File size: 28,943 Bytes
eb8ddce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include <cute/tensor.hpp>
#include "utils.h"
namespace flash {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Engine1, typename Layout1, typename Engine2, typename Layout2>
CUTLASS_DEVICE void
apply_rotary_interleaved(Tensor<Engine1, Layout1> &rK,
Tensor<Engine2, Layout2> const &rCos,
Tensor<Engine2, Layout2> const &rSin) {
CUTE_STATIC_ASSERT_V(rank(rK) == _1{});
CUTE_STATIC_ASSERT_V(rank(rCos) == _1{});
CUTE_STATIC_ASSERT_V(rank(rSin) == _1{});
CUTE_STATIC_ASSERT_V(size<0>(rCos) == size<0>(rSin));
static_assert(decltype(size<0>(rK))::value == decltype(size<0>(rCos))::value * 2);
static_assert(decltype(size<0>(rCos))::value % 2 == 0); // Since we do fast conversion from fp16/bf16 to fp32
Tensor K_fp32 = make_tensor_like<float>(rK);
convert_type_out(rK, K_fp32);
Tensor cos_fp32 = make_tensor_like<float>(rCos);
convert_type_out(rCos, cos_fp32);
Tensor sin_fp32 = make_tensor_like<float>(rSin);
convert_type_out(rSin, sin_fp32);
#pragma unroll
for (int i = 0; i < size<0>(K_fp32) / 2; ++i) {
float real = K_fp32[2 * i] * cos_fp32[i] - K_fp32[2 * i + 1] * sin_fp32[i];
float imag = K_fp32[2 * i] * sin_fp32[i] + K_fp32[2 * i + 1] * cos_fp32[i];
K_fp32[2 * i] = real;
K_fp32[2 * i + 1] = imag;
}
convert_type_out(K_fp32, rK);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Engine1, typename Layout1, typename Engine2, typename Layout2>
CUTLASS_DEVICE void
apply_rotary_contiguous(Tensor<Engine1, Layout1> &rK_left,
Tensor<Engine1, Layout1> &rK_right,
Tensor<Engine2, Layout2> const &rCos,
Tensor<Engine2, Layout2> const &rSin) {
CUTE_STATIC_ASSERT_V(rank(rK_left) == _1{});
CUTE_STATIC_ASSERT_V(rank(rK_right) == _1{});
CUTE_STATIC_ASSERT_V(rank(rCos) == _1{});
CUTE_STATIC_ASSERT_V(rank(rSin) == _1{});
CUTE_STATIC_ASSERT_V(size<0>(rK_left) == size<0>(rK_right));
CUTE_STATIC_ASSERT_V(size<0>(rK_left) == size<0>(rCos));
CUTE_STATIC_ASSERT_V(size<0>(rCos) == size<0>(rSin));
static_assert(decltype(size<0>(rCos))::value % 2 == 0); // Since we do fast conversion from fp16/bf16 to fp32
Tensor K_left_fp32 = make_tensor_like<float>(rK_left);
convert_type_out(rK_left, K_left_fp32);
Tensor K_right_fp32 = make_tensor_like<float>(rK_right);
convert_type_out(rK_right, K_right_fp32);
Tensor cos_fp32 = make_tensor_like<float>(rCos);
convert_type_out(rCos, cos_fp32);
Tensor sin_fp32 = make_tensor_like<float>(rSin);
convert_type_out(rSin, sin_fp32);
#pragma unroll
for (int i = 0; i < size<0>(K_left_fp32); ++i) {
float real = K_left_fp32[i] * cos_fp32[i] - K_right_fp32[i] * sin_fp32[i];
float imag = K_left_fp32[i] * sin_fp32[i] + K_right_fp32[i] * cos_fp32[i];
K_left_fp32[i] = real;
K_right_fp32[i] = imag;
}
convert_type_out(K_left_fp32, rK_left);
convert_type_out(K_right_fp32, rK_right);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int kBlockMN, int kHeadDim, int NumThreads, typename Element, bool FixedPosition=false>
struct Rotary {
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "Headdim must be a multiple of kGmemElemsPerLoad");
// We want each "row" to have 64 elements (128 bytes, i.e. 1 cache line). E.g. if hdim=128, we want each
// thread to have 4 loads in the M direction and 2 vectorized load in the K direction.
// We want each thread to have at least 2 loads in the K direction since in the case of non-interleaved
// rotary (combining elements at indices 0 and rotary_dim/2, 1 and rotary_dim/2+1, etc), each thread will
// load twice from the same row.
static constexpr int kBytePerHalfRow = kHeadDim / 2 * sizeof(Element);
static constexpr int kBlockKGmem = (kBytePerHalfRow % 128 == 0 ? 128 : (kBytePerHalfRow % 64 == 0 ? 64 : 32)) / sizeof(Element);
static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
static_assert(NumThreads % kGmemThreadsPerRow == 0, "NumThreads must be a multiple of kGmemThreadsPerRow");
// We assume threads loading the same row are in the same warp.
static_assert(cutlass::NumThreadsPerWarp % kGmemThreadsPerRow == 0, "kGmemThreadsPerRow must divide NumThreadsPerWarp");
using LayoutAtom = Layout<Shape <Int<NumThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
using TiledCopyQK = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
LayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 8 or 16 vals per store
using GmemTiledCopyRotary = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<64>, Element>{},
LayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad / 2>>>{})); // Val layout, 4 or 8 vals per store
using GmemTiledCopyRotaryCont = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
LayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 8 or 16 vals per store
using ShapeRotary = cute::Shape<int32_t, int32_t>; // (seqlen_ro, rotary_dim // 2)
using StrideRotary = cute::Stride<int64_t, _1>;
using GmemThrCopyRotary = decltype(GmemTiledCopyRotary{}.get_thread_slice(int(0)));
using GmemThrCopyRotaryCont = decltype(GmemTiledCopyRotaryCont{}.get_thread_slice(int(0)));
using TensortRcR = decltype(GmemTiledCopyRotary{}.get_thread_slice(int(0)).partition_D(cute::make_identity_tensor(Shape<Int<kBlockMN>, Int<kHeadDim / 2>>{})));
using TensortRpR = decltype(make_tensor<bool>(make_shape(size<2>(TensortRcR{}))));
using TensortRcRCont = decltype(GmemTiledCopyRotaryCont{}.get_thread_slice(int(0)).partition_D(cute::make_identity_tensor(Shape<Int<kBlockMN>, Int<kHeadDim / 2>>{})));
using TensortRpRCont = decltype(make_tensor<bool>(make_shape(size<2>(TensortRcRCont{}))));
using TensormR = decltype(make_tensor(
make_gmem_ptr((Element const*)nullptr),
ShapeRotary{},
make_stride(cute::conditional_return<FixedPosition>(_0{}, int64_t(0)), _1{})));
using TensortRgR = decltype(
GmemTiledCopyRotary{}.get_thread_slice(int(0)).partition_S(make_tensor(
make_gmem_ptr((Element const*)nullptr),
make_shape(Int<kBlockMN>{}, Int<kHeadDim / 2>{}, int(0)),
make_stride(cute::conditional_return<FixedPosition>(_0{}, int64_t(0)), _1{}, cute::conditional_return<FixedPosition>(_0{}, int64_t(0))))));
using TensortRgRCont = decltype(
GmemTiledCopyRotaryCont{}.get_thread_slice(int(0)).partition_S(make_tensor(
make_gmem_ptr((Element const*)nullptr),
make_shape(Int<kBlockMN>{}, Int<kHeadDim / 2>{}, int(0)),
make_stride(cute::conditional_return<FixedPosition>(_0{}, int64_t(0)), _1{}, cute::conditional_return<FixedPosition>(_0{}, int64_t(0))))));
GmemTiledCopyRotary gmem_tiled_copy_rotary;
GmemTiledCopyRotaryCont gmem_tiled_copy_rotary_cont;
bool const is_rotary_interleaved;
int const rotary_dim;
int const thread_idx;
int const max_seqlen;
GmemThrCopyRotary const gmem_thr_copy_rotary;
GmemThrCopyRotaryCont const gmem_thr_copy_rotary_cont;
TensortRpR tRpR;
TensortRpRCont tRpRCont;
TensormR mCos, mSin;
TensortRgR tRgCos, tRgSin;
TensortRgRCont tRgCosCont, tRgSinCont;
CUTLASS_DEVICE
Rotary(Element const* const ptr_rotary_cos, ShapeRotary const &shape_rotary, StrideRotary const &stride_rotary_cos_,
Element const* const ptr_rotary_sin, StrideRotary const &stride_rotary_sin_,
bool const is_rotary_interleaved, int const thread_idx, int const max_seqlen, int const start_idx)
: is_rotary_interleaved(is_rotary_interleaved)
, rotary_dim(get<1>(shape_rotary) * 2)
, thread_idx(thread_idx)
, max_seqlen(max_seqlen)
, gmem_thr_copy_rotary(gmem_tiled_copy_rotary.get_thread_slice(thread_idx))
, gmem_thr_copy_rotary_cont(gmem_tiled_copy_rotary_cont.get_thread_slice(thread_idx))
{
auto stride_rotary_cos = make_stride(cute::conditional_return<!FixedPosition>(get<0>(stride_rotary_cos_), _0{}), get<1>(stride_rotary_cos_));
auto stride_rotary_sin = make_stride(cute::conditional_return<!FixedPosition>(get<0>(stride_rotary_sin_), _0{}), get<1>(stride_rotary_sin_));
mCos = make_tensor(make_gmem_ptr(ptr_rotary_cos + start_idx * get<0>(stride_rotary_cos_)), shape_rotary, stride_rotary_cos);
mSin = make_tensor(make_gmem_ptr(ptr_rotary_sin + start_idx * get<0>(stride_rotary_sin_)), shape_rotary, stride_rotary_sin);
Tensor gCos = local_tile(mCos, Shape<Int<kBlockMN>, Int<kHeadDim / 2>>{}, make_coord(_, _0{})); // (MN, K / 2, _)
Tensor gSin = local_tile(mSin, Shape<Int<kBlockMN>, Int<kHeadDim / 2>>{}, make_coord(_, _0{})); // (MN, K / 2, _)
tRgCos = gmem_thr_copy_rotary.partition_S(gCos);
tRgSin = gmem_thr_copy_rotary.partition_S(gSin);
tRgCosCont = gmem_thr_copy_rotary_cont.partition_S(gCos);
tRgSinCont = gmem_thr_copy_rotary_cont.partition_S(gSin);
Tensor cR = cute::make_identity_tensor(Shape<Int<kBlockMN>, Int<kHeadDim / 2>>{}); // (BLK_N,BLK_K / 2)
Tensor tRcR = gmem_thr_copy_rotary.partition_D(cR);
tRpR = make_tensor<bool>(make_shape(size<2>(tRcR)));
#pragma unroll
for (int k = 0; k < size(tRpR); ++k) { tRpR(k) = get<1>(tRcR(_0{}, _0{}, k)) < get<1>(shape_rotary); }
Tensor tRcRCont = gmem_thr_copy_rotary_cont.partition_D(cR);
tRpRCont = make_tensor<bool>(make_shape(size<2>(tRcRCont)));
#pragma unroll
for (int k = 0; k < size(tRpRCont); ++k) { tRpRCont(k) = get<1>(tRcRCont(_0{}, _0{}, k)) < get<1>(shape_rotary); }
};
template <bool kInterleaved=true>
CUTLASS_DEVICE
auto load_cos_sin(int const block) {
using GmemTiledCopyRo = std::conditional_t<kInterleaved, GmemTiledCopyRotary, GmemTiledCopyRotaryCont>;
auto gmem_thr_copy_ro = cute::conditional_return<kInterleaved>(gmem_thr_copy_rotary, gmem_thr_copy_rotary_cont);
Tensor tRpRCur = cute::conditional_return<kInterleaved>(tRpR, tRpRCont);
Tensor tRgCosCur = cute::conditional_return<kInterleaved>(tRgCos, tRgCosCont)(_, _, _, block);
Tensor tRgSinCur = cute::conditional_return<kInterleaved>(tRgSin, tRgSinCont)(_, _, _, block);
// make_tensor_like, not make_fragment_like. If the row_stride is _0{} we want to keep it that way
Tensor tRrCos = make_tensor_like(tRgCosCur);
Tensor tRrSin = make_tensor_like(tRgSinCur);
Tensor cR = cute::make_identity_tensor(Shape<Int<kBlockMN>, Int<kHeadDim / 2>>{}); // (BLK_N,BLK_K / 2)
Tensor tRcR = gmem_thr_copy_ro.partition_D(cR);
// If FixedPosition, only copy the first row as we only need the cos/sin for position cache_seqlens
#pragma unroll
for (int m = 0; m < (!FixedPosition ? size<1>(tRrCos) : 1); ++m) {
if (get<0>(tRcR(_0{}, m, _0{})) < std::min(max_seqlen - block * kBlockMN, kBlockMN)) {
#pragma unroll
for (int k = 0; k < size<2>(tRrCos); ++k) {
if (tRpRCur(k)) {
cute::copy(GmemTiledCopyRo{}, tRgCosCur(_, m, k), tRrCos(_, m, k));
cute::copy(GmemTiledCopyRo{}, tRgSinCur(_, m, k), tRrSin(_, m, k));
}
}
}
}
return cute::make_tuple(tRrCos, tRrSin);;
}
template <bool kInterleaved=true>
CUTLASS_DEVICE
auto load_cos_sin_packgqa(int const block, cutlass::FastDivmod const &qhead_per_khead_divmod) {
static constexpr int kGmemElemsPerLoadCur = kInterleaved ? kGmemElemsPerLoad / 2 : kGmemElemsPerLoad;
using GmemTiledCopyRo = std::conditional_t<kInterleaved, GmemTiledCopyRotary, GmemTiledCopyRotaryCont>;
auto gmem_thr_copy_ro = cute::conditional_return<kInterleaved>(gmem_thr_copy_rotary, gmem_thr_copy_rotary_cont);
Tensor tRpRCur = cute::conditional_return<kInterleaved>(tRpR, tRpRCont);
// make_tensor_like, not make_fragment_like. If the row_stride is _0{} we want to keep it that way
Tensor tRrCos = make_tensor_like(cute::conditional_return<kInterleaved>(tRgCos, tRgCosCont)(_, _, _, _0{}));
Tensor tRrSin = make_tensor_like(cute::conditional_return<kInterleaved>(tRgSin, tRgSinCont)(_, _, _, _0{}));
int const qhead_per_khead = qhead_per_khead_divmod.divisor;
Tensor cR = cute::make_identity_tensor(Shape<Int<kBlockMN>, Int<kHeadDim / 2>>{}); // (BLK_N,BLK_K / 2)
Tensor tRcR = gmem_thr_copy_ro.partition_D(cR);
// The main bottleneck here is actually instruction cache misses.
// Similar to PagedKVNonTMA, it's expensive to compute the pointers.
// We split the work among threads loading the same row, then __shfl_sync the pointers.
static constexpr int NumPtrPerThread = cute::ceil_div(CUTE_STATIC_V(cute::size<1>(tRrCos)), kGmemThreadsPerRow);
Tensor tPrCosPtr = make_tensor<Element const*>(Shape<Int<NumPtrPerThread>>{});
Tensor tPrSinPtr = make_tensor<Element const*>(Shape<Int<NumPtrPerThread>>{});
#pragma unroll
for (int i = 0; i < NumPtrPerThread; ++i) {
int const row = i * NumThreads + get<0>(tRcR(_0{}, thread_idx % kGmemThreadsPerRow, _0{}));
int const idx = block * kBlockMN + row;
int row_actual = qhead_per_khead_divmod.divide(idx);
tPrCosPtr[i] = &mCos(row_actual, _0{});
tPrSinPtr[i] = &mSin(row_actual, _0{});
}
#pragma unroll
for (int m = 0; m < (!FixedPosition ? size<1>(tRgCos) : 1); ++m) {
int const idx = block * kBlockMN + get<0>(tRcR(_0{}, m, _0{}));
Element const* cos_ptr = reinterpret_cast<Element const*>(__shfl_sync(0xffffffff, reinterpret_cast<uint64_t>(tPrCosPtr(m / kGmemThreadsPerRow)), m % kGmemThreadsPerRow, kGmemThreadsPerRow));
Element const* sin_ptr = reinterpret_cast<Element const*>(__shfl_sync(0xffffffff, reinterpret_cast<uint64_t>(tPrSinPtr(m / kGmemThreadsPerRow)), m % kGmemThreadsPerRow, kGmemThreadsPerRow));
if (idx < max_seqlen * qhead_per_khead) {
Tensor mCos_copy = cute::tiled_divide(make_tensor(make_gmem_ptr(cos_ptr), Shape<Int<kHeadDim / 2>>{}),
Shape<Int<kGmemElemsPerLoadCur>>{});
Tensor mSin_copy = cute::tiled_divide(make_tensor(make_gmem_ptr(sin_ptr), Shape<Int<kHeadDim / 2>>{}),
Shape<Int<kGmemElemsPerLoadCur>>{});
#pragma unroll
for (int k = 0; k < size<2>(tRgCos); ++k) {
int const ki = get<1>(tRcR(_0{}, _0{}, k)) / (kGmemElemsPerLoadCur);
if (tRpRCur(k)) {
cute::copy(GmemTiledCopyRo{}, mCos_copy(_, ki), tRrCos(_, m, k));
cute::copy(GmemTiledCopyRo{}, mSin_copy(_, ki), tRrSin(_, m, k));
}
}
}
}
return cute::make_tuple(tRrCos, tRrSin);
}
template <typename TensorsQ, typename TensortRrR>
CUTLASS_DEVICE
void
apply_Q_interleaved(TensorsQ &sQ, // (kBlockM, kHeadDim)
TensortRrR const &tRrCos, // (kBlockM, kHeadDim / 2) split according to GmemThrCopyRotary
TensortRrR const &tRrSin, // (kBlockM, kHeadDim / 2) split according to GmemThrCopyRotary
int const m_block, int const qhead_per_khead=1)
{
TiledCopyQK tiled_copy_q;
auto gmem_thr_copy_q = tiled_copy_q.get_thread_slice(thread_idx);
Tensor tQsQ = gmem_thr_copy_q.partition_S(sQ);
Tensor tQcQ = gmem_thr_copy_q.partition_S(cute::make_identity_tensor(Shape<Int<kBlockMN>, Int<kHeadDim>>{}));
CUTE_STATIC_ASSERT_V(rank(tQsQ) == _3{});
CUTE_STATIC_ASSERT_V(rank(tRrCos) == _3{});
CUTE_STATIC_ASSERT_V(rank(tRrSin) == _3{});
CUTE_STATIC_ASSERT_V(size<1>(tQsQ) == size<1>(tRrCos));
CUTE_STATIC_ASSERT_V(size<2>(tQsQ) == size<2>(tRrCos));
CUTE_STATIC_ASSERT_V(size<1>(tQsQ) == size<1>(tRrSin));
CUTE_STATIC_ASSERT_V(size<2>(tQsQ) == size<2>(tRrSin));
CUTE_STATIC_ASSERT_V(size<0>(tRrCos) == size<0>(tRrSin));
static_assert(decltype(size<0>(tQsQ))::value == decltype(size<0>(tRrCos))::value * 2);
static_assert(decltype(size<0>(tRrCos))::value % 2 == 0); // Since we do fast conversion from fp16/bf16 to fp32
#pragma unroll
for (int m = 0; m < size<1>(tQsQ); ++m) {
if (get<0>(tQcQ(_0{}, m, _0{})) < std::min(max_seqlen * qhead_per_khead - m_block * kBlockMN, kBlockMN)) {
#pragma unroll
for (int k = 0; k < size<2>(tQsQ); ++k) {
if (tRpR(k)) {
Tensor rQ = make_fragment_like(tQsQ(_, m, k));
cute::copy(tiled_copy_q, tQsQ(_, m, k), rQ);
apply_rotary_interleaved(rQ, tRrCos(_, m, k), tRrSin(_, m, k));
cute::copy(tiled_copy_q, rQ, tQsQ(_, m, k));
}
}
}
}
};
template <typename TensorsQ, typename TensortRrR>
CUTLASS_DEVICE
void
apply_Q_contiguous(TensorsQ &sQ, // (kBlockM, kHeadDim)
TensortRrR const &tRrCosCont, // (kBlockM, kHeadDim / 2) split according to GmemThrCopyRotaryCont
TensortRrR const &tRrSinCont, // (kBlockM, kHeadDim / 2) split according to GmemThrCopyRotaryCont
int const m_block, int const qhead_per_khead=1)
{
TiledCopyQK tiled_copy_q;
auto gmem_thr_copy_q = tiled_copy_q.get_thread_slice(thread_idx);
Tensor sQ_copy = cute::tiled_divide(sQ, Shape<_1, Int<kGmemElemsPerLoad>>{});
Tensor tQcQ = gmem_thr_copy_q.partition_S(cute::make_identity_tensor(Shape<Int<kBlockMN>, Int<kHeadDim / 2>>{}));
CUTE_STATIC_ASSERT_V(rank(tQcQ) == _3{});
CUTE_STATIC_ASSERT_V(rank(tRrCosCont) == _3{});
CUTE_STATIC_ASSERT_V(rank(tRrSinCont) == _3{});
CUTE_STATIC_ASSERT_V(size<1>(tQcQ) == size<1>(tRrCosCont));
CUTE_STATIC_ASSERT_V(size<2>(tQcQ) == size<2>(tRrCosCont));
CUTE_STATIC_ASSERT_V(size<1>(tQcQ) == size<1>(tRrSinCont));
CUTE_STATIC_ASSERT_V(size<2>(tQcQ) == size<2>(tRrSinCont));
CUTE_STATIC_ASSERT_V(size<0>(tRrCosCont) == size<0>(tRrSinCont));
CUTE_STATIC_ASSERT_V(size<0>(tQcQ) == size<0>(tRrCosCont));
static_assert(decltype(size<0>(tRrCosCont))::value % 2 == 0); // Since we do fast conversion from fp16/bf16 to fp32
#pragma unroll
for (int m = 0; m < size<1>(tQcQ); ++m) {
int const row = get<0>(tQcQ(_0{}, m, _0{}));
if (row < std::min(max_seqlen * qhead_per_khead - m_block * kBlockMN, kBlockMN)) {
#pragma unroll
for (int k = 0; k < size<2>(tQcQ); ++k) {
int const col = get<1>(tQcQ(_0{}, _0{}, k));
if (col < rotary_dim / 2) {
int const col_idx_left = col / kGmemElemsPerLoad;
int const col_idx_right = col / kGmemElemsPerLoad + rotary_dim / (2 * kGmemElemsPerLoad);
Tensor rQ_left = make_fragment_like(sQ_copy(_, row, col_idx_left));
cute::copy(tiled_copy_q, sQ_copy(_, row, col_idx_left), rQ_left);
Tensor rQ_right = make_fragment_like(rQ_left);
cute::copy(tiled_copy_q, sQ_copy(_, row, col_idx_right), rQ_right);
apply_rotary_contiguous(rQ_left, rQ_right, tRrCosCont(_, m, k), tRrSinCont(_, m, k));
cute::copy(tiled_copy_q, rQ_left, sQ_copy(_, row, col_idx_left));
cute::copy(tiled_copy_q, rQ_right, sQ_copy(_, row, col_idx_right));
}
}
}
}
};
template <bool PagedKVNonTMA=false, typename TensorsK, typename TensorgK, typename TensorpK, typename TensortRrR, typename TensorKPtr>
CUTLASS_DEVICE
void
apply_K_interleaved(TensorsK const &sK, // (kBlockN, kHeadDim)
TensorgK &gK, // (kBlockN, kHeadDim)
TensorpK const &tKpK, // (kBlockN, kHeadDim) split according to ThrCopyKV
TensortRrR const &tRrCos, // (kBlockN, kHeadDim/2) split according to GmemThrCopyRotary
TensortRrR const &tRrSin, // (kBlockN, kHeadDim/2) split according to GmemThrCopyRotary
TensorKPtr const &tPrKPtr,
int const n_block)
{
TiledCopyQK tiled_copy_k;
auto gmem_thr_copy_q = tiled_copy_k.get_thread_slice(thread_idx);
Tensor tKsK = gmem_thr_copy_q.partition_S(sK);
Tensor tKgK = gmem_thr_copy_q.partition_S(gK);
Tensor tKcK = gmem_thr_copy_q.partition_S(cute::make_identity_tensor(Shape<Int<kBlockMN>, Int<kHeadDim>>{}));
CUTE_STATIC_ASSERT_V(rank(tKsK) == _3{});
CUTE_STATIC_ASSERT_V(rank(tRrCos) == _3{});
CUTE_STATIC_ASSERT_V(rank(tRrSin) == _3{});
CUTE_STATIC_ASSERT_V(size<1>(tKsK) == size<1>(tRrCos));
CUTE_STATIC_ASSERT_V(size<2>(tKsK) == size<2>(tRrCos));
CUTE_STATIC_ASSERT_V(size<1>(tKsK) == size<1>(tRrSin));
CUTE_STATIC_ASSERT_V(size<2>(tKsK) == size<2>(tRrSin));
CUTE_STATIC_ASSERT_V(size<0>(tRrCos) == size<0>(tRrSin));
static_assert(decltype(size<0>(tKsK))::value == decltype(size<0>(tRrCos))::value * 2);
static_assert(decltype(size<0>(tRrCos))::value % 2 == 0); // Since we do fast conversion from fp16/bf16 to fp32
if constexpr (PagedKVNonTMA) {
static_assert(decltype(size(tPrKPtr))::value == cute::ceil_div(size<1>(tKcK), kGmemThreadsPerRow));
}
#pragma unroll
for (int m = 0; m < size<1>(tKsK); ++m) {
int const row = get<0>(tKcK(_0{}, m, _0{}));
auto mK_cur_copy = [&] {
if constexpr (PagedKVNonTMA) {
Element* k_ptr = reinterpret_cast<Element*>(__shfl_sync(0xffffffff, reinterpret_cast<uint64_t>(tPrKPtr(m / kGmemThreadsPerRow)), (m % kGmemThreadsPerRow), kGmemThreadsPerRow));
Tensor mK_cur = make_tensor(make_gmem_ptr(k_ptr), Shape<Int<kHeadDim>>{});
return cute::tiled_divide(mK_cur, Shape<Int<kGmemElemsPerLoad>>{});
} else {
return nullptr;
}
}();
if (row < std::min(max_seqlen - n_block * kBlockMN, kBlockMN)) {
#pragma unroll
for (int k = 0; k < size<2>(tKsK); ++k) {
if (tKpK(k)) {
Tensor rK = make_fragment_like(tKsK(_, m, k));
cute::copy(tiled_copy_k, tKsK(_, m, k), rK);
if (tRpR(k)) { apply_rotary_interleaved(rK, tRrCos(_, m, k), tRrSin(_, m, k)); }
if constexpr (!PagedKVNonTMA) {
cute::copy(tiled_copy_k, rK, tKgK(_, m, k));
} else {
int const ki = get<1>(tKcK(_0{}, _0{}, k)) / kGmemElemsPerLoad;
cute::copy(tiled_copy_k, rK, mK_cur_copy(_, ki));
}
}
}
}
}
};
template <bool PagedKVNonTMA=false, typename TensorsK, typename TensorgK, typename TensorpK, typename TensortRrR, typename TensorKPtr>
CUTLASS_DEVICE
void
apply_K_contiguous(TensorsK const &sK, // (kBlockN, kHeadDim)
TensorgK &gK, // (kBlockN, kHeadDim)
TensorpK const &tKpK, // (kBlockN, kHeadDim) split according to ThrCopyKV
TensortRrR const &tRrCosCont, // (kBlockN, kHeadDim/2) split according to GmemThrCopyRotaryCont
TensortRrR const &tRrSinCont, // (kBlockN, kHeadDim/2) split according to GmemThrCopyRotaryCont
TensorKPtr const &tPrKPtr,
int const n_block, int const max_k)
{
TiledCopyQK tiled_copy_k;
auto gmem_thr_copy_q = tiled_copy_k.get_thread_slice(thread_idx);
Tensor sK_copy = cute::tiled_divide(sK, Shape<_1, Int<kGmemElemsPerLoad>>{});
Tensor gK_copy = cute::tiled_divide(gK, Shape<_1, Int<kGmemElemsPerLoad>>{});
Tensor tKcK = gmem_thr_copy_q.partition_S(cute::make_identity_tensor(Shape<Int<kBlockMN>, Int<kHeadDim / 2>>{}));
CUTE_STATIC_ASSERT_V(rank(tKcK) == _3{});
CUTE_STATIC_ASSERT_V(rank(tRrCosCont) == _3{});
CUTE_STATIC_ASSERT_V(rank(tRrSinCont) == _3{});
CUTE_STATIC_ASSERT_V(size<1>(tKcK) == size<1>(tRrCosCont));
CUTE_STATIC_ASSERT_V(size<2>(tKcK) == size<2>(tRrCosCont));
CUTE_STATIC_ASSERT_V(size<1>(tKcK) == size<1>(tRrSinCont));
CUTE_STATIC_ASSERT_V(size<2>(tKcK) == size<2>(tRrSinCont));
CUTE_STATIC_ASSERT_V(size<0>(tRrCosCont) == size<0>(tRrSinCont));
CUTE_STATIC_ASSERT_V(size<0>(tKcK) == size<0>(tRrCosCont));
static_assert(decltype(size<0>(tRrCosCont))::value % 2 == 0); // Since we do fast conversion from fp16/bf16 to fp32
if constexpr (PagedKVNonTMA) {
static_assert(decltype(size(tPrKPtr))::value == cute::ceil_div(size<1>(tKcK), kGmemThreadsPerRow));
}
const int ro_dim_vec = rotary_dim / kGmemElemsPerLoad;
const int non_ro_dim_vec = (max_k - rotary_dim) / kGmemElemsPerLoad;
#pragma unroll
for (int m = 0; m < size<1>(tKcK); ++m) {
int const row = get<0>(tKcK(_0{}, m, _0{}));
Tensor gK_cur_copy = [&] {
if constexpr (PagedKVNonTMA) {
Element* k_ptr = reinterpret_cast<Element*>(__shfl_sync(0xffffffff, reinterpret_cast<uint64_t>(tPrKPtr(m / kGmemThreadsPerRow)), (m % kGmemThreadsPerRow), kGmemThreadsPerRow));
Tensor mK_cur = make_tensor(make_gmem_ptr(k_ptr), Shape<Int<kHeadDim>>{});
return cute::tiled_divide(mK_cur, Shape<Int<kGmemElemsPerLoad>>{});
} else {
return gK_copy(_, row, _);
}
}();
if (row < std::min(max_seqlen - n_block * kBlockMN, kBlockMN)) {
#pragma unroll
for (int k = 0; k < size<2>(tKcK); ++k) {
if (tKpK(k)) {
int const col = get<1>(tKcK(_0{}, _0{}, k));
bool rotate = col < rotary_dim / 2;
int const col_idx_left = rotate ? col / kGmemElemsPerLoad : (col + rotary_dim / 2) / kGmemElemsPerLoad;
int const col_idx_right = col_idx_left + (rotate ? ro_dim_vec / 2 : non_ro_dim_vec / 2);
Tensor rK_left = make_fragment_like(sK_copy(_, row, col_idx_left));
cute::copy(tiled_copy_k, sK_copy(_, row, col_idx_left), rK_left);
Tensor rK_right = make_fragment_like(rK_left);
cute::copy(tiled_copy_k, sK_copy(_, row, col_idx_right), rK_right);
if (rotate) {
apply_rotary_contiguous(rK_left, rK_right, tRrCosCont(_, m, k), tRrSinCont(_, m, k));
}
cute::copy(tiled_copy_k, rK_left, gK_cur_copy(_, col_idx_left));
if (col_idx_right * kGmemElemsPerLoad < max_k) {
cute::copy(tiled_copy_k, rK_right, gK_cur_copy(_, col_idx_right));
}
}
}
}
}
};
};
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash
|