        int n_block = n_block_max - 1;

        // Prologue: load Q, K, V
        // If persistent, we don't need to wait for the previous work_idx to finish
        // since we assume that all MMA threads sync in the epilogue before writing to smem_o.
        // So any thread gets there, all threads must have finished the previous MMA and at least started
        // writing to smem_o.
        // If persistent, need to sync to make sure all threads have finished with smem_o before writing to smem_v
        if constexpr (Share_QV_Smem) { __syncthreads(); }
        if constexpr (!PackGQA) {
            Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
            Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
            Tensor cQ = cute::make_identity_tensor(select<0, 2>(TileShape_MNK{}));
            Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);
            Tensor t0QcQ = gmem_thr0_copy_QKV.partition_S(cQ);
            Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
            #pragma unroll
            for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(_0{}, _0{}, k)) < get<1>(params.shape_Q); }
            // Instead of passing in tQcQ, we pass in t0QcQ and subtract the offset from the limit
            // (seqlen_q - m_block * kBlockM). This is because the entries of t0QcQ are known at compile time.
            // We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
            flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
                gmem_tiled_copy_QKV, tQgQ, tQsQ, t0QcQ, tQpQ, seqlen_info.seqlen_q - m_block * kBlockM - get<0>(tQcQ(_0{}, _0{}, _0{}))
            );
        } else {
            using PackGQAt = flash::PackGQAManager<get<0>(TileShape_MNK{}), get<2>(TileShape_MNK{}), NumMmaThreads, Element>;
            PackGQAt::load_Q(mQ, sQ, params.qhead_per_khead_divmod, thread_idx, seqlen_q, m_block);
        }
        cute::cp_async_fence();

        using PagedKVManager_t = PagedKVManager<get<1>(TileShape_MNK{}), get<2>(TileShape_MNK{}), get<1>(TileShape_MNK_PV{}), NumMmaThreads, Element, true /*KV_Same_Iter*/>;
        PagedKVManager_t paged_kv_manager(
            params.ptr_pagetable, params.shape_pagetable, params.stride_pagetable,
            params.ptr_K, params.shape_K, params.stride_K,
            params.ptr_V, params.headdim_v, params.stride_V,
            params.page_size_divmod,
            params.page_size_divmod /*blockN_per_page_size_divmod, not used since we don't use TMA*/,
            bidb_kv, bidh_kv, thread_idx, seqlen_info.seqlen_k, seqlen_info.leftpad_k,
            0 /*bidb_kv_idx, not used since we don't use TMA for Sm8x*/
        );

        auto load_K = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
            static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
            if constexpr (!PagedKV) {
                // Do we need bound check to make sure the row doesn't go above kBlockN
                static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
                Tensor tKsK_cur = tKsK(_, _, _, smem_pipe_write);
                // Instead of passing in tKVcKV, we pass in t0KVcKV and subtract the offset from the limit
                // (seqlen_k - n_block * kBlockN). This is because the entries of t0KVcKV are known at compile time.
                int const seqlenk_row_limit = -int(get<0>(tKVcKV(_0{}, _0{}, _0{}))) + (EvenN
                    ? seqlen_info.seqlen_k - n_block * kBlockN
                    : (!Seqlenk_mask ? kBlockN : std::min(seqlen_info.seqlen_k - n_block * kBlockN, kBlockN)));
                // We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
                flash::copy</*Is_even_MN=*/!Seqlenk_mask && EvenN, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
                    gmem_tiled_copy_QKV, tKgK(_, _, _, n_block), tKsK_cur, t0KVcKV, tKVpKV, seqlenk_row_limit);
            } else {
                paged_kv_manager.template load_page_table<Seqlenk_mask>(n_block);
                paged_kv_manager.template load_K<Seqlenk_mask>(n_block, sK(_, _, smem_pipe_write));
            }
        };

        auto load_V = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
            static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
            if constexpr (!PagedKV) {
                // Do we need bound check to make sure the row doesn't go above kBlockN
                static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
                Tensor tVsV_cur = tVsV(_, _, _, smem_pipe_write);
                // We don't call flash::copy since it doesn't support bound checking
                // to not overshot kBlockN when writing to smem.
                Tensor tVgV_cur = tVgV(_, _, _, n_block);
                int const seqlenk_row_limit = seqlen_info.seqlen_k - n_block * kBlockN - get<0>(tKVcKV(_0{}, _0{}, _0{}));
                #pragma unroll
                for (int m = 0; m < size<1>(tVsV); ++m) {
                    // If kBlockN doesn't evenly divide the tiled copy, only the last `m` needs to be checked
                    if (EvenN || m < size<1>(tVsV) - 1 || get<0>(tKVcKV(_0{}, m, _0{})) < kBlockN) {
                        bool const predicate_n = !Seqlenk_mask || get<0>(t0KVcKV(_0{}, m, _0{})) < seqlenk_row_limit;
                        #pragma unroll
                        for (int k = 0; k < size<2>(tVsV); ++k) {
                            cute::copy(gmem_tiled_copy_QKV.with(tKVpKV(k) && predicate_n), tVgV_cur(_, m, k), tVsV_cur(_, m, k));
                        }
                    }
                }
            } else {
                paged_kv_manager.template load_V<Seqlenk_mask>(n_block, sV(_, _, smem_pipe_write));
            }
        };

        auto preprocess_Q = [&] {
            if constexpr (!AppendKV) {
                flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
            } else {
                if (get<1>(params.shape_rotary) > 0) {  // Apply rotary to Q
                    using Rotary_t = Rotary<kBlockM, kHeadDim, NumMmaThreads, Element, !(Is_causal || Is_local) /*FixedPosition*/>;
                    Rotary_t rotary(params.ptr_rotary_cos, params.shape_rotary, params.stride_rotary_cos,
                                    params.ptr_rotary_sin, params.stride_rotary_sin,
                                    params.is_rotary_interleaved, thread_idx, seqlen_q,
                                    seqlen_info.seqlen_rotary);
                    int const qhead_per_khead = !PackGQA ? 1 : params.qhead_per_khead_divmod.divisor;
                    if (params.is_rotary_interleaved) {
                        auto [tRrCos, tRrSin] = cute::conditional_return<!PackGQA>(
                            rotary.template load_cos_sin<true /*kInterleaved*/>(m_block),
                            rotary.template load_cos_sin_packgqa<true /*kInterleaved*/>(m_block, params.qhead_per_khead_divmod)
                        );
                        flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
                        __syncthreads();
                        rotary.apply_Q_interleaved(sQ, tRrCos, tRrSin, m_block, qhead_per_khead);
                    } else {
                        auto [tRrCosCont, tRrSinCont] = cute::conditional_return<!PackGQA>(
                            rotary.template load_cos_sin<false /*kInterleaved*/>(m_block),
                            rotary.template load_cos_sin_packgqa<false /*kInterleaved*/>(m_block, params.qhead_per_khead_divmod)
                        );
                        flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
                        __syncthreads();
                        rotary.apply_Q_contiguous(sQ, tRrCosCont, tRrSinCont, m_block, qhead_per_khead);
                    }
                } else {
                    flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
                }
            }

            if constexpr (Q_in_regs) {
                __syncthreads();
                Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
                Tensor tSsQ_copy_view = smem_thr_copy_Q.partition_S(sQ);
                cute::copy(smem_tiled_copy_Q, tSsQ_copy_view, tSrQ_copy_view);
            }
        };

        // If Share_QV_Smem, we load Q, then load 1 stage of K, then (optionally) rotate Q and
        // read from smem_q to registers, then load V.
        // If !Share_QV, Smem, we load Q, load all stages of K & V, then (optionally) rotate Q.

        if constexpr (Share_QV_Smem) {
            load_K(n_block, 0, cute::true_type{} /*Seqlenk_mask*/);
            cute::cp_async_fence();
            preprocess_Q();
            __syncthreads();  // Make sure all threads have read smem_q before loading V
        }

        // For persistent, make sure all threads have finished reading smem_o
        if constexpr (!Share_QV_Smem) { __syncthreads(); }
        // Note, using the for_each() function here to ensure `stage` is of type Int<x>.
        for_each(make_int_sequence<kStages>{}, [&] (auto stage) {
            static constexpr bool Is_first_stage = CUTE_STATIC_V(stage) == 0;
            static constexpr bool Is_last_stage = CUTE_STATIC_V(stage) == kStages - 1;
            if constexpr (!Share_QV_Smem || !Is_first_stage) {
                if (Is_first_stage || n_block - stage >= n_block_min) {
                    load_K(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
                }
                // We want the fence outside the if statement to have a fixed number of cp.async commits.
                // so that we can wait with the correct number of outstanding commits.
                cute::cp_async_fence();
            }
            if constexpr (!Is_last_stage) {
                if (Is_first_stage || n_block - stage >= n_block_min) {
                    load_V(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
                }
                cute::cp_async_fence();
            }
        });

        if constexpr (!Share_QV_Smem) { preprocess_Q(); }

        flash::Mask<kBlockM, kBlockN, PackGQA, TiledMma> mask(
            thread_idx, seqlen_q, seqlen_k, params.window_size_left, params.window_size_right, 0 /*sink_token_length*/,
            params.attention_chunk_divmod, params.qhead_per_khead_divmod
        );

        float softcap_val = params.softcap_val;
        if constexpr (Has_softcap && Is_FP8) {
            float const q_descale = params.ptr_q_descale == nullptr ? 1.0f : params.ptr_q_descale[bidb * get<0>(params.stride_q_descale) + bidh_kv * get<1>(params.stride_q_descale)];
            float const k_descale = params.ptr_k_descale == nullptr ? 1.0f : params.ptr_k_descale[bidb * get<0>(params.stride_k_descale) + bidh_kv * get<1>(params.stride_k_descale)];
            softcap_val *= q_descale * k_descale;
        }
        // Softcapping needs to happen before masking since if we apply after masking, softcapping can turn
        // -inf to e.g. -50.0, which can affect the attention softmax.
        auto scoremod_premask_fn = [&](auto& tSrS) {
            if constexpr (Has_softcap) { flash::apply_softcap(tSrS, softcap_val); }
        };

        int smem_pipe_read = 0, smem_pipe_write = kStages - 1;

        auto load_K_next = [&] {
            if (n_block - kStages >= n_block_min) {
                load_K(n_block - kStages, kStages > 1 ? smem_pipe_write : 0, cute::false_type{} /*Seqlenk_mask*/);
            }
            cute::cp_async_fence();
        };

        auto sync = [&] {
            flash::cp_async_wait<kStages * 2 - 2>();
            __syncthreads();
        };

        clear(tOrO);

        auto fwd_step = [&](int const n_block, auto mask_fn, auto is_first_iter_type, auto check_inf_type) {
            static constexpr bool Is_first_iter = decltype(is_first_iter_type)::value;
            static constexpr bool Check_inf = decltype(check_inf_type)::value;
            Tensor tSrS = partition_fragment_C(tiled_mma, select<0, 1>(TileShape_MNK{}));
            clear(tSrS);
            sync();
            auto load_V_next = [&] {
                if (n_block - kStages + 1 >= n_block_min) {
                    load_V(n_block - kStages + 1, kStages > 1 ? smem_pipe_write : 0, cute::bool_constant<Is_first_iter && kStages == 1>{} /*Seqlenk_mask*/);
                }
                cute::cp_async_fence();
            };
            Tensor tSrQ_cur = cute::conditional_return<Q_in_regs>(tSrQ, thr_mma.partition_fragment_A(sQ));
            Tensor tSrK = thr_mma.partition_fragment_B(sK(_, _, _0{}));
            flash::gemm_sm80<Q_in_regs>(
                tSrS, tSrQ_cur, tSrK, tSsQ, tSsK(_, _, _, kStages > 1 ? smem_pipe_read : 0),
                tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K, smem_thr_copy_Q, smem_thr_copy_K, load_V_next
            );
            smem_pipe_write = smem_pipe_write < kStages - 1 ? smem_pipe_write + 1 : 0;
            scoremod_premask_fn(tSrS);
            // Faster to load_K before gemm if we only have 1 stage
            if constexpr (kStages == 1) { sync(); load_K_next(); }
            mask_fn(tSrS, n_block);
            Tensor scores_scale = softmax.template max_get_scale</*Is_first=*/Is_first_iter, Check_inf>(tSrS);
            softmax.template online_softmax</*Is_first=*/Is_first_iter, Check_inf>(tSrS);
            if constexpr (Is_FP8) { flash::permute_Cregs_fp8(tSrS); }
            Tensor tOrP_acc = make_tensor(tSrS.data(), flash::convert_layout_acc_Aregs<TiledMma>(tSrS.layout()));
            Tensor tOrP = make_tensor_like<Element>(tOrP_acc);
            convert_type_out(tOrP_acc, tOrP);
            if constexpr (!Is_first_iter) { softmax.rescale_o(tOrO, scores_scale); }
            if constexpr (kStages > 1) { sync(); }
            Tensor tOrV = thr_mma.partition_fragment_B(sVt(_, _, _0{}));
            flash::gemm_rs_sm80(tOrO, tOrP, tOrV, tOsVt(_, _, _, kStages > 1 ? smem_pipe_read : 0), tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
            if constexpr (kStages > 1) { load_K_next(); }
            smem_pipe_read = smem_pipe_read < kStages - 1 ? smem_pipe_read + 1 : 0;
        };

        auto first_iter_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<true /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
        fwd_step(n_block, first_iter_mask_fn, cute::true_type{} /*is_first_iter*/, cute::true_type{} /*check_inf*/);
        --n_block;
        if constexpr (Is_causal || Is_local) { // Separate iterations with causal or local masking
            auto mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
            int const n_block_min_causal_local_mask = BlockMN_t::get_n_block_min_causal_local_mask(
                seqlen_info, m_block, n_block_min, params.window_size_right,
                params.attention_chunk_divmod, params.qhead_per_khead_divmod);
            #pragma unroll 1
            for (; n_block >= n_block_min_causal_local_mask; --n_block) {
                fwd_step(n_block, mask_fn, cute::false_type{} /*is_first_iter*/, cute::true_type{} /*check_inf*/);
            }
        }
        int const n_block_min_before_local_mask = BlockMN_t::get_n_block_min_before_local_mask(
            seqlen_info, m_block, n_block_min, params.window_size_left,
            params.attention_chunk_divmod, params.qhead_per_khead_divmod);
        auto no_mask_fn = [](auto& tSrS, int n_block) { };
        #pragma unroll 1
        for (; n_block >= n_block_min_before_local_mask; --n_block) {
            fwd_step(n_block, no_mask_fn, cute::false_type{} /*is_first_iter*/, cute::false_type{} /*check_inf*/);
        }
        // Separate masking iterations on the left for local attention
        if constexpr (Is_local) {
            auto local_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, false /*Causal_mask*/, Is_local>(tSrS, m_block, n_block); };
            #pragma unroll 1
            for (; n_block >= n_block_min; --n_block) {
                fwd_step(n_block, local_mask_fn, cute::false_type{} /*is_first_iter*/, cute::bool_constant<Is_local>{} /*check_inf*/);
            }
        }
        float const v_descale = !Is_FP8 || params.ptr_v_descale == nullptr ? 1.0f : params.ptr_v_descale[bidb * get<0>(params.stride_v_descale) + bidh_kv * get<1>(params.stride_v_descale)];
        Tensor scores_scale = softmax.finalize(v_descale);
        softmax.rescale_o(tOrO, scores_scale);
        if constexpr (Is_FP8) { flash::permute_output_fp8(tOrO); }
        return true;
    }

    template <typename SharedStorage>
    CUTLASS_DEVICE bool
    store_kv_new(Params const& params,
                 int const thread_idx,
                 SharedStorage &shared_storage,
                 SeqlenInfo_t const& seqlen_info,
                 cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord
    ) {
        auto [m_block, bidh, bidb, split_idx] = block_coord;
        auto n_block_new_min_max = BlockMN_t::get_n_block_k_new_min_max(
            seqlen_info, m_block, bidb, split_idx, params.num_splits,
            params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
            params.qhead_per_khead_divmod);
        int const n_block_new_min = get<0>(n_block_new_min_max);
        int const n_block_new_max = get<1>(n_block_new_min_max);
        if (n_block_new_max <= n_block_new_min) { return false; }

        Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
        Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutV{});

        int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
        int const bidb_kv = params.kv_batch_idx == nullptr ? bidb : params.kv_batch_idx[bidb];

        bool const is_varlen_k_new = Varlen && params.cu_seqlens_k_new;
        Tensor mKnew = make_tensor(make_gmem_ptr(params.ptr_K_new), params.shape_K_new, params.stride_K_new)(_, _, bidh_kv, !is_varlen_k_new ? bidb : 0);
        Tensor mVnew = make_tensor(make_gmem_ptr(params.ptr_V_new), params.shape_K_new, params.stride_V_new)(_, _, bidh_kv, !is_varlen_k_new ? bidb : 0);

        bool const is_varlen_k = Varlen && params.cu_seqlens_k;
        Tensor mK = make_tensor(make_gmem_ptr(params.ptr_K), params.shape_K, params.stride_K)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
        Tensor mV = make_tensor(make_gmem_ptr(params.ptr_V), params.shape_K, params.stride_V)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);

        Tensor gKnew = local_tile(domain_offset(make_coord(seqlen_info.offset_k_new, _0{}), mKnew), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (N, K, _)
        Tensor gVnew = local_tile(domain_offset(make_coord(seqlen_info.offset_k_new, _0{}), mVnew), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (N, K, _)
        int const offset_k = seqlen_info.offset_k + seqlen_info.seqlen_k_og;
        Tensor gK = local_tile(domain_offset(make_coord(offset_k, _0{}), mK), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (N, K, _)
        Tensor gV = local_tile(domain_offset(make_coord(offset_k, _0{}), mV), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (N, K, _)

        static constexpr int kBlockN = get<1>(TileShape_MNK{});
        static constexpr int kHeadDim = get<2>(TileShape_MNK{});
        int const seqlen_k_new = seqlen_info.seqlen_k_new;
        using Rotary_t = Rotary<kBlockN, kHeadDim, NumMmaThreads, Element>;
        Rotary_t rotary(params.ptr_rotary_cos, params.shape_rotary, params.stride_rotary_cos,
                        params.ptr_rotary_sin, params.stride_rotary_sin,
                        params.is_rotary_interleaved, thread_idx, seqlen_k_new,
                        seqlen_info.seqlen_rotary);

        using PagedKVManager_t = PagedKVManager<get<1>(TileShape_MNK{}), get<2>(TileShape_MNK{}), get<1>(TileShape_MNK_PV{}), NumMmaThreads, Element, true /*KV_Same_Iter*/, 2 /*LoadsPerRow_LB*/>;
        PagedKVManager_t paged_kv_manager(
            params.ptr_pagetable, params.shape_pagetable, params.stride_pagetable,
            params.ptr_K, params.shape_K, params.stride_K,
            params.ptr_V, params.headdim_v, params.stride_V,
            params.page_size_divmod,
            params.page_size_divmod /*blockN_per_page_size_divmod, not used since we don't use TMA*/,
            bidb_kv, bidh_kv, thread_idx, seqlen_k_new, offset_k,
            // passing offset_k instead of leftpad_k will move the PageTable pointer to the right position
            0 /*bidb_kv_idx, not used since we don't use TMA for Sm8x*/
        );

        static_assert(std::is_same_v<GmemLayoutAtomAppend, typename Rotary_t::LayoutAtom>);
        static_assert(!PagedKV || std::is_same_v<GmemLayoutAtomAppend, typename PagedKVManager_t::GmemLayoutAtomKVCpAsync>);
        GmemTiledCopyQKV gmem_tiled_copy_kv_g2s;
        auto gmem_thr_copy_kv_g2s = gmem_tiled_copy_kv_g2s.get_thread_slice(thread_idx);
        auto gmem_thr0_copy_kv_g2s = gmem_tiled_copy_kv_g2s.get_thread_slice(_0{});  // Only for index calculation
        GmemTiledCopyAppendKV gmem_tiled_copy_kv_s2g;
        auto gmem_thr_copy_kv_s2g = gmem_tiled_copy_kv_s2g.get_thread_slice(thread_idx);
        auto gmem_thr0_copy_kv_s2g = gmem_tiled_copy_kv_s2g.get_thread_slice(_0{});  // Only for index calculation
        Tensor tKgKnew = gmem_thr_copy_kv_g2s.partition_S(gKnew);
        Tensor tKsKg2s = gmem_thr_copy_kv_g2s.partition_S(sK);
        Tensor tKsKs2g = gmem_thr_copy_kv_s2g.partition_S(sK);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
        Tensor tKgK = gmem_thr_copy_kv_s2g.partition_D(gK);
        Tensor tVgVnew = gmem_thr_copy_kv_g2s.partition_S(gVnew);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
        Tensor tVsVg2s = gmem_thr_copy_kv_g2s.partition_S(sV);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
        Tensor tVsVs2g = gmem_thr_copy_kv_s2g.partition_S(sV);        // ((Atom,AtomNum),ATOM_M,ATOM_N)
        Tensor tVgV = gmem_thr_copy_kv_s2g.partition_D(gV);
        Tensor cK = cute::make_identity_tensor(select<1, 2>(TileShape_MNK{}));  // (BLK_N,BLK_K) -> (blk_n,blk_k)
        Tensor tKcKg2s = gmem_thr_copy_kv_g2s.partition_D(cK);
        Tensor t0KcKg2s = gmem_thr0_copy_kv_g2s.partition_D(cK);
        Tensor tKpKg2s = make_tensor<bool>(make_shape(size<2>(tKsKg2s)));
        Tensor tKcKs2g = gmem_thr_copy_kv_s2g.partition_D(cK);
        Tensor t0KcKs2g = gmem_thr0_copy_kv_s2g.partition_D(cK);
        Tensor tKpKs2g = make_tensor<bool>(make_shape(size<2>(tKsKs2g)));
        #pragma unroll
        for (int k = 0; k < size(tKpKg2s); ++k) { tKpKg2s(k) = get<1>(tKcKg2s(_0{}, _0{}, k)) < get<1>(params.shape_K); }
        #pragma unroll
        for (int k = 0; k < size(tKpKs2g); ++k) { tKpKs2g(k) = get<1>(tKcKs2g(_0{}, _0{}, k)) < get<1>(params.shape_K); }

        auto load_K_new = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
            static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
            static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
            Tensor tKsK_cur = tKsKg2s(_, _, _, smem_pipe_write);
            int const seqlenk_row_limit = -int(get<0>(tKcKg2s(_0{}, _0{}, _0{}))) + (EvenN
                ? seqlen_k_new - n_block * kBlockN
                : (!Seqlenk_mask ? kBlockN : std::min(seqlen_k_new - n_block * kBlockN, kBlockN)));
            // We don't need to clear the sK smem tiles since we won't write them out
            flash::copy</*Is_even_MN=*/!Seqlenk_mask && EvenN, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
                gmem_tiled_copy_kv_g2s, tKgKnew(_, _, _, n_block), tKsK_cur, t0KcKg2s, tKpKg2s, seqlenk_row_limit);
        };

        auto load_V_new = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
            static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
            static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
            Tensor tVsV_cur = tVsVg2s(_, _, _, smem_pipe_write);
            int const seqlenk_row_limit = -int(get<0>(tKcKg2s(_0{}, _0{}, _0{}))) + (EvenN
                ? seqlen_k_new - n_block * kBlockN
                : (!Seqlenk_mask ? kBlockN : std::min(seqlen_k_new - n_block * kBlockN, kBlockN)));
            // We don't need to clear the sV smem tiles since we won't write them out
            flash::copy</*Is_even_MN=*/!Seqlenk_mask && EvenN, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
                gmem_tiled_copy_kv_g2s, tVgVnew(_, _, _, n_block), tVsV_cur, t0KcKg2s, tKpKg2s, seqlenk_row_limit);
        };

        auto store_K = [&] (int const n_block, int const smem_pipe_read) {
            int const n_limit = std::min(seqlen_k_new - n_block * kBlockN, kBlockN);
            if (get<1>(params.shape_rotary) <= 0) {
                Tensor tKsK_cur = tKsKs2g(_, _, _, smem_pipe_read);
                if constexpr (!PagedKV) {
                    Tensor tKgK_cur = tKgK(_, _, _, n_block);
                    // Clear_OOB_K must be false since we don't want to write zeros to gmem
                    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
                        gmem_tiled_copy_kv_s2g, tKsK_cur, tKgK_cur, tKcKs2g, tKpKs2g, std::min(seqlen_k_new - n_block * kBlockN, kBlockN)
                    );
                } else {
                    paged_kv_manager.store_K(n_block, tKsK_cur);
                }
            } else {
                Tensor gK_cur = gK(_, _, n_block);
                auto tPrKPtr = cute::conditional_return<PagedKV>(paged_kv_manager.compute_K_ptr(), nullptr);
                if (params.is_rotary_interleaved) {
                    auto [tRrCos, tRrSin] = rotary.template load_cos_sin<true /*kInterleaved*/>(n_block);
                    rotary.template apply_K_interleaved<PagedKV>(sK(_, _, smem_pipe_read), gK_cur, tKpKs2g, tRrCos, tRrSin, tPrKPtr, n_block);
                } else {
                    auto [tRrCosCont, tRrSinCont] = rotary.template load_cos_sin<false /*kInterleaved*/>(n_block);
                    rotary.template apply_K_contiguous<PagedKV>(sK(_, _, smem_pipe_read), gK_cur, tKpKs2g, tRrCosCont, tRrSinCont, tPrKPtr, n_block, get<1>(params.shape_K));
                }
            }
        };

        auto store_V = [&] (int const n_block, int const smem_pipe_read) {
            int const n_limit = std::min(seqlen_k_new - n_block * kBlockN, kBlockN);
            Tensor tVsV_cur = tVsVs2g(_, _, _, smem_pipe_read);
            if constexpr (!PagedKV) {
                Tensor tVgV_cur = tVgV(_, _, _, n_block);
                // Clear_OOB_K must be false since we don't want to write zeros to gmem
                flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
                    gmem_tiled_copy_kv_s2g, tVsV_cur, tVgV_cur, tKcKs2g, tKpKs2g, n_limit);
            } else {
                paged_kv_manager.store_V(n_block, tVsV_cur);
            }
        };

        int n_block = n_block_new_max - 1;
        // Note, using the for_each() function here to ensure `stage` is of type Int<x>.
        for_each(make_int_sequence<kStages>{}, [&] (auto stage) {
            static constexpr bool Is_first_stage = CUTE_STATIC_V(stage) == 0;
            static constexpr bool Is_last_stage = CUTE_STATIC_V(stage) == kStages - 1;
            if (Is_first_stage || n_block - stage >= n_block_new_min) {
                load_K_new(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
            }
            cute::cp_async_fence();
            // If persistent, need to sync to make sure all threads have finished with smem_o before writing to smem_v
            if constexpr (Is_first_stage) { __syncthreads(); }
            if constexpr (!Is_last_stage) {
                if (Is_first_stage || n_block - stage >= n_block_new_min) {
                    load_V_new(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
                }
                cute::cp_async_fence();
            }
        });

        int smem_pipe_read = 0, smem_pipe_write = kStages - 1;
        #pragma unroll 1
        for (; n_block >= n_block_new_min; --n_block) {
            if constexpr (PagedKV) { paged_kv_manager.template load_page_table<true /*Seqlenk_mask*/>(n_block); }
            flash::cp_async_wait<kStages * 2 - 2>();
            __syncthreads();
            store_K(n_block, kStages > 1 ? smem_pipe_read : 0);
            if (n_block - kStages + 1 >= n_block_new_min) {
                load_V_new(n_block - kStages + 1, kStages > 1 ? smem_pipe_write : 0, cute::bool_constant<kStages == 1>{} /*Seqlenk_mask*/);
            }
            cute::cp_async_fence();
            smem_pipe_write = smem_pipe_write < kStages - 1 ? smem_pipe_write + 1 : 0;
            flash::cp_async_wait<kStages * 2 - 2>();
            __syncthreads();
            store_V(n_block, kStages > 1 ? smem_pipe_read : 0);
            smem_pipe_read = smem_pipe_read < kStages - 1 ? smem_pipe_read + 1 : 0;
            if (n_block - kStages >= n_block_new_min) {
                load_K_new(n_block - kStages, kStages > 1 ? smem_pipe_write : 0, cute::false_type{} /*Seqlenk_mask*/);
            }
            cute::cp_async_fence();
        }

        return true;

    }

};

} // namespace flash