File size: 51,171 Bytes
eb8ddce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#pragma once
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cute/tensor.hpp"
#include "seqlen.h"
#include "block.h"
#include "mask.h"
#include "pack_gqa.h"
#include "paged_kv.h"
#include "rotary.h"
#include "utils.h"
namespace flash {
using namespace cute;
template <int kNWarps, int Stages, bool Q_in_regs, class TileShape_MNK_, int kHeadDimV, class Element_, class ElementAccum_, class ArchTag_,
bool Is_causal_, bool Is_local_, bool Has_softcap_, bool Varlen_, bool PagedKV_, bool AppendKV_,
bool PackGQA_, bool Split_>
struct CollectiveMainloopFwdSm80 {
static constexpr int kStages = Stages;
static_assert(kStages > 0, "kStages must be greater than 0");
using TileShape_MNK = TileShape_MNK_;
using TileShape_MNK_PV = Shape<decltype(get<0>(TileShape_MNK{})), Int<kHeadDimV>, decltype(get<1>(TileShape_MNK{}))>;
using Element = Element_;
using ElementAccum = ElementAccum_;
using ArchTag = ArchTag_;
static constexpr bool Is_FP8 = cute::is_same_v<Element, cutlass::float_e4m3_t> || cute::is_same_v<Element, cutlass::float_e5m2_t>;;
static constexpr bool Is_causal = Is_causal_;
static constexpr bool Is_local = Is_local_;
static constexpr bool Has_softcap = Has_softcap_;
static constexpr bool Varlen = Varlen_;
static constexpr bool PagedKV = PagedKV_;
static constexpr bool AppendKV = AppendKV_;
static constexpr bool PackGQA = PackGQA_;
static constexpr bool Split = Split_;
static constexpr bool Transpose_V = Is_FP8;
static_assert(ArchTag::kMinComputeCapability >= 80);
static constexpr bool Has_cp_async = ArchTag::kMinComputeCapability >= 80;
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
using SeqlenInfo_t = flash::SeqlenInfoQKNewK<Varlen, AppendKV>;
using BlockMN_t = flash::BlockMN<SeqlenInfo_t, kBlockM, kBlockN, Is_causal, Is_local, PackGQA, Split>;
using MMA_Atom_Arch = std::conditional_t<
ArchTag::kMinComputeCapability >= 80,
std::conditional_t<
std::is_same_v<Element, cutlass::half_t>,
MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>,
MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>
>,
MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>
>;
using TiledMma = TiledMMA<
MMA_Atom_Arch,
Layout<Shape<Int<kNWarps>,_1,_1>>, // 4x1x1 or 8x1x1 thread group
Tile<Int<16 * kNWarps>, _16, _16>>;
static constexpr int NumMmaThreads = size(TiledMma{});
static constexpr int NumProducerThreads = NumMmaThreads; // For compatibility with TileScheduler
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "Headdim must be a multiple of kGmemElemsPerLoad");
// We want each "row" to have 64 elements (128 bytes, i.e. 1 cache line). E.g. if hdim=128, we want each
// thread to have 4 loads in the M direction and 2 vectorized load in the K direction.
static constexpr int kBytePerRow = kHeadDim * sizeof(Element);
static constexpr int kBlockKGmem = (kBytePerRow % 128 == 0 ? 128 : (kBytePerRow % 64 == 0 ? 64 : 32)) / sizeof(Element);
static constexpr int kSwizzle = kBlockKGmem == 128 ? 4 : (kBlockKGmem == 64 ? 3 : (kBlockKGmem == 32 ? 2 : 1));
static constexpr int kSwizzleBase = sizeof(Element) == 4 ? 2 : (sizeof(Element) == 2 ? 3 : 4);
using SmemLayoutAtomQKV = decltype(
composition(Swizzle<kSwizzle, kSwizzleBase, kSwizzleBase>{},
Layout<Shape<_8, Int<kBlockKGmem>>,
Stride<Int<kBlockKGmem>, _1>>{}));
using SmemLayoutQ = decltype(tile_to_shape(SmemLayoutAtomQKV{}, select<0, 2>(TileShape_MNK{})));
using SmemLayoutK = decltype(tile_to_shape(
SmemLayoutAtomQKV{},
make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
using SmemLayoutV = decltype(tile_to_shape(
SmemLayoutAtomQKV{},
make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
using SmemLayoutVt = decltype(
composition(SmemLayoutV{},
make_ordered_layout(make_shape(shape<2>(TileShape_MNK{}), shape<1>(TileShape_MNK{}), Int<kStages>{}),
Step<_2, _1, _3>{})));
using SmemCopyAtom = Copy_Atom<SM75_U32x4_LDSM_N, Element>;
using SmemCopyAtomTransposed = Copy_Atom<SM75_U16x8_LDSM_T, Element>;
// We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
// from the same address by the same threadblock. This is slightly faster.
using GmemCopyAtom = Copy_Atom<std::conditional_t<
Has_cp_async,
SM80_CP_ASYNC_CACHEGLOBAL_ZFILL<cute::uint128_t>,
AutoVectorizingCopyWithAssumedAlignment<128>
>, Element>;
static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
static_assert(NumMmaThreads % kGmemThreadsPerRow == 0, "NumMmaThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<Shape <Int<NumMmaThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
using GmemTiledCopyQKV = decltype(
make_tiled_copy(GmemCopyAtom{},
GmemLayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 8 or 16 vals per read
// So that we don't have to check if we overshot kBlockM when we load Q
static_assert(kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0);
// For AppendKV, We want each thread to have at least 2 loads in the K direction since in the case of
// non-interleaved rotary (combining elements at indices 0 and rotary_dim/2, 1 and rotary_dim/2+1, etc),
// each thread will load twice from the same row.
static constexpr int kBytePerHalfRow = kHeadDim / 2 * sizeof(Element);
static constexpr int kBlockKGmemAppend = (kBytePerHalfRow % 128 == 0 ? 128 : (kBytePerHalfRow % 64 == 0 ? 64 : 32)) / sizeof(Element);
static constexpr int kGmemThreadsPerRowAppend = kBlockKGmemAppend / kGmemElemsPerLoad;
static_assert(NumMmaThreads % kGmemThreadsPerRowAppend == 0, "NumMmaThreads must be a multiple of kGmemThreadsPerRowAppend");
// We assume threads loading the same row are in the same warp. This is for an optimization in PagedKV where
// these threads share the same page table entry and share the work of computing pointers to paged K and paged V.
static_assert(cutlass::NumThreadsPerWarp % kGmemThreadsPerRowAppend == 0, "kGmemThreadsPerRowAppend must divide NumThreadsPerWarp");
using GmemLayoutAtomAppend = Layout<Shape <Int<NumMmaThreads / kGmemThreadsPerRowAppend>, Int<kGmemThreadsPerRowAppend>>,
Stride<Int<kGmemThreadsPerRowAppend>, _1>>;
// If AppendKV, we'll be loading Q for rotary, and we assume divisibility to avoid predication
static_assert(!AppendKV || kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtomAppend{})) == 0, "kBlockM must be a multiple of NumMmaThreads / kGmemThreadsPerRowAppend");
using GmemTiledCopyAppendKV = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
GmemLayoutAtomAppend{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 8 or 16 vals per store
using ShapeQKV = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, head, batch)
using StrideQK = cute::Stride<int64_t, _1, int64_t, int64_t>;
using StrideV = StrideQK;
// ((qhead_per_khead, seqlen_q), d, nheads_kv, batch, num_splits)
using ShapeQPacked = std::conditional_t<!PackGQA, ShapeQKV, cute::Shape<cute::Shape<int32_t, int32_t>, int32_t, int32_t, int32_t>>;
using StrideQPacked = std::conditional_t<!PackGQA, StrideQK, cute::Stride<cute::Stride<int64_t, int64_t>, _1, int64_t, int64_t>>;
using ShapePageTable = cute::Shape<int32_t, int32_t>; // (batch, max_num_pages_per_seq)
using StridePageTable = cute::Stride<int64_t, _1>;
using ShapeRotary = cute::Shape<int32_t, int32_t>; // (seqlen_ro, rotary_dim // 2)
using StrideRotary = cute::Stride<int64_t, _1>;
using StrideDescale = cute::Stride<int64_t, int64_t>;
static constexpr bool Share_QV_Smem = Q_in_regs;
struct TensorStorageSharedQV : cute::aligned_struct<128> {
union {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutV>> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>> smem_q;
};
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>> smem_k;
};
struct TensorStorageSeparateQV : cute::aligned_struct<128> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutV>> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>> smem_k;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>> smem_q;
};
using TensorStorage = std::conditional_t<Share_QV_Smem, TensorStorageSharedQV, TensorStorageSeparateQV>;
// Host side kernel arguments
struct Arguments {
Element const* const ptr_Q;
ShapeQKV const shape_Q;
StrideQK const stride_Q;
Element* const ptr_K; // Not Element const* since we might append to KV cache in-place
ShapeQKV const shape_K;
StrideQK const stride_K;
Element* const ptr_V;
int32_t const headdim_v;
StrideV const stride_V;
Element const* const ptr_K_new;
ShapeQKV const shape_K_new;
StrideQK const stride_K_new;
Element const* const ptr_V_new;
StrideV const stride_V_new;
Element const* const ptr_Qv;
StrideQK const stride_Qv;
Element const* const ptr_rotary_cos;
ShapeRotary const shape_rotary;
StrideRotary const stride_rotary_cos;
Element const* const ptr_rotary_sin;
StrideRotary const stride_rotary_sin;
bool const is_rotary_interleaved;
int const* const ptr_pagetable;
ShapePageTable const shape_pagetable;
StridePageTable const stride_pagetable;
float const softmax_scale;
float const* ptr_q_descale, *ptr_k_descale, *ptr_v_descale;
StrideDescale const stride_q_descale, stride_k_descale, stride_v_descale;
int const window_size_left = -1, window_size_right = -1, attention_chunk = 0;
float const softcap_val;
int const num_splits;
int const* const kv_batch_idx = nullptr;
int const* const cu_seqlens_q = nullptr;
int const* const cu_seqlens_k = nullptr;
int const* const cu_seqlens_k_new = nullptr;
int const* const seqused_q = nullptr;
int const* const seqused_k = nullptr;
int const* const leftpad_k = nullptr;
int const* const seqlens_rotary = nullptr;
};
// Device side kernel params
struct Params {
Element const* const ptr_Q;
ShapeQKV const shape_Q;
StrideQK const stride_Q;
ShapeQPacked const shape_Q_packed;
StrideQPacked const stride_Q_packed;
Element* const ptr_K;
ShapeQKV const shape_K;
StrideQK const stride_K;
Element* const ptr_V;
int32_t const headdim_v;
StrideV const stride_V;
Element const* const ptr_K_new;
ShapeQKV const shape_K_new;
StrideQK const stride_K_new;
Element const* const ptr_V_new;
StrideV const stride_V_new;
Element const* const ptr_rotary_cos;
ShapeRotary const shape_rotary;
StrideRotary const stride_rotary_cos;
Element const* const ptr_rotary_sin;
StrideRotary const stride_rotary_sin;
bool const is_rotary_interleaved;
int const* const ptr_pagetable;
ShapePageTable const shape_pagetable;
StridePageTable const stride_pagetable;
cutlass::FastDivmod page_size_divmod;
cutlass::FastDivmod qhead_per_khead_divmod;
float const softmax_scale_log2;
float const* ptr_q_descale, *ptr_k_descale, *ptr_v_descale;
StrideDescale const stride_q_descale, stride_k_descale, stride_v_descale;
float const softcap_val;
int const window_size_left, window_size_right;
cutlass::FastDivmod attention_chunk_divmod;
int const num_splits;
int const* const kv_batch_idx = nullptr;
int const* const cu_seqlens_q = nullptr;
int const* const cu_seqlens_k = nullptr;
int const* const cu_seqlens_k_new = nullptr;
int const* const seqused_q = nullptr;
int const* const seqused_k = nullptr;
int const* const leftpad_k = nullptr;
int const* const seqlens_rotary = nullptr;
};
static Params
to_underlying_arguments(Arguments const& args) {
// If PackGQA, reshape Q to be ((qhead_per_khead, seqlen_q), head_size, nhead_k, batch_size)
int const qhead_per_khead = !PackGQA ? 1 : cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K));
auto const shape_Q_packed = cute::conditional_return<!PackGQA>(
args.shape_Q,
make_shape(make_shape(qhead_per_khead, get<0>(args.shape_Q)), get<1>(args.shape_Q), get<2>(args.shape_K), get<3>(args.shape_Q))
);
auto const stride_Q_packed = cute::conditional_return<!PackGQA>(
args.stride_Q,
make_stride(make_stride(get<2>(args.stride_Q), get<0>(args.stride_Q)), get<1>(args.stride_Q), get<2>(args.stride_Q) * qhead_per_khead, get<3>(args.stride_Q))
);
if (get<1>(args.shape_rotary) > 0) {
assert(args.ptr_rotary_cos != nullptr && args.ptr_rotary_sin != nullptr);
}
assert(args.num_splits >= 1);
// Avoid dividing by zero
cutlass::FastDivmod attention_chunk_divmod(args.attention_chunk >= 1 ? args.attention_chunk : 1);
attention_chunk_divmod.divisor = args.attention_chunk;
// If there's tanh softcapping, we do tanh(scores * softmax_scale / softcap_val) * softcap_val.
// Right after this, we multiply by log2(e) before applying exp2.
// To reduce the number of instructions, we instead pre-multiply softmax_scale / softcap_val
// (assigning it to params.softcap_val) and pre-multiply softcap_val * log2(e)
// (assigning it to params.softmax_scale_log2).
return {args.ptr_Q, args.shape_Q, args.stride_Q, shape_Q_packed, stride_Q_packed,
args.ptr_K, args.shape_K, args.stride_K, args.ptr_V, args.headdim_v, args.stride_V,
args.ptr_K_new, args.shape_K_new, args.stride_K_new, args.ptr_V_new, args.stride_V_new,
args.ptr_rotary_cos, args.shape_rotary, args.stride_rotary_cos,
args.ptr_rotary_sin, args.stride_rotary_sin, args.is_rotary_interleaved,
args.ptr_pagetable, args.shape_pagetable, args.stride_pagetable,
cutlass::FastDivmod(int(get<0>(args.shape_K))),
cutlass::FastDivmod(cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K))),
!Has_softcap ? float(args.softmax_scale * M_LOG2E) : float(args.softcap_val * M_LOG2E),
args.ptr_q_descale, args.ptr_k_descale, args.ptr_v_descale,
args.stride_q_descale, args.stride_k_descale, args.stride_v_descale,
!Has_softcap ? 0.f : args.softmax_scale / args.softcap_val,
args.window_size_left, args.window_size_right, attention_chunk_divmod,
!Split ? 1 : args.num_splits,
args.kv_batch_idx,
args.cu_seqlens_q, args.cu_seqlens_k, args.cu_seqlens_k_new,
args.seqused_q, args.seqused_k, args.leftpad_k, args.seqlens_rotary};
}
template <typename SharedStorage, typename FrgTensorO, typename Softmax>
CUTLASS_DEVICE bool
mma(Params const& params,
FrgTensorO& tOrO,
Softmax& softmax,
int const thread_idx,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord,
SharedStorage& shared_storage
) {
static_assert(is_rmem<FrgTensorO>::value, "O tensor must be rmem resident.");
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
// can't use auto [m_block, ...] = block_coord since structured binding cannot be captured in lambda
int const m_block = get<0>(block_coord);
int const bidh = get<1>(block_coord);
int const bidb = get<2>(block_coord);
int const split_idx = get<3>(block_coord);
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
auto n_block_min_max = BlockMN_t::get_n_block_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
int const n_block_min = get<0>(n_block_min_max);
int const n_block_max = get<1>(n_block_min_max);
// It's possible to have n_block_max <= n_block_min. We don't want to load Q or change any barrier
if constexpr (Is_causal || Is_local || Varlen || Split) {
if (n_block_max <= n_block_min) { return false; }
}
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutV{});
Tensor sVt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVt{});
bool const is_varlen_q = Varlen && params.cu_seqlens_q;
bool const is_varlen_k = Varlen && params.cu_seqlens_k;
int const bidb_kv = params.kv_batch_idx == nullptr ? bidb : params.kv_batch_idx[bidb];
Tensor mQ = make_tensor(make_gmem_ptr(params.ptr_Q + seqlen_info.offset_q * get<0>(params.stride_Q)), params.shape_Q_packed, params.stride_Q_packed)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor gQ = local_tile(mQ, select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K)
Tensor mK = make_tensor(make_gmem_ptr(params.ptr_K + seqlen_info.offset_k * get<0>(params.stride_K)), params.shape_K, params.stride_K)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
Tensor gK = local_tile(mK, select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
Tensor mV = make_tensor(make_gmem_ptr(params.ptr_V + seqlen_info.offset_k * get<0>(params.stride_V)), params.shape_K, params.stride_V)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
Tensor gV = local_tile(mV, select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
GmemTiledCopyQKV gmem_tiled_copy_QKV;
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(thread_idx);
auto gmem_thr0_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(_0{}); // For index calculation
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K, nblocksN)
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K, nblocksN)
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
TiledMma tiled_mma;
auto thr_mma = tiled_mma.get_slice(thread_idx);
// Allocate "fragments/descriptors"
Tensor tSrQ = thr_mma.partition_fragment_A(sQ);
// Copy Atom retiling
auto smem_tiled_copy_Q = make_tiled_copy_A(SmemCopyAtom{}, tiled_mma);
auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(thread_idx);
auto smem_tiled_copy_K = make_tiled_copy_B(SmemCopyAtom{}, tiled_mma);
auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(thread_idx);
auto smem_tiled_copy_V = make_tiled_copy_B(SmemCopyAtomTransposed{}, tiled_mma);
auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(thread_idx);
Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
Tensor tSsK = smem_thr_copy_K.partition_S(sK);
Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);
// Predicates
Tensor cKV = cute::make_identity_tensor(select<1, 2>(TileShape_MNK{}));
Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);
Tensor t0KVcKV = gmem_thr0_copy_QKV.partition_S(cKV);
Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
#pragma unroll
for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(_0{}, _0{}, k)) < get<1>(params.shape_K); }
int const seqlen_q = seqlen_info.seqlen_q;
int const seqlen_k = seqlen_info.seqlen_k;
int n_block = n_block_max - 1;
// Prologue: load Q, K, V
// If persistent, we don't need to wait for the previous work_idx to finish
// since we assume that all MMA threads sync in the epilogue before writing to smem_o.
// So any thread gets there, all threads must have finished the previous MMA and at least started
// writing to smem_o.
// If persistent, need to sync to make sure all threads have finished with smem_o before writing to smem_v
if constexpr (Share_QV_Smem) { __syncthreads(); }
if constexpr (!PackGQA) {
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
Tensor cQ = cute::make_identity_tensor(select<0, 2>(TileShape_MNK{}));
Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);
Tensor t0QcQ = gmem_thr0_copy_QKV.partition_S(cQ);
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
#pragma unroll
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(_0{}, _0{}, k)) < get<1>(params.shape_Q); }
// Instead of passing in tQcQ, we pass in t0QcQ and subtract the offset from the limit
// (seqlen_q - m_block * kBlockM). This is because the entries of t0QcQ are known at compile time.
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
gmem_tiled_copy_QKV, tQgQ, tQsQ, t0QcQ, tQpQ, seqlen_info.seqlen_q - m_block * kBlockM - get<0>(tQcQ(_0{}, _0{}, _0{}))
);
} else {
using PackGQAt = flash::PackGQAManager<get<0>(TileShape_MNK{}), get<2>(TileShape_MNK{}), NumMmaThreads, Element>;
PackGQAt::load_Q(mQ, sQ, params.qhead_per_khead_divmod, thread_idx, seqlen_q, m_block);
}
cute::cp_async_fence();
using PagedKVManager_t = PagedKVManager<get<1>(TileShape_MNK{}), get<2>(TileShape_MNK{}), get<1>(TileShape_MNK_PV{}), NumMmaThreads, Element, true /*KV_Same_Iter*/>;
PagedKVManager_t paged_kv_manager(
params.ptr_pagetable, params.shape_pagetable, params.stride_pagetable,
params.ptr_K, params.shape_K, params.stride_K,
params.ptr_V, params.headdim_v, params.stride_V,
params.page_size_divmod,
params.page_size_divmod /*blockN_per_page_size_divmod, not used since we don't use TMA*/,
bidb_kv, bidh_kv, thread_idx, seqlen_info.seqlen_k, seqlen_info.leftpad_k,
0 /*bidb_kv_idx, not used since we don't use TMA for Sm8x*/
);
auto load_K = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
if constexpr (!PagedKV) {
// Do we need bound check to make sure the row doesn't go above kBlockN
static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
Tensor tKsK_cur = tKsK(_, _, _, smem_pipe_write);
// Instead of passing in tKVcKV, we pass in t0KVcKV and subtract the offset from the limit
// (seqlen_k - n_block * kBlockN). This is because the entries of t0KVcKV are known at compile time.
int const seqlenk_row_limit = -int(get<0>(tKVcKV(_0{}, _0{}, _0{}))) + (EvenN
? seqlen_info.seqlen_k - n_block * kBlockN
: (!Seqlenk_mask ? kBlockN : std::min(seqlen_info.seqlen_k - n_block * kBlockN, kBlockN)));
// We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
flash::copy</*Is_even_MN=*/!Seqlenk_mask && EvenN, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
gmem_tiled_copy_QKV, tKgK(_, _, _, n_block), tKsK_cur, t0KVcKV, tKVpKV, seqlenk_row_limit);
} else {
paged_kv_manager.template load_page_table<Seqlenk_mask>(n_block);
paged_kv_manager.template load_K<Seqlenk_mask>(n_block, sK(_, _, smem_pipe_write));
}
};
auto load_V = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
if constexpr (!PagedKV) {
// Do we need bound check to make sure the row doesn't go above kBlockN
static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
Tensor tVsV_cur = tVsV(_, _, _, smem_pipe_write);
// We don't call flash::copy since it doesn't support bound checking
// to not overshot kBlockN when writing to smem.
Tensor tVgV_cur = tVgV(_, _, _, n_block);
int const seqlenk_row_limit = seqlen_info.seqlen_k - n_block * kBlockN - get<0>(tKVcKV(_0{}, _0{}, _0{}));
#pragma unroll
for (int m = 0; m < size<1>(tVsV); ++m) {
// If kBlockN doesn't evenly divide the tiled copy, only the last `m` needs to be checked
if (EvenN || m < size<1>(tVsV) - 1 || get<0>(tKVcKV(_0{}, m, _0{})) < kBlockN) {
bool const predicate_n = !Seqlenk_mask || get<0>(t0KVcKV(_0{}, m, _0{})) < seqlenk_row_limit;
#pragma unroll
for (int k = 0; k < size<2>(tVsV); ++k) {
cute::copy(gmem_tiled_copy_QKV.with(tKVpKV(k) && predicate_n), tVgV_cur(_, m, k), tVsV_cur(_, m, k));
}
}
}
} else {
paged_kv_manager.template load_V<Seqlenk_mask>(n_block, sV(_, _, smem_pipe_write));
}
};
auto preprocess_Q = [&] {
if constexpr (!AppendKV) {
flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
} else {
if (get<1>(params.shape_rotary) > 0) { // Apply rotary to Q
using Rotary_t = Rotary<kBlockM, kHeadDim, NumMmaThreads, Element, !(Is_causal || Is_local) /*FixedPosition*/>;
Rotary_t rotary(params.ptr_rotary_cos, params.shape_rotary, params.stride_rotary_cos,
params.ptr_rotary_sin, params.stride_rotary_sin,
params.is_rotary_interleaved, thread_idx, seqlen_q,
seqlen_info.seqlen_rotary);
int const qhead_per_khead = !PackGQA ? 1 : params.qhead_per_khead_divmod.divisor;
if (params.is_rotary_interleaved) {
auto [tRrCos, tRrSin] = cute::conditional_return<!PackGQA>(
rotary.template load_cos_sin<true /*kInterleaved*/>(m_block),
rotary.template load_cos_sin_packgqa<true /*kInterleaved*/>(m_block, params.qhead_per_khead_divmod)
);
flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
__syncthreads();
rotary.apply_Q_interleaved(sQ, tRrCos, tRrSin, m_block, qhead_per_khead);
} else {
auto [tRrCosCont, tRrSinCont] = cute::conditional_return<!PackGQA>(
rotary.template load_cos_sin<false /*kInterleaved*/>(m_block),
rotary.template load_cos_sin_packgqa<false /*kInterleaved*/>(m_block, params.qhead_per_khead_divmod)
);
flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
__syncthreads();
rotary.apply_Q_contiguous(sQ, tRrCosCont, tRrSinCont, m_block, qhead_per_khead);
}
} else {
flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
}
}
if constexpr (Q_in_regs) {
__syncthreads();
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
Tensor tSsQ_copy_view = smem_thr_copy_Q.partition_S(sQ);
cute::copy(smem_tiled_copy_Q, tSsQ_copy_view, tSrQ_copy_view);
}
};
// If Share_QV_Smem, we load Q, then load 1 stage of K, then (optionally) rotate Q and
// read from smem_q to registers, then load V.
// If !Share_QV, Smem, we load Q, load all stages of K & V, then (optionally) rotate Q.
if constexpr (Share_QV_Smem) {
load_K(n_block, 0, cute::true_type{} /*Seqlenk_mask*/);
cute::cp_async_fence();
preprocess_Q();
__syncthreads(); // Make sure all threads have read smem_q before loading V
}
// For persistent, make sure all threads have finished reading smem_o
if constexpr (!Share_QV_Smem) { __syncthreads(); }
// Note, using the for_each() function here to ensure `stage` is of type Int<x>.
for_each(make_int_sequence<kStages>{}, [&] (auto stage) {
static constexpr bool Is_first_stage = CUTE_STATIC_V(stage) == 0;
static constexpr bool Is_last_stage = CUTE_STATIC_V(stage) == kStages - 1;
if constexpr (!Share_QV_Smem || !Is_first_stage) {
if (Is_first_stage || n_block - stage >= n_block_min) {
load_K(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
}
// We want the fence outside the if statement to have a fixed number of cp.async commits.
// so that we can wait with the correct number of outstanding commits.
cute::cp_async_fence();
}
if constexpr (!Is_last_stage) {
if (Is_first_stage || n_block - stage >= n_block_min) {
load_V(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
}
});
if constexpr (!Share_QV_Smem) { preprocess_Q(); }
flash::Mask<kBlockM, kBlockN, PackGQA, TiledMma> mask(
thread_idx, seqlen_q, seqlen_k, params.window_size_left, params.window_size_right, 0 /*sink_token_length*/,
params.attention_chunk_divmod, params.qhead_per_khead_divmod
);
float softcap_val = params.softcap_val;
if constexpr (Has_softcap && Is_FP8) {
float const q_descale = params.ptr_q_descale == nullptr ? 1.0f : params.ptr_q_descale[bidb * get<0>(params.stride_q_descale) + bidh_kv * get<1>(params.stride_q_descale)];
float const k_descale = params.ptr_k_descale == nullptr ? 1.0f : params.ptr_k_descale[bidb * get<0>(params.stride_k_descale) + bidh_kv * get<1>(params.stride_k_descale)];
softcap_val *= q_descale * k_descale;
}
// Softcapping needs to happen before masking since if we apply after masking, softcapping can turn
// -inf to e.g. -50.0, which can affect the attention softmax.
auto scoremod_premask_fn = [&](auto& tSrS) {
if constexpr (Has_softcap) { flash::apply_softcap(tSrS, softcap_val); }
};
int smem_pipe_read = 0, smem_pipe_write = kStages - 1;
auto load_K_next = [&] {
if (n_block - kStages >= n_block_min) {
load_K(n_block - kStages, kStages > 1 ? smem_pipe_write : 0, cute::false_type{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
};
auto sync = [&] {
flash::cp_async_wait<kStages * 2 - 2>();
__syncthreads();
};
clear(tOrO);
auto fwd_step = [&](int const n_block, auto mask_fn, auto is_first_iter_type, auto check_inf_type) {
static constexpr bool Is_first_iter = decltype(is_first_iter_type)::value;
static constexpr bool Check_inf = decltype(check_inf_type)::value;
Tensor tSrS = partition_fragment_C(tiled_mma, select<0, 1>(TileShape_MNK{}));
clear(tSrS);
sync();
auto load_V_next = [&] {
if (n_block - kStages + 1 >= n_block_min) {
load_V(n_block - kStages + 1, kStages > 1 ? smem_pipe_write : 0, cute::bool_constant<Is_first_iter && kStages == 1>{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
};
Tensor tSrQ_cur = cute::conditional_return<Q_in_regs>(tSrQ, thr_mma.partition_fragment_A(sQ));
Tensor tSrK = thr_mma.partition_fragment_B(sK(_, _, _0{}));
flash::gemm_sm80<Q_in_regs>(
tSrS, tSrQ_cur, tSrK, tSsQ, tSsK(_, _, _, kStages > 1 ? smem_pipe_read : 0),
tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K, smem_thr_copy_Q, smem_thr_copy_K, load_V_next
);
smem_pipe_write = smem_pipe_write < kStages - 1 ? smem_pipe_write + 1 : 0;
scoremod_premask_fn(tSrS);
// Faster to load_K before gemm if we only have 1 stage
if constexpr (kStages == 1) { sync(); load_K_next(); }
mask_fn(tSrS, n_block);
Tensor scores_scale = softmax.template max_get_scale</*Is_first=*/Is_first_iter, Check_inf>(tSrS);
softmax.template online_softmax</*Is_first=*/Is_first_iter, Check_inf>(tSrS);
if constexpr (Is_FP8) { flash::permute_Cregs_fp8(tSrS); }
Tensor tOrP_acc = make_tensor(tSrS.data(), flash::convert_layout_acc_Aregs<TiledMma>(tSrS.layout()));
Tensor tOrP = make_tensor_like<Element>(tOrP_acc);
convert_type_out(tOrP_acc, tOrP);
if constexpr (!Is_first_iter) { softmax.rescale_o(tOrO, scores_scale); }
if constexpr (kStages > 1) { sync(); }
Tensor tOrV = thr_mma.partition_fragment_B(sVt(_, _, _0{}));
flash::gemm_rs_sm80(tOrO, tOrP, tOrV, tOsVt(_, _, _, kStages > 1 ? smem_pipe_read : 0), tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
if constexpr (kStages > 1) { load_K_next(); }
smem_pipe_read = smem_pipe_read < kStages - 1 ? smem_pipe_read + 1 : 0;
};
auto first_iter_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<true /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
fwd_step(n_block, first_iter_mask_fn, cute::true_type{} /*is_first_iter*/, cute::true_type{} /*check_inf*/);
--n_block;
if constexpr (Is_causal || Is_local) { // Separate iterations with causal or local masking
auto mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
int const n_block_min_causal_local_mask = BlockMN_t::get_n_block_min_causal_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_right,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
#pragma unroll 1
for (; n_block >= n_block_min_causal_local_mask; --n_block) {
fwd_step(n_block, mask_fn, cute::false_type{} /*is_first_iter*/, cute::true_type{} /*check_inf*/);
}
}
int const n_block_min_before_local_mask = BlockMN_t::get_n_block_min_before_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_left,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
auto no_mask_fn = [](auto& tSrS, int n_block) { };
#pragma unroll 1
for (; n_block >= n_block_min_before_local_mask; --n_block) {
fwd_step(n_block, no_mask_fn, cute::false_type{} /*is_first_iter*/, cute::false_type{} /*check_inf*/);
}
// Separate masking iterations on the left for local attention
if constexpr (Is_local) {
auto local_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, false /*Causal_mask*/, Is_local>(tSrS, m_block, n_block); };
#pragma unroll 1
for (; n_block >= n_block_min; --n_block) {
fwd_step(n_block, local_mask_fn, cute::false_type{} /*is_first_iter*/, cute::bool_constant<Is_local>{} /*check_inf*/);
}
}
float const v_descale = !Is_FP8 || params.ptr_v_descale == nullptr ? 1.0f : params.ptr_v_descale[bidb * get<0>(params.stride_v_descale) + bidh_kv * get<1>(params.stride_v_descale)];
Tensor scores_scale = softmax.finalize(v_descale);
softmax.rescale_o(tOrO, scores_scale);
if constexpr (Is_FP8) { flash::permute_output_fp8(tOrO); }
return true;
}
template <typename SharedStorage>
CUTLASS_DEVICE bool
store_kv_new(Params const& params,
int const thread_idx,
SharedStorage &shared_storage,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord
) {
auto [m_block, bidh, bidb, split_idx] = block_coord;
auto n_block_new_min_max = BlockMN_t::get_n_block_k_new_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
int const n_block_new_min = get<0>(n_block_new_min_max);
int const n_block_new_max = get<1>(n_block_new_min_max);
if (n_block_new_max <= n_block_new_min) { return false; }
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutV{});
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
int const bidb_kv = params.kv_batch_idx == nullptr ? bidb : params.kv_batch_idx[bidb];
bool const is_varlen_k_new = Varlen && params.cu_seqlens_k_new;
Tensor mKnew = make_tensor(make_gmem_ptr(params.ptr_K_new), params.shape_K_new, params.stride_K_new)(_, _, bidh_kv, !is_varlen_k_new ? bidb : 0);
Tensor mVnew = make_tensor(make_gmem_ptr(params.ptr_V_new), params.shape_K_new, params.stride_V_new)(_, _, bidh_kv, !is_varlen_k_new ? bidb : 0);
bool const is_varlen_k = Varlen && params.cu_seqlens_k;
Tensor mK = make_tensor(make_gmem_ptr(params.ptr_K), params.shape_K, params.stride_K)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
Tensor mV = make_tensor(make_gmem_ptr(params.ptr_V), params.shape_K, params.stride_V)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
Tensor gKnew = local_tile(domain_offset(make_coord(seqlen_info.offset_k_new, _0{}), mKnew), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
Tensor gVnew = local_tile(domain_offset(make_coord(seqlen_info.offset_k_new, _0{}), mVnew), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
int const offset_k = seqlen_info.offset_k + seqlen_info.seqlen_k_og;
Tensor gK = local_tile(domain_offset(make_coord(offset_k, _0{}), mK), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
Tensor gV = local_tile(domain_offset(make_coord(offset_k, _0{}), mV), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
static constexpr int kBlockN = get<1>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
int const seqlen_k_new = seqlen_info.seqlen_k_new;
using Rotary_t = Rotary<kBlockN, kHeadDim, NumMmaThreads, Element>;
Rotary_t rotary(params.ptr_rotary_cos, params.shape_rotary, params.stride_rotary_cos,
params.ptr_rotary_sin, params.stride_rotary_sin,
params.is_rotary_interleaved, thread_idx, seqlen_k_new,
seqlen_info.seqlen_rotary);
using PagedKVManager_t = PagedKVManager<get<1>(TileShape_MNK{}), get<2>(TileShape_MNK{}), get<1>(TileShape_MNK_PV{}), NumMmaThreads, Element, true /*KV_Same_Iter*/, 2 /*LoadsPerRow_LB*/>;
PagedKVManager_t paged_kv_manager(
params.ptr_pagetable, params.shape_pagetable, params.stride_pagetable,
params.ptr_K, params.shape_K, params.stride_K,
params.ptr_V, params.headdim_v, params.stride_V,
params.page_size_divmod,
params.page_size_divmod /*blockN_per_page_size_divmod, not used since we don't use TMA*/,
bidb_kv, bidh_kv, thread_idx, seqlen_k_new, offset_k,
// passing offset_k instead of leftpad_k will move the PageTable pointer to the right position
0 /*bidb_kv_idx, not used since we don't use TMA for Sm8x*/
);
static_assert(std::is_same_v<GmemLayoutAtomAppend, typename Rotary_t::LayoutAtom>);
static_assert(!PagedKV || std::is_same_v<GmemLayoutAtomAppend, typename PagedKVManager_t::GmemLayoutAtomKVCpAsync>);
GmemTiledCopyQKV gmem_tiled_copy_kv_g2s;
auto gmem_thr_copy_kv_g2s = gmem_tiled_copy_kv_g2s.get_thread_slice(thread_idx);
auto gmem_thr0_copy_kv_g2s = gmem_tiled_copy_kv_g2s.get_thread_slice(_0{}); // Only for index calculation
GmemTiledCopyAppendKV gmem_tiled_copy_kv_s2g;
auto gmem_thr_copy_kv_s2g = gmem_tiled_copy_kv_s2g.get_thread_slice(thread_idx);
auto gmem_thr0_copy_kv_s2g = gmem_tiled_copy_kv_s2g.get_thread_slice(_0{}); // Only for index calculation
Tensor tKgKnew = gmem_thr_copy_kv_g2s.partition_S(gKnew);
Tensor tKsKg2s = gmem_thr_copy_kv_g2s.partition_S(sK);
Tensor tKsKs2g = gmem_thr_copy_kv_s2g.partition_S(sK); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tKgK = gmem_thr_copy_kv_s2g.partition_D(gK);
Tensor tVgVnew = gmem_thr_copy_kv_g2s.partition_S(gVnew); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tVsVg2s = gmem_thr_copy_kv_g2s.partition_S(sV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tVsVs2g = gmem_thr_copy_kv_s2g.partition_S(sV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tVgV = gmem_thr_copy_kv_s2g.partition_D(gV);
Tensor cK = cute::make_identity_tensor(select<1, 2>(TileShape_MNK{})); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tKcKg2s = gmem_thr_copy_kv_g2s.partition_D(cK);
Tensor t0KcKg2s = gmem_thr0_copy_kv_g2s.partition_D(cK);
Tensor tKpKg2s = make_tensor<bool>(make_shape(size<2>(tKsKg2s)));
Tensor tKcKs2g = gmem_thr_copy_kv_s2g.partition_D(cK);
Tensor t0KcKs2g = gmem_thr0_copy_kv_s2g.partition_D(cK);
Tensor tKpKs2g = make_tensor<bool>(make_shape(size<2>(tKsKs2g)));
#pragma unroll
for (int k = 0; k < size(tKpKg2s); ++k) { tKpKg2s(k) = get<1>(tKcKg2s(_0{}, _0{}, k)) < get<1>(params.shape_K); }
#pragma unroll
for (int k = 0; k < size(tKpKs2g); ++k) { tKpKs2g(k) = get<1>(tKcKs2g(_0{}, _0{}, k)) < get<1>(params.shape_K); }
auto load_K_new = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
Tensor tKsK_cur = tKsKg2s(_, _, _, smem_pipe_write);
int const seqlenk_row_limit = -int(get<0>(tKcKg2s(_0{}, _0{}, _0{}))) + (EvenN
? seqlen_k_new - n_block * kBlockN
: (!Seqlenk_mask ? kBlockN : std::min(seqlen_k_new - n_block * kBlockN, kBlockN)));
// We don't need to clear the sK smem tiles since we won't write them out
flash::copy</*Is_even_MN=*/!Seqlenk_mask && EvenN, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
gmem_tiled_copy_kv_g2s, tKgKnew(_, _, _, n_block), tKsK_cur, t0KcKg2s, tKpKg2s, seqlenk_row_limit);
};
auto load_V_new = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
Tensor tVsV_cur = tVsVg2s(_, _, _, smem_pipe_write);
int const seqlenk_row_limit = -int(get<0>(tKcKg2s(_0{}, _0{}, _0{}))) + (EvenN
? seqlen_k_new - n_block * kBlockN
: (!Seqlenk_mask ? kBlockN : std::min(seqlen_k_new - n_block * kBlockN, kBlockN)));
// We don't need to clear the sV smem tiles since we won't write them out
flash::copy</*Is_even_MN=*/!Seqlenk_mask && EvenN, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
gmem_tiled_copy_kv_g2s, tVgVnew(_, _, _, n_block), tVsV_cur, t0KcKg2s, tKpKg2s, seqlenk_row_limit);
};
auto store_K = [&] (int const n_block, int const smem_pipe_read) {
int const n_limit = std::min(seqlen_k_new - n_block * kBlockN, kBlockN);
if (get<1>(params.shape_rotary) <= 0) {
Tensor tKsK_cur = tKsKs2g(_, _, _, smem_pipe_read);
if constexpr (!PagedKV) {
Tensor tKgK_cur = tKgK(_, _, _, n_block);
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_kv_s2g, tKsK_cur, tKgK_cur, tKcKs2g, tKpKs2g, std::min(seqlen_k_new - n_block * kBlockN, kBlockN)
);
} else {
paged_kv_manager.store_K(n_block, tKsK_cur);
}
} else {
Tensor gK_cur = gK(_, _, n_block);
auto tPrKPtr = cute::conditional_return<PagedKV>(paged_kv_manager.compute_K_ptr(), nullptr);
if (params.is_rotary_interleaved) {
auto [tRrCos, tRrSin] = rotary.template load_cos_sin<true /*kInterleaved*/>(n_block);
rotary.template apply_K_interleaved<PagedKV>(sK(_, _, smem_pipe_read), gK_cur, tKpKs2g, tRrCos, tRrSin, tPrKPtr, n_block);
} else {
auto [tRrCosCont, tRrSinCont] = rotary.template load_cos_sin<false /*kInterleaved*/>(n_block);
rotary.template apply_K_contiguous<PagedKV>(sK(_, _, smem_pipe_read), gK_cur, tKpKs2g, tRrCosCont, tRrSinCont, tPrKPtr, n_block, get<1>(params.shape_K));
}
}
};
auto store_V = [&] (int const n_block, int const smem_pipe_read) {
int const n_limit = std::min(seqlen_k_new - n_block * kBlockN, kBlockN);
Tensor tVsV_cur = tVsVs2g(_, _, _, smem_pipe_read);
if constexpr (!PagedKV) {
Tensor tVgV_cur = tVgV(_, _, _, n_block);
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_kv_s2g, tVsV_cur, tVgV_cur, tKcKs2g, tKpKs2g, n_limit);
} else {
paged_kv_manager.store_V(n_block, tVsV_cur);
}
};
int n_block = n_block_new_max - 1;
// Note, using the for_each() function here to ensure `stage` is of type Int<x>.
for_each(make_int_sequence<kStages>{}, [&] (auto stage) {
static constexpr bool Is_first_stage = CUTE_STATIC_V(stage) == 0;
static constexpr bool Is_last_stage = CUTE_STATIC_V(stage) == kStages - 1;
if (Is_first_stage || n_block - stage >= n_block_new_min) {
load_K_new(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
// If persistent, need to sync to make sure all threads have finished with smem_o before writing to smem_v
if constexpr (Is_first_stage) { __syncthreads(); }
if constexpr (!Is_last_stage) {
if (Is_first_stage || n_block - stage >= n_block_new_min) {
load_V_new(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
}
});
int smem_pipe_read = 0, smem_pipe_write = kStages - 1;
#pragma unroll 1
for (; n_block >= n_block_new_min; --n_block) {
if constexpr (PagedKV) { paged_kv_manager.template load_page_table<true /*Seqlenk_mask*/>(n_block); }
flash::cp_async_wait<kStages * 2 - 2>();
__syncthreads();
store_K(n_block, kStages > 1 ? smem_pipe_read : 0);
if (n_block - kStages + 1 >= n_block_new_min) {
load_V_new(n_block - kStages + 1, kStages > 1 ? smem_pipe_write : 0, cute::bool_constant<kStages == 1>{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
smem_pipe_write = smem_pipe_write < kStages - 1 ? smem_pipe_write + 1 : 0;
flash::cp_async_wait<kStages * 2 - 2>();
__syncthreads();
store_V(n_block, kStages > 1 ? smem_pipe_read : 0);
smem_pipe_read = smem_pipe_read < kStages - 1 ? smem_pipe_read + 1 : 0;
if (n_block - kStages >= n_block_new_min) {
load_K_new(n_block - kStages, kStages > 1 ? smem_pipe_write : 0, cute::false_type{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
}
return true;
}
};
} // namespace flash
|