drbh
commited on
Commit
·
63599de
1
Parent(s):
ef966b6
fix: fully vendor stk and fix imports
Browse files- flake.lock +7 -41
- flake.nix +15 -43
- torch-ext/megablocks/_layers/activation_fn.py +1 -1
- torch-ext/megablocks/_layers/dmoe.py +9 -2
- torch-ext/megablocks/_layers/gelu.py +10 -1
- torch-ext/megablocks/_layers/glu.py +11 -1
- torch-ext/megablocks/_layers/mlp.py +12 -3
- torch-ext/megablocks/ops/matmul_benchmark.py +13 -1
- torch-ext/megablocks/stk/__init__.py +7 -0
- torch-ext/megablocks/stk/backend/__init__.py +0 -0
- torch-ext/megablocks/stk/backend/autocast.py +37 -0
- torch-ext/megablocks/stk/backend/sputnik.py +316 -0
- torch-ext/megablocks/stk/backend/triton_kernels.py +393 -0
- torch-ext/megablocks/stk/matrix.py +329 -0
- torch-ext/megablocks/stk/ops/__init__.py +3 -0
- torch-ext/megablocks/stk/ops/eltwise_ops.py +28 -0
- torch-ext/megablocks/stk/ops/eltwise_ops_test.py +86 -0
- torch-ext/megablocks/stk/ops/linear_ops.py +59 -0
- torch-ext/megablocks/stk/ops/linear_ops_test.py +216 -0
- torch-ext/megablocks/stk/ops/matrix_ops.py +98 -0
- torch-ext/megablocks/stk/ops/matrix_ops_test.py +62 -0
- torch-ext/megablocks/stk/random/__init__.py +2 -0
- torch-ext/megablocks/stk/random/random_ops.py +36 -0
- torch-ext/megablocks/stk/random/random_ops_test.py +73 -0
flake.lock
CHANGED
@@ -1,21 +1,5 @@
|
|
1 |
{
|
2 |
"nodes": {
|
3 |
-
"composer": {
|
4 |
-
"flake": false,
|
5 |
-
"locked": {
|
6 |
-
"lastModified": 1749592532,
|
7 |
-
"narHash": "sha256-VKfSWtf+Z20nP1cHiBNwFzYCuMGL0xelvd6HMyDnIhc=",
|
8 |
-
"owner": "mosaicml",
|
9 |
-
"repo": "composer",
|
10 |
-
"rev": "0eec49da42e7f617329f035853800211f0a54ca3",
|
11 |
-
"type": "github"
|
12 |
-
},
|
13 |
-
"original": {
|
14 |
-
"owner": "mosaicml",
|
15 |
-
"repo": "composer",
|
16 |
-
"type": "github"
|
17 |
-
}
|
18 |
-
},
|
19 |
"flake-compat": {
|
20 |
"locked": {
|
21 |
"lastModified": 1747046372,
|
@@ -89,10 +73,11 @@
|
|
89 |
"nixpkgs": "nixpkgs"
|
90 |
},
|
91 |
"locked": {
|
92 |
-
"lastModified":
|
|
|
93 |
"owner": "huggingface",
|
94 |
"repo": "hf-nix",
|
95 |
-
"rev": "
|
96 |
"type": "github"
|
97 |
},
|
98 |
"original": {
|
@@ -113,16 +98,15 @@
|
|
113 |
]
|
114 |
},
|
115 |
"locked": {
|
116 |
-
"lastModified":
|
117 |
-
"narHash": "sha256
|
118 |
"owner": "huggingface",
|
119 |
"repo": "kernel-builder",
|
120 |
-
"rev": "
|
121 |
"type": "github"
|
122 |
},
|
123 |
"original": {
|
124 |
"owner": "huggingface",
|
125 |
-
"ref": "support-custom-python-libraries-in-dev-shell-nixland",
|
126 |
"repo": "kernel-builder",
|
127 |
"type": "github"
|
128 |
}
|
@@ -145,25 +129,7 @@
|
|
145 |
},
|
146 |
"root": {
|
147 |
"inputs": {
|
148 |
-
"
|
149 |
-
"kernel-builder": "kernel-builder",
|
150 |
-
"stk": "stk"
|
151 |
-
}
|
152 |
-
},
|
153 |
-
"stk": {
|
154 |
-
"flake": false,
|
155 |
-
"locked": {
|
156 |
-
"lastModified": 1724272107,
|
157 |
-
"narHash": "sha256-f6eydO4u6jasvepP25a6jacSvoUNyfKW51FxahMtz1Q=",
|
158 |
-
"owner": "stanford-futuredata",
|
159 |
-
"repo": "stk",
|
160 |
-
"rev": "736313768ef697ce13a0594a41b2512a0fbc9884",
|
161 |
-
"type": "github"
|
162 |
-
},
|
163 |
-
"original": {
|
164 |
-
"owner": "stanford-futuredata",
|
165 |
-
"repo": "stk",
|
166 |
-
"type": "github"
|
167 |
}
|
168 |
},
|
169 |
"systems": {
|
|
|
1 |
{
|
2 |
"nodes": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
"flake-compat": {
|
4 |
"locked": {
|
5 |
"lastModified": 1747046372,
|
|
|
73 |
"nixpkgs": "nixpkgs"
|
74 |
},
|
75 |
"locked": {
|
76 |
+
"lastModified": 1750234878,
|
77 |
+
"narHash": "sha256-q9DRC9zdpzUf88qqg1qbhP1qgJbE2cMtn8oUmosuyT8=",
|
78 |
"owner": "huggingface",
|
79 |
"repo": "hf-nix",
|
80 |
+
"rev": "c7132f90763d756da3e77da62e01be0a4546dc57",
|
81 |
"type": "github"
|
82 |
},
|
83 |
"original": {
|
|
|
98 |
]
|
99 |
},
|
100 |
"locked": {
|
101 |
+
"lastModified": 1751014803,
|
102 |
+
"narHash": "sha256-9Xfq2k3uPfB602NwQF+zAY2GQZiKUN1G7Q6XiDCUR8Y=",
|
103 |
"owner": "huggingface",
|
104 |
"repo": "kernel-builder",
|
105 |
+
"rev": "bbc4e712ff2046e217818e97de2201e2b996756e",
|
106 |
"type": "github"
|
107 |
},
|
108 |
"original": {
|
109 |
"owner": "huggingface",
|
|
|
110 |
"repo": "kernel-builder",
|
111 |
"type": "github"
|
112 |
}
|
|
|
129 |
},
|
130 |
"root": {
|
131 |
"inputs": {
|
132 |
+
"kernel-builder": "kernel-builder"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
}
|
134 |
},
|
135 |
"systems": {
|
flake.nix
CHANGED
@@ -1,52 +1,24 @@
|
|
1 |
{
|
2 |
description = "Flake for megablocks_moe kernel";
|
3 |
-
|
4 |
-
inputs = {
|
5 |
-
kernel-builder.url = "github:huggingface/kernel-builder/support-custom-python-libraries-in-dev-shell-nixland";
|
6 |
-
# Add libraries as inputs
|
7 |
-
composer = {
|
8 |
-
url = "github:mosaicml/composer";
|
9 |
-
flake = false;
|
10 |
-
};
|
11 |
-
stk = {
|
12 |
-
url = "github:stanford-futuredata/stk";
|
13 |
-
flake = false;
|
14 |
-
};
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
# url = "github:tgale96/grouped_gemm";
|
19 |
-
# flake = false;
|
20 |
-
# };
|
21 |
};
|
22 |
-
|
23 |
-
outputs =
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# grouped_gemm,
|
29 |
-
}:
|
30 |
kernel-builder.lib.genFlakeOutputs {
|
31 |
path = ./.;
|
32 |
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
};
|
40 |
-
|
41 |
-
pythonTestDeps = [
|
42 |
-
"tqdm"
|
43 |
-
"py-cpuinfo"
|
44 |
-
"importlib-metadata"
|
45 |
-
"torchmetrics"
|
46 |
-
"composer"
|
47 |
-
"stk"
|
48 |
-
# "grouped_gemm"
|
49 |
-
# "yahp" # may be needed for some testing plugin
|
50 |
];
|
51 |
};
|
52 |
-
}
|
|
|
1 |
{
|
2 |
description = "Flake for megablocks_moe kernel";
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
inputs = {
|
5 |
+
kernel-builder.url = "github:huggingface/kernel-builder";
|
|
|
|
|
|
|
6 |
};
|
7 |
+
|
8 |
+
outputs =
|
9 |
+
{
|
10 |
+
self,
|
11 |
+
kernel-builder,
|
12 |
+
}:
|
|
|
|
|
13 |
kernel-builder.lib.genFlakeOutputs {
|
14 |
path = ./.;
|
15 |
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
16 |
+
|
17 |
+
pythonCheckInputs = pkgs: with pkgs; [
|
18 |
+
tqdm
|
19 |
+
py-cpuinfo
|
20 |
+
importlib-metadata
|
21 |
+
torchmetrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
];
|
23 |
};
|
24 |
+
}
|
torch-ext/megablocks/_layers/activation_fn.py
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
from typing import Any, Callable, Union
|
5 |
|
6 |
import torch
|
7 |
-
from stk import Matrix
|
8 |
|
9 |
|
10 |
def act_fn(
|
|
|
4 |
from typing import Any, Callable, Union
|
5 |
|
6 |
import torch
|
7 |
+
from ..stk import Matrix
|
8 |
|
9 |
|
10 |
def act_fn(
|
torch-ext/megablocks/_layers/dmoe.py
CHANGED
@@ -2,15 +2,22 @@
|
|
2 |
# SPDX-License-Identifier: Apache-2.0
|
3 |
|
4 |
import numpy as np
|
5 |
-
import stk.ops
|
6 |
import torch
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# import megablocks.ops as ops
|
10 |
# # from megablocks.ops import ops
|
11 |
# from megablocks.layers import common, dmlp_registry, moe, mpu
|
12 |
# from megablocks.layers.arguments import Arguments
|
13 |
|
|
|
14 |
from .. import ops
|
15 |
from . import common, dmlp_registry, moe, mpu
|
16 |
from .arguments import Arguments
|
|
|
2 |
# SPDX-License-Identifier: Apache-2.0
|
3 |
|
4 |
import numpy as np
|
|
|
5 |
import torch
|
6 |
+
|
7 |
+
# try:
|
8 |
+
# import stk.ops
|
9 |
+
# except ImportError:
|
10 |
+
# import warnings
|
11 |
+
# warnings.warn(
|
12 |
+
# 'Please add `stanford-stk` if megablocks/_layers/dmoe.py is needed.',
|
13 |
+
# )
|
14 |
|
15 |
# import megablocks.ops as ops
|
16 |
# # from megablocks.ops import ops
|
17 |
# from megablocks.layers import common, dmlp_registry, moe, mpu
|
18 |
# from megablocks.layers.arguments import Arguments
|
19 |
|
20 |
+
from .. import stk
|
21 |
from .. import ops
|
22 |
from . import common, dmlp_registry, moe, mpu
|
23 |
from .arguments import Arguments
|
torch-ext/megablocks/_layers/gelu.py
CHANGED
@@ -1,7 +1,16 @@
|
|
1 |
# Copyright 2024 Databricks
|
2 |
# SPDX-License-Identifier: Apache-2.0
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import torch
|
6 |
import torch.nn.functional as F
|
7 |
|
|
|
1 |
# Copyright 2024 Databricks
|
2 |
# SPDX-License-Identifier: Apache-2.0
|
3 |
|
4 |
+
# try:
|
5 |
+
# import stk
|
6 |
+
# except ImportError:
|
7 |
+
# import warnings
|
8 |
+
# warnings.warn(
|
9 |
+
# 'Please add `stanford-stk` if megablocks/_layers/gelu.py is needed.',
|
10 |
+
# )
|
11 |
+
|
12 |
+
from .. import stk
|
13 |
+
|
14 |
import torch
|
15 |
import torch.nn.functional as F
|
16 |
|
torch-ext/megablocks/_layers/glu.py
CHANGED
@@ -1,7 +1,17 @@
|
|
1 |
# Copyright 2024 Databricks
|
2 |
# SPDX-License-Identifier: Apache-2.0
|
3 |
|
4 |
-
import stk.ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import torch
|
6 |
|
7 |
# from megablocks import grouped_gemm_util as gg
|
|
|
1 |
# Copyright 2024 Databricks
|
2 |
# SPDX-License-Identifier: Apache-2.0
|
3 |
|
4 |
+
# import stk.ops
|
5 |
+
# try:
|
6 |
+
# import stk.ops
|
7 |
+
# except ImportError:
|
8 |
+
# import warnings
|
9 |
+
# warnings.warn(
|
10 |
+
# 'Please add `stanford-stk` if megablocks/_layers/glu.py is needed.',
|
11 |
+
# )
|
12 |
+
|
13 |
+
from .. import stk
|
14 |
+
|
15 |
import torch
|
16 |
|
17 |
# from megablocks import grouped_gemm_util as gg
|
torch-ext/megablocks/_layers/mlp.py
CHANGED
@@ -3,9 +3,18 @@
|
|
3 |
|
4 |
from typing import Any
|
5 |
|
6 |
-
|
7 |
-
import stk
|
8 |
-
import stk.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import torch
|
10 |
from packaging import version
|
11 |
|
|
|
3 |
|
4 |
from typing import Any
|
5 |
|
6 |
+
# try:
|
7 |
+
# import stk
|
8 |
+
# import stk.backend.triton_kernels
|
9 |
+
# import stk.ops
|
10 |
+
# except ImportError:
|
11 |
+
# import warnings
|
12 |
+
# warnings.warn(
|
13 |
+
# 'Please add `stanford-stk` if megablocks/_layers/mlp.py is needed.',
|
14 |
+
# )
|
15 |
+
|
16 |
+
from .. import stk
|
17 |
+
|
18 |
import torch
|
19 |
from packaging import version
|
20 |
|
torch-ext/megablocks/ops/matmul_benchmark.py
CHANGED
@@ -3,7 +3,19 @@
|
|
3 |
|
4 |
import unittest
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import torch
|
8 |
from absl.testing import parameterized
|
9 |
|
|
|
3 |
|
4 |
import unittest
|
5 |
|
6 |
+
|
7 |
+
# import stk
|
8 |
+
|
9 |
+
# try:
|
10 |
+
# import stk
|
11 |
+
# except ImportError:
|
12 |
+
# import warnings
|
13 |
+
# warnings.warn(
|
14 |
+
# 'Please add `stanford-stk` if megablocks/ops/matmul_benchmark.py is needed.',
|
15 |
+
# )
|
16 |
+
|
17 |
+
from .. import stk
|
18 |
+
|
19 |
import torch
|
20 |
from absl.testing import parameterized
|
21 |
|
torch-ext/megablocks/stk/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import stk.random
|
2 |
+
# import stk.ops
|
3 |
+
# from stk.matrix import Matrix
|
4 |
+
|
5 |
+
from . import random
|
6 |
+
from . import ops
|
7 |
+
from .matrix import Matrix
|
torch-ext/megablocks/stk/backend/__init__.py
ADDED
File without changes
|
torch-ext/megablocks/stk/backend/autocast.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
def _is_eligible(x):
|
6 |
+
return x.is_floating_point() and x.is_cuda and (x.dtype is not torch.float64)
|
7 |
+
|
8 |
+
|
9 |
+
def _cast(x, dtype):
|
10 |
+
if isinstance(x, torch.Tensor) and _is_eligible(x):
|
11 |
+
return x.to(dtype)
|
12 |
+
elif isinstance(x, map):
|
13 |
+
return {_cast(k, dtype): _cast(v, dtype) for k, v in x.items()}
|
14 |
+
elif isinstance(x, list) or isinstance(x, tuple):
|
15 |
+
return type(x)(map(lambda y: _cast(y, dtype), x))
|
16 |
+
return x
|
17 |
+
|
18 |
+
|
19 |
+
def custom_fwd(fwd):
|
20 |
+
"""Wrap a custom autograd function that always uses autocast dtype."""
|
21 |
+
|
22 |
+
@functools.wraps(fwd)
|
23 |
+
def decorate_fwd(*args, **kwargs):
|
24 |
+
if torch.is_autocast_enabled():
|
25 |
+
with torch.autocast(device_type="cuda", enabled=False):
|
26 |
+
dtype = torch.get_autocast_gpu_dtype()
|
27 |
+
return fwd(*_cast(args, dtype), **_cast(kwargs, dtype))
|
28 |
+
return fwd(*args, **kwargs)
|
29 |
+
return decorate_fwd
|
30 |
+
|
31 |
+
|
32 |
+
def custom_bwd(bwd):
|
33 |
+
@functools.wraps(bwd)
|
34 |
+
def decorate_bwd(*args, **kwargs):
|
35 |
+
with torch.autocast(device_type="cuda", enabled=False):
|
36 |
+
return bwd(*args, **kwargs)
|
37 |
+
return decorate_bwd
|
torch-ext/megablocks/stk/backend/sputnik.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from ..backend import triton_kernels as backend
|
4 |
+
from ..backend.autocast import custom_bwd, custom_fwd
|
5 |
+
|
6 |
+
|
7 |
+
def _standardize_shape(x, transpose):
|
8 |
+
if transpose:
|
9 |
+
return torch.Size((x[1], x[0]))
|
10 |
+
return x
|
11 |
+
|
12 |
+
|
13 |
+
def _sparse_transpose(x):
|
14 |
+
return (torch.Size((x[0][1], x[0][0])), ) + x[1:]
|
15 |
+
|
16 |
+
|
17 |
+
def _transpose_helper(x, transpose):
|
18 |
+
if isinstance(x, torch.Tensor):
|
19 |
+
return x.t() if transpose else x
|
20 |
+
if transpose:
|
21 |
+
x = _sparse_transpose(x)
|
22 |
+
return x + (transpose,)
|
23 |
+
|
24 |
+
|
25 |
+
def _wrap(x):
|
26 |
+
if isinstance(x, torch.Tensor):
|
27 |
+
return (x,)
|
28 |
+
return x
|
29 |
+
|
30 |
+
|
31 |
+
def _is_transposed(x):
|
32 |
+
return (not x.is_contiguous() and
|
33 |
+
x.stride()[0] == 1 and
|
34 |
+
x.stride()[1] == x.size()[0])
|
35 |
+
|
36 |
+
|
37 |
+
def _call_helper(op, out, a, b, trans_a, trans_b):
|
38 |
+
args = (_wrap(_transpose_helper(a, trans_a)) +
|
39 |
+
_wrap(_transpose_helper(b, trans_b)))
|
40 |
+
if isinstance(out, tuple):
|
41 |
+
args = args + out
|
42 |
+
return op(*args)
|
43 |
+
|
44 |
+
|
45 |
+
def _preprocess_inputs(lhs, rhs, dy):
|
46 |
+
if isinstance(lhs, torch.Tensor) and _is_transposed(lhs):
|
47 |
+
lhs = lhs.t()
|
48 |
+
if isinstance(rhs, torch.Tensor) and _is_transposed(rhs):
|
49 |
+
rhs = rhs.t()
|
50 |
+
if (isinstance(dy, torch.Tensor) and
|
51 |
+
not dy.is_contiguous() and
|
52 |
+
not _is_transposed(dy)):
|
53 |
+
dy = dy.contiguous()
|
54 |
+
if isinstance(dy, tuple) and not dy[1].is_contiguous():
|
55 |
+
dy = (dy[0], dy[1].contiguous()) + dy[2:]
|
56 |
+
return lhs, rhs, dy
|
57 |
+
|
58 |
+
|
59 |
+
def _postprocess_outputs(x, transpose, grad):
|
60 |
+
if isinstance(x, torch.Tensor) and transpose:
|
61 |
+
return grad.t()
|
62 |
+
return grad
|
63 |
+
|
64 |
+
|
65 |
+
def _lhs_gradient(op, lhs, rhs, dy, trans_lhs, trans_rhs):
|
66 |
+
lhs, rhs, dy = _preprocess_inputs(lhs, rhs, dy)
|
67 |
+
|
68 |
+
a, b = (rhs, dy) if trans_lhs else (dy, rhs)
|
69 |
+
trans_a = trans_lhs and trans_rhs
|
70 |
+
trans_b = trans_lhs or not trans_rhs
|
71 |
+
out = _call_helper(op, lhs, a, b, trans_a, trans_b)
|
72 |
+
return _postprocess_outputs(lhs, trans_lhs, out)
|
73 |
+
|
74 |
+
|
75 |
+
def _rhs_gradient(op, lhs, rhs, dy, trans_lhs, trans_rhs):
|
76 |
+
lhs, rhs, dy = _preprocess_inputs(lhs, rhs, dy)
|
77 |
+
|
78 |
+
a, b = (dy, lhs) if trans_rhs else (lhs, dy)
|
79 |
+
trans_a = not trans_lhs or trans_rhs
|
80 |
+
trans_b = trans_lhs and trans_rhs
|
81 |
+
out = _call_helper(op, rhs, a, b, trans_a, trans_b)
|
82 |
+
return _postprocess_outputs(rhs, trans_rhs, out)
|
83 |
+
|
84 |
+
|
85 |
+
class DSD(torch.autograd.Function):
|
86 |
+
|
87 |
+
@staticmethod
|
88 |
+
@custom_fwd
|
89 |
+
def forward(ctx,
|
90 |
+
shape,
|
91 |
+
data,
|
92 |
+
offsets,
|
93 |
+
row_indices,
|
94 |
+
column_indices,
|
95 |
+
offsets_t,
|
96 |
+
column_indices_t,
|
97 |
+
block_offsets_t,
|
98 |
+
transpose_a,
|
99 |
+
rhs):
|
100 |
+
ctx.save_for_backward(data,
|
101 |
+
offsets,
|
102 |
+
row_indices,
|
103 |
+
column_indices,
|
104 |
+
offsets_t,
|
105 |
+
column_indices_t,
|
106 |
+
block_offsets_t,
|
107 |
+
rhs)
|
108 |
+
ctx.shape = _standardize_shape(shape, transpose_a)
|
109 |
+
ctx.transpose_a = transpose_a
|
110 |
+
|
111 |
+
out = torch.empty(
|
112 |
+
(shape[0], rhs.size()[1]),
|
113 |
+
dtype=rhs.dtype,
|
114 |
+
device=rhs.device)
|
115 |
+
|
116 |
+
backend.dsd(shape,
|
117 |
+
data,
|
118 |
+
offsets,
|
119 |
+
row_indices,
|
120 |
+
column_indices,
|
121 |
+
offsets_t,
|
122 |
+
column_indices_t,
|
123 |
+
block_offsets_t,
|
124 |
+
transpose_a,
|
125 |
+
rhs,
|
126 |
+
out)
|
127 |
+
return out
|
128 |
+
|
129 |
+
@staticmethod
|
130 |
+
@custom_bwd
|
131 |
+
def backward(ctx, dy):
|
132 |
+
saved_tensors = ctx.saved_tensors
|
133 |
+
lhs = (ctx.shape,) + saved_tensors[:-1]
|
134 |
+
rhs = saved_tensors[-1]
|
135 |
+
trans_a = ctx.transpose_a
|
136 |
+
trans_b = _is_transposed(rhs)
|
137 |
+
|
138 |
+
ddata = None
|
139 |
+
if ctx.needs_input_grad[1]:
|
140 |
+
ddata = _lhs_gradient(sdd,
|
141 |
+
lhs,
|
142 |
+
rhs,
|
143 |
+
dy,
|
144 |
+
trans_a,
|
145 |
+
trans_b)
|
146 |
+
drhs = None
|
147 |
+
if ctx.needs_input_grad[-1]:
|
148 |
+
op = dds if trans_b else dsd
|
149 |
+
drhs = _rhs_gradient(op,
|
150 |
+
lhs,
|
151 |
+
rhs,
|
152 |
+
dy,
|
153 |
+
trans_a,
|
154 |
+
trans_b)
|
155 |
+
return None, ddata, None, None, None, None, None, None, None, drhs
|
156 |
+
|
157 |
+
|
158 |
+
dsd = DSD.apply
|
159 |
+
|
160 |
+
|
161 |
+
class DDS(torch.autograd.Function):
|
162 |
+
|
163 |
+
@staticmethod
|
164 |
+
@custom_fwd
|
165 |
+
def forward(ctx,
|
166 |
+
lhs,
|
167 |
+
shape,
|
168 |
+
data,
|
169 |
+
offsets,
|
170 |
+
row_indices,
|
171 |
+
column_indices,
|
172 |
+
offsets_t,
|
173 |
+
column_indices_t,
|
174 |
+
block_offsets_t,
|
175 |
+
transpose_b):
|
176 |
+
ctx.save_for_backward(lhs,
|
177 |
+
data,
|
178 |
+
offsets,
|
179 |
+
row_indices,
|
180 |
+
column_indices,
|
181 |
+
offsets_t,
|
182 |
+
column_indices_t,
|
183 |
+
block_offsets_t)
|
184 |
+
ctx.shape = _standardize_shape(shape, transpose_b)
|
185 |
+
ctx.transpose_b = transpose_b
|
186 |
+
out = torch.empty((lhs.size()[0], shape[1]),
|
187 |
+
dtype=lhs.dtype,
|
188 |
+
device=lhs.device)
|
189 |
+
backend.dds(lhs,
|
190 |
+
shape,
|
191 |
+
data,
|
192 |
+
offsets,
|
193 |
+
row_indices,
|
194 |
+
column_indices,
|
195 |
+
offsets_t,
|
196 |
+
column_indices_t,
|
197 |
+
block_offsets_t,
|
198 |
+
transpose_b,
|
199 |
+
out)
|
200 |
+
return out
|
201 |
+
|
202 |
+
@staticmethod
|
203 |
+
@custom_bwd
|
204 |
+
def backward(ctx, dy):
|
205 |
+
saved_tensors = ctx.saved_tensors
|
206 |
+
lhs = saved_tensors[0]
|
207 |
+
rhs = (ctx.shape,) + saved_tensors[1:]
|
208 |
+
trans_a = _is_transposed(lhs)
|
209 |
+
trans_b = ctx.transpose_b
|
210 |
+
|
211 |
+
dlhs = None
|
212 |
+
if ctx.needs_input_grad[0]:
|
213 |
+
op = dsd if trans_a else dds
|
214 |
+
dlhs = _lhs_gradient(op,
|
215 |
+
lhs,
|
216 |
+
rhs,
|
217 |
+
dy,
|
218 |
+
trans_a,
|
219 |
+
trans_b)
|
220 |
+
ddata = None
|
221 |
+
if ctx.needs_input_grad[2]:
|
222 |
+
ddata = _rhs_gradient(sdd,
|
223 |
+
lhs,
|
224 |
+
rhs,
|
225 |
+
dy,
|
226 |
+
trans_a,
|
227 |
+
trans_b)
|
228 |
+
return dlhs, None, ddata, None, None, None, None, None, None, None
|
229 |
+
|
230 |
+
|
231 |
+
dds = DDS.apply
|
232 |
+
|
233 |
+
|
234 |
+
class SDD(torch.autograd.Function):
|
235 |
+
|
236 |
+
@staticmethod
|
237 |
+
@custom_fwd
|
238 |
+
def forward(ctx,
|
239 |
+
lhs,
|
240 |
+
rhs,
|
241 |
+
shape,
|
242 |
+
data,
|
243 |
+
offsets,
|
244 |
+
row_indices,
|
245 |
+
column_indices,
|
246 |
+
offsets_t,
|
247 |
+
column_indices_t,
|
248 |
+
block_offsets_t):
|
249 |
+
ctx.save_for_backward(
|
250 |
+
lhs,
|
251 |
+
rhs,
|
252 |
+
offsets,
|
253 |
+
row_indices,
|
254 |
+
column_indices,
|
255 |
+
offsets_t,
|
256 |
+
column_indices_t,
|
257 |
+
block_offsets_t)
|
258 |
+
ctx.shape = shape
|
259 |
+
out = torch.empty(
|
260 |
+
data.shape,
|
261 |
+
dtype=lhs.dtype,
|
262 |
+
device=lhs.device)
|
263 |
+
backend.sdd(lhs,
|
264 |
+
rhs,
|
265 |
+
shape,
|
266 |
+
out,
|
267 |
+
offsets,
|
268 |
+
row_indices,
|
269 |
+
column_indices)
|
270 |
+
return out
|
271 |
+
|
272 |
+
@staticmethod
|
273 |
+
@custom_bwd
|
274 |
+
def backward(ctx, dy):
|
275 |
+
saved_tensors = ctx.saved_tensors
|
276 |
+
lhs, rhs = saved_tensors[:2]
|
277 |
+
dy = (ctx.shape, dy) + saved_tensors[2:]
|
278 |
+
trans_a = _is_transposed(lhs)
|
279 |
+
trans_b = _is_transposed(rhs)
|
280 |
+
|
281 |
+
dlhs = None
|
282 |
+
if ctx.needs_input_grad[0]:
|
283 |
+
op = dds if trans_a else dsd
|
284 |
+
dlhs = _lhs_gradient(op,
|
285 |
+
lhs,
|
286 |
+
rhs,
|
287 |
+
dy,
|
288 |
+
trans_a,
|
289 |
+
trans_b)
|
290 |
+
drhs = None
|
291 |
+
if ctx.needs_input_grad[1]:
|
292 |
+
op = dsd if trans_b else dds
|
293 |
+
drhs = _rhs_gradient(op,
|
294 |
+
lhs,
|
295 |
+
rhs,
|
296 |
+
dy,
|
297 |
+
trans_a,
|
298 |
+
trans_b)
|
299 |
+
return dlhs, drhs, None, None, None, None, None, None, None, None
|
300 |
+
|
301 |
+
|
302 |
+
sdd = SDD.apply
|
303 |
+
|
304 |
+
class RowIndices(torch.autograd.Function):
|
305 |
+
|
306 |
+
@staticmethod
|
307 |
+
def forward(ctx, shape, data, offsets, column_indices):
|
308 |
+
out = torch.empty(
|
309 |
+
column_indices.shape,
|
310 |
+
dtype=column_indices.dtype,
|
311 |
+
device=column_indices.device)
|
312 |
+
backend.row_indices(shape, data, offsets, column_indices, out)
|
313 |
+
return out
|
314 |
+
|
315 |
+
|
316 |
+
row_indices = RowIndices.apply
|
torch-ext/megablocks/stk/backend/triton_kernels.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import triton
|
3 |
+
import triton.language as tl
|
4 |
+
from dataclasses import dataclass
|
5 |
+
|
6 |
+
@dataclass
|
7 |
+
class TritonConfig:
|
8 |
+
BLOCK_M: int = 128
|
9 |
+
BLOCK_N: int = 128
|
10 |
+
BLOCK_K: int = 32
|
11 |
+
BLOCK_SIZE: int = 128
|
12 |
+
NUM_STAGES: int = 4
|
13 |
+
NUM_WARPS: int = 4
|
14 |
+
|
15 |
+
def _validate_matmul_dims(M: int, K: int, N: int):
|
16 |
+
error_string = "incompatible dimensions: tensor has dim with length: {}, which must be divisible by {}"
|
17 |
+
assert M % TritonConfig.BLOCK_M == 0, error_string.format(M, TritonConfig.BLOCK_M)
|
18 |
+
assert K % TritonConfig.BLOCK_K == 0, error_string.format(K, TritonConfig.BLOCK_K)
|
19 |
+
assert N % TritonConfig.BLOCK_N == 0, error_string.format(N, TritonConfig.BLOCK_N)
|
20 |
+
|
21 |
+
@triton.autotune(
|
22 |
+
configs=[
|
23 |
+
# basic configs for compute-bound matmuls
|
24 |
+
triton.Config({
|
25 |
+
'BLOCK_M': TritonConfig.BLOCK_M,
|
26 |
+
'BLOCK_N': TritonConfig.BLOCK_N,
|
27 |
+
'BLOCK_K': TritonConfig.BLOCK_K,
|
28 |
+
'BLOCK_SIZE': TritonConfig.BLOCK_SIZE
|
29 |
+
}, num_stages=TritonConfig.NUM_STAGES, num_warps=TritonConfig.NUM_WARPS),
|
30 |
+
],
|
31 |
+
key=['M', 'N', 'K'],
|
32 |
+
)
|
33 |
+
@triton.jit
|
34 |
+
def _sdd_kernel(A, B, C, M, N, K,
|
35 |
+
stride_am, stride_ak,
|
36 |
+
stride_bk, stride_bn,
|
37 |
+
stride_cm, stride_cn,
|
38 |
+
row_indices, column_indices,
|
39 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
|
40 |
+
BLOCK_SIZE: tl.constexpr, GROUP_M: tl.constexpr, ACC_TYPE: tl.constexpr,
|
41 |
+
):
|
42 |
+
# matrix multiplication
|
43 |
+
pid = tl.program_id(0)
|
44 |
+
pid_m = tl.load(row_indices + pid)
|
45 |
+
pid_n = tl.load(column_indices + pid)
|
46 |
+
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
47 |
+
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
48 |
+
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
|
49 |
+
rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
|
50 |
+
rk = tl.arange(0, BLOCK_K)
|
51 |
+
# pointers
|
52 |
+
A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
|
53 |
+
B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn)
|
54 |
+
# do matrix multiplication
|
55 |
+
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
|
56 |
+
for k in range(0, tl.cdiv(K, BLOCK_K)):
|
57 |
+
a = tl.load(A)
|
58 |
+
b = tl.load(B)
|
59 |
+
acc += tl.dot(a, b)
|
60 |
+
A += BLOCK_K * stride_ak
|
61 |
+
B += BLOCK_K * stride_bk
|
62 |
+
#Store to sparse matrix
|
63 |
+
acc = acc.to(C.dtype.element_ty)
|
64 |
+
BLOCK_ELEMENTS = BLOCK_SIZE * BLOCK_SIZE
|
65 |
+
cm = tl.arange(0, BLOCK_M)
|
66 |
+
cn = tl.arange(0, BLOCK_N)
|
67 |
+
C = C + pid * BLOCK_ELEMENTS + (cm[:, None] * stride_cm + cn[None, :] * stride_cn)
|
68 |
+
tl.store(C, acc, mask=True)
|
69 |
+
|
70 |
+
@triton.autotune(
|
71 |
+
configs=[
|
72 |
+
# basic configs for compute-bound matmuls
|
73 |
+
triton.Config({
|
74 |
+
'BLOCK_M': TritonConfig.BLOCK_M,
|
75 |
+
'BLOCK_N': TritonConfig.BLOCK_N,
|
76 |
+
'BLOCK_K': TritonConfig.BLOCK_K,
|
77 |
+
'BLOCK_SIZE': TritonConfig.BLOCK_SIZE
|
78 |
+
}, num_stages=TritonConfig.NUM_STAGES, num_warps=TritonConfig.NUM_WARPS),
|
79 |
+
],
|
80 |
+
key=['M', 'N', 'K'],
|
81 |
+
)
|
82 |
+
@triton.jit
|
83 |
+
def _dsd_kernel(A, B, C, M, N, K,
|
84 |
+
stride_am, stride_ak,
|
85 |
+
stride_bk, stride_bn,
|
86 |
+
stride_cm, stride_cn,
|
87 |
+
row_indices, column_indices, offsets,
|
88 |
+
block_offsets_t, trans_A: tl.constexpr, trans_B: tl.constexpr,
|
89 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
|
90 |
+
BLOCK_SIZE: tl.constexpr, GROUP_M: tl.constexpr, ACC_TYPE: tl.constexpr,
|
91 |
+
):
|
92 |
+
|
93 |
+
# matrix multiplication
|
94 |
+
pid_m = tl.program_id(0)
|
95 |
+
pid_n = tl.program_id(1)
|
96 |
+
|
97 |
+
num_pid_m = tl.num_programs(0)
|
98 |
+
num_pid_n = tl.num_programs(1)
|
99 |
+
pid_n, pid_m = tl.swizzle2d(pid_n, pid_m, num_pid_n, num_pid_m, GROUP_M)
|
100 |
+
|
101 |
+
start_inx = tl.load(offsets + pid_m)
|
102 |
+
end_inx = tl.load(offsets + pid_m + 1)
|
103 |
+
|
104 |
+
# pointers to sparse matrix
|
105 |
+
rm = tl.arange(0, BLOCK_M)
|
106 |
+
rak = tl.arange(0, BLOCK_K)
|
107 |
+
|
108 |
+
A += (rm[:, None] * stride_am + rak[None, :] * stride_ak)
|
109 |
+
|
110 |
+
# pointers to dense matrix
|
111 |
+
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
112 |
+
rbk = tl.arange(0, BLOCK_K)
|
113 |
+
B += (rbk[:, None] * stride_bk + rn[None, :] * stride_bn)
|
114 |
+
|
115 |
+
# do matrix multiplication
|
116 |
+
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
|
117 |
+
nsub_blocks = tl.cdiv(BLOCK_SIZE, BLOCK_K)
|
118 |
+
|
119 |
+
BLOCK_ELEMENTS = BLOCK_SIZE * BLOCK_SIZE
|
120 |
+
ak_sub_incr = BLOCK_K * stride_ak
|
121 |
+
bk_sub_incr = BLOCK_K * stride_bk
|
122 |
+
bk_block_incr = BLOCK_SIZE * stride_bk
|
123 |
+
|
124 |
+
for k in range(nsub_blocks * (end_inx - start_inx)):
|
125 |
+
sub_block_inx = k % nsub_blocks
|
126 |
+
block_inx = k // nsub_blocks
|
127 |
+
|
128 |
+
if trans_A:
|
129 |
+
ptr_A = A + tl.load(block_offsets_t + start_inx + block_inx) * BLOCK_ELEMENTS + sub_block_inx * ak_sub_incr
|
130 |
+
else:
|
131 |
+
ptr_A = A + (start_inx + block_inx) * BLOCK_ELEMENTS + sub_block_inx * ak_sub_incr
|
132 |
+
|
133 |
+
ptr_B = B + tl.load(column_indices + start_inx + block_inx) * bk_block_incr + sub_block_inx * bk_sub_incr
|
134 |
+
|
135 |
+
a = tl.load(ptr_A)
|
136 |
+
b = tl.load(ptr_B)
|
137 |
+
acc += tl.dot(a, b)
|
138 |
+
|
139 |
+
acc = acc.to(C.dtype.element_ty)
|
140 |
+
|
141 |
+
cm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
142 |
+
cn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
143 |
+
|
144 |
+
C = C + (cm[:, None] * stride_cm + cn[None, :] * stride_cn)
|
145 |
+
tl.store(C, acc, mask=True)
|
146 |
+
|
147 |
+
@triton.autotune(
|
148 |
+
configs=[
|
149 |
+
# basic configs for compute-bound matmuls
|
150 |
+
triton.Config({
|
151 |
+
'BLOCK_M': TritonConfig.BLOCK_M,
|
152 |
+
'BLOCK_N': TritonConfig.BLOCK_N,
|
153 |
+
'BLOCK_K': TritonConfig.BLOCK_K,
|
154 |
+
'BLOCK_SIZE': TritonConfig.BLOCK_SIZE
|
155 |
+
}, num_stages=TritonConfig.NUM_STAGES, num_warps=TritonConfig.NUM_WARPS),
|
156 |
+
],
|
157 |
+
key=['M', 'N', 'K'],
|
158 |
+
)
|
159 |
+
@triton.jit
|
160 |
+
def _dds_kernel(A, B, C, M, N, K,
|
161 |
+
stride_am, stride_ak,
|
162 |
+
stride_bk, stride_bn,
|
163 |
+
stride_cm, stride_cn,
|
164 |
+
row_indices, column_indices, offsets,
|
165 |
+
block_offsets_t, trans_A: tl.constexpr, trans_B: tl.constexpr,
|
166 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
|
167 |
+
BLOCK_SIZE: tl.constexpr, GROUP_M: tl.constexpr, ACC_TYPE: tl.constexpr,
|
168 |
+
):
|
169 |
+
|
170 |
+
# matrix multiplication
|
171 |
+
pid_m = tl.program_id(0)
|
172 |
+
pid_n = tl.program_id(1)
|
173 |
+
|
174 |
+
num_pid_m = tl.num_programs(0)
|
175 |
+
num_pid_n = tl.num_programs(1)
|
176 |
+
pid_n, pid_m = tl.swizzle2d(pid_n, pid_m, num_pid_n, num_pid_m, GROUP_M)
|
177 |
+
|
178 |
+
start_inx = tl.load(offsets + pid_n)
|
179 |
+
end_inx = tl.load(offsets + pid_n + 1)
|
180 |
+
|
181 |
+
# pointers to dense matrix
|
182 |
+
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
183 |
+
rak = tl.arange(0, BLOCK_K)
|
184 |
+
|
185 |
+
A += (rm[:, None] * stride_am + rak[None, :] * stride_ak)
|
186 |
+
|
187 |
+
# pointers to sparse matrix
|
188 |
+
rn = tl.arange(0, BLOCK_N)
|
189 |
+
rbk = tl.arange(0, BLOCK_K)
|
190 |
+
B += (rbk[:, None] * stride_bk + rn[None, :] * stride_bn)
|
191 |
+
|
192 |
+
# do matrix multiplication
|
193 |
+
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
|
194 |
+
nsub_blocks = tl.cdiv(BLOCK_SIZE, BLOCK_K)
|
195 |
+
|
196 |
+
BLOCK_ELEMENTS = BLOCK_SIZE * BLOCK_SIZE
|
197 |
+
|
198 |
+
ak_sub_incr = BLOCK_K * stride_ak
|
199 |
+
ak_block_incr = BLOCK_SIZE * stride_ak
|
200 |
+
bk_sub_incr = BLOCK_K * stride_bk
|
201 |
+
|
202 |
+
for k in range(nsub_blocks * (end_inx - start_inx)):
|
203 |
+
sub_block_inx = k % nsub_blocks
|
204 |
+
block_inx = k // nsub_blocks
|
205 |
+
|
206 |
+
if trans_B:
|
207 |
+
ptr_B = B + (start_inx + block_inx) * BLOCK_ELEMENTS + sub_block_inx * bk_sub_incr
|
208 |
+
else:
|
209 |
+
ptr_B = B + tl.load(block_offsets_t + start_inx + block_inx) * BLOCK_ELEMENTS + sub_block_inx * bk_sub_incr
|
210 |
+
|
211 |
+
ptr_A = A + tl.load(column_indices + start_inx + block_inx) * ak_block_incr + sub_block_inx * ak_sub_incr
|
212 |
+
a = tl.load(ptr_A)
|
213 |
+
b = tl.load(ptr_B)
|
214 |
+
acc += tl.dot(a, b)
|
215 |
+
|
216 |
+
acc = acc.to(C.dtype.element_ty)
|
217 |
+
cm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
218 |
+
cn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
219 |
+
C = C + (cm[:, None] * stride_cm + cn[None, :] * stride_cn)
|
220 |
+
tl.store(C, acc, mask=True)
|
221 |
+
|
222 |
+
def dsd(shape,
|
223 |
+
data,
|
224 |
+
offsets,
|
225 |
+
row_indices,
|
226 |
+
column_indices,
|
227 |
+
offsets_t,
|
228 |
+
column_indices_t,
|
229 |
+
block_offsets_t,
|
230 |
+
transpose_a,
|
231 |
+
rhs,
|
232 |
+
out
|
233 |
+
):
|
234 |
+
|
235 |
+
device = rhs.device
|
236 |
+
trans_A = transpose_a
|
237 |
+
trans_B = False
|
238 |
+
|
239 |
+
if rhs.stride(0) > 1 and rhs.stride(1) > 1:
|
240 |
+
trans_B = True
|
241 |
+
|
242 |
+
# checks constraints
|
243 |
+
assert shape[1] == rhs.shape[0], "incompatible dimensions"
|
244 |
+
M, K = shape
|
245 |
+
_, N = rhs.shape
|
246 |
+
|
247 |
+
_validate_matmul_dims(M, K, N)
|
248 |
+
|
249 |
+
# accumulator types
|
250 |
+
ACC_TYPE = tl.float32 if rhs.dtype in [torch.float16, torch.bfloat16, torch.float32] else tl.int32
|
251 |
+
|
252 |
+
stride_am, stride_ak = data.stride(1), data.stride(2)
|
253 |
+
stride_bk, stride_bn = rhs.stride(0), rhs.stride(1)
|
254 |
+
a_column_indices = column_indices
|
255 |
+
a_offsets = offsets
|
256 |
+
|
257 |
+
# launch kernel
|
258 |
+
grid = lambda META: (triton.cdiv(M, META['BLOCK_M']), triton.cdiv(N, META['BLOCK_N']))
|
259 |
+
|
260 |
+
if trans_A:
|
261 |
+
stride_am, stride_ak = data.stride(2), data.stride(1)
|
262 |
+
a_column_indices, a_offsets = column_indices_t, offsets_t
|
263 |
+
|
264 |
+
if trans_B:
|
265 |
+
stride_bk, stride_bn = rhs.stride(1), rhs.stride(0)
|
266 |
+
|
267 |
+
_dsd_kernel[grid](
|
268 |
+
data.data, rhs, out, M, N, K,
|
269 |
+
stride_am, stride_ak,
|
270 |
+
stride_bk, stride_bn,
|
271 |
+
out.stride(0), out.stride(1),
|
272 |
+
row_indices, a_column_indices, a_offsets,
|
273 |
+
block_offsets_t, trans_A, trans_B,
|
274 |
+
GROUP_M=128, ACC_TYPE=ACC_TYPE
|
275 |
+
)
|
276 |
+
# return out
|
277 |
+
|
278 |
+
def dds(lhs,
|
279 |
+
shape,
|
280 |
+
data,
|
281 |
+
offsets,
|
282 |
+
row_indices,
|
283 |
+
column_indices,
|
284 |
+
offsets_t,
|
285 |
+
column_indices_t,
|
286 |
+
block_offsets_t,
|
287 |
+
transpose_b,
|
288 |
+
out
|
289 |
+
):
|
290 |
+
|
291 |
+
device = lhs.device
|
292 |
+
trans_B = transpose_b
|
293 |
+
trans_A = False
|
294 |
+
|
295 |
+
if lhs.stride(0) > 1 and lhs.stride(1) > 1:
|
296 |
+
trans_A = True
|
297 |
+
|
298 |
+
# checks constraints
|
299 |
+
assert lhs.shape[1] == shape[0], "incompatible dimensions"
|
300 |
+
M, K = lhs.shape
|
301 |
+
_, N = shape
|
302 |
+
|
303 |
+
_validate_matmul_dims(M, K, N)
|
304 |
+
|
305 |
+
# accumulator types
|
306 |
+
ACC_TYPE = tl.float32 if lhs.dtype in [torch.float16, torch.bfloat16, torch.float32] else tl.int32
|
307 |
+
|
308 |
+
stride_am, stride_ak = lhs.stride(0), lhs.stride(1)
|
309 |
+
stride_bk, stride_bn = data.stride(1), data.stride(2)
|
310 |
+
b_column_indices = column_indices_t
|
311 |
+
b_offsets = offsets_t
|
312 |
+
|
313 |
+
# launch kernel
|
314 |
+
grid = lambda META: (triton.cdiv(M, META['BLOCK_M']), triton.cdiv(N, META['BLOCK_N']))
|
315 |
+
|
316 |
+
if trans_A:
|
317 |
+
stride_am, stride_ak = lhs.stride(1), lhs.stride(0)
|
318 |
+
if trans_B:
|
319 |
+
stride_bk, stride_bn = data.stride(2), data.stride(1)
|
320 |
+
b_column_indices, b_offsets = column_indices, offsets
|
321 |
+
|
322 |
+
_dds_kernel[grid](
|
323 |
+
lhs, data, out, M, N, K,
|
324 |
+
stride_am, stride_ak,
|
325 |
+
stride_bk, stride_bn,
|
326 |
+
out.stride(0), out.stride(1),
|
327 |
+
row_indices, b_column_indices, b_offsets,
|
328 |
+
block_offsets_t, trans_A, trans_B,
|
329 |
+
GROUP_M=128, ACC_TYPE=ACC_TYPE
|
330 |
+
)
|
331 |
+
|
332 |
+
def sdd(lhs,
|
333 |
+
rhs,
|
334 |
+
shape,
|
335 |
+
out,
|
336 |
+
offsets,
|
337 |
+
row_indices,
|
338 |
+
column_indices
|
339 |
+
):
|
340 |
+
|
341 |
+
device = out.device
|
342 |
+
trans_A = False
|
343 |
+
trans_B = False
|
344 |
+
|
345 |
+
if lhs.stride(0) > 1 and lhs.stride(1) > 1:
|
346 |
+
trans_A = True
|
347 |
+
if rhs.stride(0) > 1 and rhs.stride(1) > 1:
|
348 |
+
trans_B = True
|
349 |
+
|
350 |
+
# checks constraints
|
351 |
+
assert lhs.shape[1] == rhs.shape[0], "incompatible dimensions"
|
352 |
+
M, K = lhs.shape
|
353 |
+
_, N = rhs.shape
|
354 |
+
|
355 |
+
_validate_matmul_dims(M, K, N)
|
356 |
+
|
357 |
+
# accumulator types
|
358 |
+
ACC_TYPE = tl.float32 if out.dtype in [torch.float16, torch.bfloat16, torch.float32] else tl.int32
|
359 |
+
|
360 |
+
# launch kernel
|
361 |
+
nnz_blocks = len(row_indices)
|
362 |
+
grid = lambda META: (nnz_blocks,)
|
363 |
+
|
364 |
+
stride_am, stride_ak = lhs.stride(0), lhs.stride(1)
|
365 |
+
stride_bk, stride_bn = rhs.stride(0), rhs.stride(1)
|
366 |
+
|
367 |
+
if trans_A:
|
368 |
+
stride_am, stride_ak = lhs.stride(1), lhs.stride(0)
|
369 |
+
if trans_B:
|
370 |
+
stride_bk, stride_bn = rhs.stride(1), rhs.stride(0)
|
371 |
+
|
372 |
+
_sdd_kernel[grid](
|
373 |
+
lhs, rhs, out, M, N, K,
|
374 |
+
stride_am, stride_ak,
|
375 |
+
stride_bk, stride_bn,
|
376 |
+
out.stride(1), out.stride(2),
|
377 |
+
row_indices, column_indices,
|
378 |
+
GROUP_M=128, ACC_TYPE=ACC_TYPE
|
379 |
+
)
|
380 |
+
|
381 |
+
@triton.jit
|
382 |
+
def _row_indices_kernel(offsets, out):
|
383 |
+
pid = tl.program_id(0)
|
384 |
+
row_offset = tl.load(offsets + pid)
|
385 |
+
nnz_blocks = tl.load(offsets + pid + 1) - row_offset
|
386 |
+
for nnz_block in range(nnz_blocks):
|
387 |
+
tl.store(out + row_offset + nnz_block, pid)
|
388 |
+
|
389 |
+
def row_indices(
|
390 |
+
shape, data, offsets, column_indices, out
|
391 |
+
):
|
392 |
+
block_rows = len(offsets) - 1
|
393 |
+
_row_indices_kernel[(block_rows, )](offsets, out)
|
torch-ext/megablocks/stk/matrix.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# 1. Add heavyweight (data) validation helper.
|
5 |
+
# 2. Add construction helpers
|
6 |
+
# 3. Make indentation consistent
|
7 |
+
# 4. Replace asserts with descriptive errors.
|
8 |
+
|
9 |
+
##
|
10 |
+
### Validation helpers.
|
11 |
+
##
|
12 |
+
|
13 |
+
|
14 |
+
def _validate_matrix(shape, data, row_indices, column_indices, offsets):
|
15 |
+
# Data should be [nnz, block_size, block_size]
|
16 |
+
if data.dim() == 1:
|
17 |
+
data = torch.reshape(data, [data.numel(), 1, 1])
|
18 |
+
|
19 |
+
# Blocks should be square.
|
20 |
+
if data.shape[-2] != data.shape[-1]:
|
21 |
+
raise ValueError(
|
22 |
+
"Expected square blocking in data. "
|
23 |
+
f"Got block shape {[data.shape[-2], data.shape[-1]]}")
|
24 |
+
|
25 |
+
# Flatten batch dimensions on data - original shape preserved
|
26 |
+
# in shape argument.
|
27 |
+
block_size = data.shape[-1]
|
28 |
+
data = data.view([-1, block_size, block_size])
|
29 |
+
|
30 |
+
if data.dim() != 3:
|
31 |
+
raise ValueError(
|
32 |
+
"Expected 3D shape for data (nnz, block, block). "
|
33 |
+
f"Got shape {data.dim()}D shape.")
|
34 |
+
|
35 |
+
block_size = data.shape[1]
|
36 |
+
if shape[-2] % block_size != 0 or shape[-1] % block_size != 0:
|
37 |
+
raise ValueError(
|
38 |
+
"Matrix shape must be dividible by blocking. "
|
39 |
+
f"Got shape {shape} with "
|
40 |
+
f"{[block_size, block_size]} blocking.")
|
41 |
+
|
42 |
+
if np.prod(shape) < data.numel():
|
43 |
+
raise ValueError(
|
44 |
+
"Invalid matrix. Number of nonzeros exceeds matrix capacity "
|
45 |
+
f"({data.numel()} v. {np.prod(shape)})")
|
46 |
+
|
47 |
+
if row_indices.dim() != 1:
|
48 |
+
raise ValueError(
|
49 |
+
f"Expected 1D row_indices. Got {row_indices.dim()}D row_indices.")
|
50 |
+
|
51 |
+
if column_indices.dim() != 1:
|
52 |
+
raise ValueError(
|
53 |
+
f"Expected 1D column_indices. Got {column_indices.dim()}D column_indices.")
|
54 |
+
|
55 |
+
if offsets.dim() != 1:
|
56 |
+
raise ValueError(
|
57 |
+
f"Expected 1D offsets. Got {offsets.dim()}D offsets.")
|
58 |
+
|
59 |
+
if row_indices.numel() != data.shape[0]:
|
60 |
+
raise ValueError(
|
61 |
+
"Expected 1 index per nonzero block. "
|
62 |
+
f"Got {row_indices.numel()} row_indices for {data.shape[0]} blocks")
|
63 |
+
|
64 |
+
if column_indices.numel() != data.shape[0]:
|
65 |
+
raise ValueError(
|
66 |
+
"Expected 1 index per nonzero block. "
|
67 |
+
f"Got {column_indices.numel()} column_indices for {data.shape[0]} blocks")
|
68 |
+
|
69 |
+
block_rows = np.prod(shape[:-1]) / block_size
|
70 |
+
if offsets.numel() != block_rows + 1:
|
71 |
+
raise ValueError(
|
72 |
+
"Expected one offset per block row plus one. "
|
73 |
+
f"Got {offsets.numel()} offsets with {block_rows} block rows.")
|
74 |
+
|
75 |
+
is_cuda = (data.is_cuda and
|
76 |
+
row_indices.is_cuda and
|
77 |
+
column_indices.is_cuda and
|
78 |
+
offsets.is_cuda)
|
79 |
+
is_cpu = (not data.is_cuda and
|
80 |
+
not row_indices.is_cuda and
|
81 |
+
not column_indices.is_cuda and
|
82 |
+
not offsets.is_cuda)
|
83 |
+
if not (is_cuda or is_cpu):
|
84 |
+
raise ValueError(
|
85 |
+
"Expected data & meta-data on common device. "
|
86 |
+
f"Got data on {data.device}, row_indices on {row_indices.device} "
|
87 |
+
f"column_indices on {column_indices.device} and "
|
88 |
+
f"offsets on {offsets.device}.")
|
89 |
+
|
90 |
+
if data.dtype != torch.float16:
|
91 |
+
raise ValueError(
|
92 |
+
f"Expected float16 data. Got {data.dtype} data.")
|
93 |
+
if row_indices.dtype != torch.int16:
|
94 |
+
raise ValueError(
|
95 |
+
f"Expected int16 row_indices. Got {row_indices.dtype} row_indices.")
|
96 |
+
if column_indices.dtype != torch.int16:
|
97 |
+
raise ValueError(
|
98 |
+
f"Expected int16 column_indices. Got {column_indices.dtype} column_indices.")
|
99 |
+
if offsets.dtype != torch.int32:
|
100 |
+
raise ValueError(
|
101 |
+
f"Expected int32 offsets. Got {offsets.dtype} offsets.")
|
102 |
+
return data
|
103 |
+
|
104 |
+
|
105 |
+
def _transpose(size, data, row_indices, column_indices, offsets):
|
106 |
+
block_columns = size[1] // data.shape[1]
|
107 |
+
|
108 |
+
# Sort row indices by column indices to get the transposed matrix's
|
109 |
+
# column indices.
|
110 |
+
gather_indices = column_indices.argsort()
|
111 |
+
column_indices_t = row_indices.gather(0, gather_indices)
|
112 |
+
block_offsets_t = gather_indices.int()
|
113 |
+
|
114 |
+
# NOTE: Histogram is not implemented for any integer type on CPU. Do
|
115 |
+
# the histogram in 32-bit float, which can exactly represent 16-bit
|
116 |
+
# integers.
|
117 |
+
column_indices_float = column_indices.float()
|
118 |
+
|
119 |
+
zero = torch.zeros((1,), dtype=torch.int32, device=data.device)
|
120 |
+
nnz_per_column = column_indices_float.histc(block_columns, 0, block_columns)
|
121 |
+
nnz_per_column = nnz_per_column.int()
|
122 |
+
offsets_t = torch.cat([zero, nnz_per_column.cumsum(0, dtype=torch.int32)])
|
123 |
+
return column_indices_t, offsets_t, block_offsets_t
|
124 |
+
|
125 |
+
|
126 |
+
class Matrix(torch.nn.Module):
|
127 |
+
"""A matrix stored in sparse format.
|
128 |
+
|
129 |
+
Underlying format is block compressed sparse row (BCSR).
|
130 |
+
|
131 |
+
TODO(tgale): Make this mirror torch.Tensor API as much as possible.
|
132 |
+
"""
|
133 |
+
|
134 |
+
def __init__(self,
|
135 |
+
size,
|
136 |
+
data,
|
137 |
+
row_indices,
|
138 |
+
column_indices,
|
139 |
+
offsets,
|
140 |
+
column_indices_t=None,
|
141 |
+
offsets_t=None,
|
142 |
+
block_offsets_t=None):
|
143 |
+
super().__init__()
|
144 |
+
self._size = size
|
145 |
+
self._data = data
|
146 |
+
self._row_indices = row_indices
|
147 |
+
self._column_indices = column_indices
|
148 |
+
self._offsets = offsets
|
149 |
+
|
150 |
+
# Produce the transpose meta-data if it is not passed in.
|
151 |
+
if ((column_indices_t is None) or (offsets_t is None) or
|
152 |
+
(block_offsets_t is None)):
|
153 |
+
column_indices_t, offsets_t, block_offsets_t = _transpose(
|
154 |
+
size, data, row_indices, column_indices, offsets)
|
155 |
+
self._column_indices_t = column_indices_t
|
156 |
+
self._offsets_t = offsets_t
|
157 |
+
self._block_offsets_t = block_offsets_t
|
158 |
+
|
159 |
+
self._transposed = False
|
160 |
+
|
161 |
+
# Validate that our metadata will not overflow.
|
162 |
+
max_dim = np.iinfo(np.int16).max * self.blocking
|
163 |
+
if column_indices.dtype == torch.int16:
|
164 |
+
if size[0] > max_dim or size[1] > max_dim:
|
165 |
+
raise ValueError(
|
166 |
+
"Sparse matrix with shape {size} exceeds representable "
|
167 |
+
"size with 16-bit indices.")
|
168 |
+
|
169 |
+
def validate(self):
|
170 |
+
_validate_matrix(self._size,
|
171 |
+
self._data,
|
172 |
+
self._row_indices,
|
173 |
+
self._column_indices,
|
174 |
+
self._offsets)
|
175 |
+
|
176 |
+
# TODO(tgale): Add heavyweight data validation.
|
177 |
+
|
178 |
+
def to(self, device):
|
179 |
+
# TODO(tgale): Handle type conversions here. We
|
180 |
+
# need to set the appropriate meta-data type for
|
181 |
+
# the given floating-point type.
|
182 |
+
self._data = self._data.to(device)
|
183 |
+
self._row_indices = self._row_indices.to(device)
|
184 |
+
self._column_indices = self._column_indices.to(device)
|
185 |
+
self._offsets = self._offsets.to(device)
|
186 |
+
self._column_indices_t = self._column_indices_t.to(device)
|
187 |
+
self._offsets_t = self._offsets_t.to(device)
|
188 |
+
self._block_offsets_t = self._block_offsets_t.to(device)
|
189 |
+
return self
|
190 |
+
|
191 |
+
def cuda(self):
|
192 |
+
return self.to(torch.cuda.current_device())
|
193 |
+
|
194 |
+
def clone(self):
|
195 |
+
return Matrix(
|
196 |
+
self.size(),
|
197 |
+
self.data.clone(),
|
198 |
+
self.row_indices.clone(),
|
199 |
+
self.column_indices.clone(),
|
200 |
+
self.offsets.clone(),
|
201 |
+
self.column_indices_t.clone(),
|
202 |
+
self.offsets_t.clone(),
|
203 |
+
self.block_offsets_t.clone())
|
204 |
+
|
205 |
+
def t(self):
|
206 |
+
if self.dim() != 2:
|
207 |
+
raise ValueError(
|
208 |
+
"t() expects a tensor with <= 2 dimensions, "
|
209 |
+
f"but self is {self.dim()}D.")
|
210 |
+
out = Matrix(self.size(),
|
211 |
+
self.data,
|
212 |
+
self.row_indices,
|
213 |
+
self.column_indices,
|
214 |
+
self.offsets,
|
215 |
+
self.column_indices_t,
|
216 |
+
self.offsets_t,
|
217 |
+
self.block_offsets_t)
|
218 |
+
out._transposed = not self._transposed
|
219 |
+
out._size = torch.Size((self._size[1], self._size[0]))
|
220 |
+
return out
|
221 |
+
|
222 |
+
def contiguous(self):
|
223 |
+
raise ValueError("Not yet implemented.")
|
224 |
+
|
225 |
+
def is_contiguous(self):
|
226 |
+
return not self._transposed
|
227 |
+
|
228 |
+
@property
|
229 |
+
def is_cuda(self):
|
230 |
+
return self._data.is_cuda
|
231 |
+
|
232 |
+
@property
|
233 |
+
def device(self):
|
234 |
+
return self._data.device
|
235 |
+
|
236 |
+
def size(self):
|
237 |
+
return self._size
|
238 |
+
|
239 |
+
@property
|
240 |
+
def shape(self):
|
241 |
+
return self.size()
|
242 |
+
|
243 |
+
def dim(self):
|
244 |
+
return len(self._size)
|
245 |
+
|
246 |
+
@property
|
247 |
+
def data(self):
|
248 |
+
return self._data
|
249 |
+
|
250 |
+
@property
|
251 |
+
def row_indices(self):
|
252 |
+
return self._row_indices
|
253 |
+
|
254 |
+
@property
|
255 |
+
def column_indices(self):
|
256 |
+
return self._column_indices
|
257 |
+
|
258 |
+
@property
|
259 |
+
def offsets(self):
|
260 |
+
return self._offsets
|
261 |
+
|
262 |
+
@property
|
263 |
+
def offsets_t(self):
|
264 |
+
return self._offsets_t
|
265 |
+
|
266 |
+
@property
|
267 |
+
def column_indices_t(self):
|
268 |
+
return self._column_indices_t
|
269 |
+
|
270 |
+
@property
|
271 |
+
def block_offsets_t(self):
|
272 |
+
return self._block_offsets_t
|
273 |
+
|
274 |
+
@property
|
275 |
+
def dtype(self):
|
276 |
+
return self.data.dtype
|
277 |
+
|
278 |
+
@property
|
279 |
+
def nnz(self):
|
280 |
+
return self.data.numel()
|
281 |
+
|
282 |
+
@property
|
283 |
+
def blocking(self):
|
284 |
+
return self.data.shape[1]
|
285 |
+
|
286 |
+
@property
|
287 |
+
def requires_grad(self):
|
288 |
+
return self.data.requires_grad
|
289 |
+
|
290 |
+
def requires_grad_(self, x):
|
291 |
+
self.data.requires_grad_(x)
|
292 |
+
return self
|
293 |
+
|
294 |
+
def view(self, *shape):
|
295 |
+
assert self.is_contiguous()
|
296 |
+
if shape[-1] != self.size()[-1]:
|
297 |
+
raise ValueError(
|
298 |
+
"Can't change view on compressed dimension. "
|
299 |
+
f"{self.size()[-1]} v. {shape[-1]}.")
|
300 |
+
if np.prod(shape) != np.prod(self.size()):
|
301 |
+
raise ValueError(
|
302 |
+
"Mismatch in numel of Matrix and new shape. "
|
303 |
+
f"{np.prod(self.size())} v. {np.prod(shape)}")
|
304 |
+
return Matrix(shape,
|
305 |
+
self.data,
|
306 |
+
self.row_indices,
|
307 |
+
self.column_indices,
|
308 |
+
self.offsets,
|
309 |
+
self.column_indices_t,
|
310 |
+
self.offsets_t,
|
311 |
+
self.block_offsets_t)
|
312 |
+
|
313 |
+
@property
|
314 |
+
def grad(self):
|
315 |
+
# TODO(tgale): Make sure this mirrors torch.Tensor
|
316 |
+
# behavior in the case where we ask for the gradient
|
317 |
+
# of a non-contiguous tensor.
|
318 |
+
size = self.size()
|
319 |
+
if not self.is_contiguous():
|
320 |
+
size = torch.Size((size[1], size[0]))
|
321 |
+
out = Matrix(size,
|
322 |
+
self.data.grad,
|
323 |
+
self.row_indices,
|
324 |
+
self.column_indices,
|
325 |
+
self.offsets,
|
326 |
+
self.column_indices_t,
|
327 |
+
self.offsets_t,
|
328 |
+
self.block_offsets_t)
|
329 |
+
return out if self.is_contiguous() else out.t()
|
torch-ext/megablocks/stk/ops/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .linear_ops import dds, dsd, sdd
|
2 |
+
from .matrix_ops import ones_like, row_indices, sum, to_dense, to_sparse
|
3 |
+
from .eltwise_ops import mul
|
torch-ext/megablocks/stk/ops/eltwise_ops.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..matrix import Matrix
|
2 |
+
|
3 |
+
def mul(a, b):
|
4 |
+
"""Performs element-wise multiplication of matrices a and b.
|
5 |
+
|
6 |
+
It is the user's responsibility to make sure that a and b
|
7 |
+
follow the same matrix topology. This function assumes it is safe
|
8 |
+
to use the topoplogy of a.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
a: stk.Matrix.
|
12 |
+
b: stk.Matrix with a's matrix topology.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
stk.Matrix where the entries correspond to torch.mul(a, b).
|
16 |
+
"""
|
17 |
+
assert isinstance(a, Matrix)
|
18 |
+
assert isinstance(b, Matrix)
|
19 |
+
assert a.size() == b.size()
|
20 |
+
|
21 |
+
return Matrix(a.size(),
|
22 |
+
a.data * b.data,
|
23 |
+
a.row_indices,
|
24 |
+
a.column_indices,
|
25 |
+
a.offsets,
|
26 |
+
a.column_indices_t,
|
27 |
+
a.offsets_t,
|
28 |
+
a.block_offsets_t)
|
torch-ext/megablocks/stk/ops/eltwise_ops_test.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
import itertools
|
3 |
+
import torch
|
4 |
+
from absl.testing import parameterized
|
5 |
+
|
6 |
+
import stk
|
7 |
+
from stk.ops.linear_ops_test import allclose, _dense_and_sparse
|
8 |
+
|
9 |
+
_MATRIX_SIZES = (
|
10 |
+
(128, 128, 0.0),
|
11 |
+
(256, 256, 0.5),
|
12 |
+
(2048, 1024, 0.8),
|
13 |
+
(512, 128, 0.0),
|
14 |
+
(128, 512, 0.0),
|
15 |
+
(1024, 512, 0.0),
|
16 |
+
(1024, 512, 0.5),
|
17 |
+
(1024, 512, 0.75),
|
18 |
+
(512, 1024, 0.0),
|
19 |
+
(512, 1024, 0.5),
|
20 |
+
(512, 1024, 0.75),
|
21 |
+
(1024, 1024, 0.0),
|
22 |
+
(1024, 1024, 0.5),
|
23 |
+
(1024, 1024, 0.75),
|
24 |
+
)
|
25 |
+
|
26 |
+
_DTYPE = (
|
27 |
+
torch.float16, torch.bfloat16
|
28 |
+
)
|
29 |
+
|
30 |
+
def _generate_testcases():
|
31 |
+
testcases = itertools.product(_MATRIX_SIZES, _DTYPE)
|
32 |
+
testcases = [(*size, 128, dtype) for
|
33 |
+
(size, dtype) in testcases]
|
34 |
+
return testcases
|
35 |
+
|
36 |
+
_ELTWISE_OP_TESTS = _generate_testcases()
|
37 |
+
|
38 |
+
def _dense_and_sparse_like(x, std=0.1):
|
39 |
+
dense_data = torch.randn_like(x.data, device=x.device) * std
|
40 |
+
sparse = stk.Matrix(x.size(),
|
41 |
+
dense_data,
|
42 |
+
x.row_indices,
|
43 |
+
x.column_indices,
|
44 |
+
x.offsets)
|
45 |
+
dense = stk.ops.to_dense(sparse)
|
46 |
+
|
47 |
+
return (dense.requires_grad_(True),
|
48 |
+
sparse.requires_grad_(True))
|
49 |
+
|
50 |
+
@parameterized.parameters(_ELTWISE_OP_TESTS)
|
51 |
+
class EltwiseOpsTest(parameterized.TestCase):
|
52 |
+
|
53 |
+
def testEltwiseMul(self, m, n, sparsity, blocking, dtype):
|
54 |
+
|
55 |
+
a_dense, a = _dense_and_sparse(m, n, sparsity, blocking, dtype)
|
56 |
+
b_dense, b = _dense_and_sparse_like(a)
|
57 |
+
|
58 |
+
out = stk.ops.mul(a, b)
|
59 |
+
expected_out = torch.mul(a_dense, b_dense)
|
60 |
+
|
61 |
+
# Compute the gradients w.r.t. the inputs.
|
62 |
+
expected_out.sum().backward()
|
63 |
+
stk.ops.sum(out).backward()
|
64 |
+
|
65 |
+
# Validate the results.
|
66 |
+
out = stk.ops.to_dense(out)
|
67 |
+
self.assertEqual(out.dim(), 2)
|
68 |
+
self.assertEqual(expected_out.size(), out.size())
|
69 |
+
self.assertTrue(allclose(out, expected_out))
|
70 |
+
|
71 |
+
# LHS gradient.
|
72 |
+
grad = stk.ops.to_dense(a.grad)
|
73 |
+
expected_grad = a_dense.grad
|
74 |
+
self.assertEqual(grad.dim(), 2)
|
75 |
+
self.assertEqual(expected_grad.size(), grad.size())
|
76 |
+
self.assertTrue(allclose(grad, expected_grad))
|
77 |
+
|
78 |
+
# RHS gradient.
|
79 |
+
grad = stk.ops.to_dense(b.grad)
|
80 |
+
expected_grad = b_dense.grad
|
81 |
+
self.assertEqual(grad.dim(), 2)
|
82 |
+
self.assertEqual(expected_grad.size(), grad.size())
|
83 |
+
self.assertTrue(allclose(grad, expected_grad))
|
84 |
+
|
85 |
+
if __name__ == '__main__':
|
86 |
+
unittest.main()
|
torch-ext/megablocks/stk/ops/linear_ops.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from ..backend import sputnik
|
4 |
+
from ..matrix import Matrix
|
5 |
+
|
6 |
+
|
7 |
+
def dsd(a, b):
|
8 |
+
assert isinstance(a, Matrix)
|
9 |
+
assert isinstance(b, torch.Tensor)
|
10 |
+
return sputnik.dsd(
|
11 |
+
a.size(),
|
12 |
+
a.data, a.offsets,
|
13 |
+
a.row_indices,
|
14 |
+
a.column_indices,
|
15 |
+
a.offsets_t,
|
16 |
+
a.column_indices_t,
|
17 |
+
a.block_offsets_t,
|
18 |
+
not a.is_contiguous(),
|
19 |
+
b)
|
20 |
+
|
21 |
+
|
22 |
+
def dds(a, b):
|
23 |
+
assert isinstance(a, torch.Tensor)
|
24 |
+
assert isinstance(b, Matrix)
|
25 |
+
return sputnik.dds(
|
26 |
+
a,
|
27 |
+
b.size(),
|
28 |
+
b.data, b.offsets,
|
29 |
+
b.row_indices,
|
30 |
+
b.column_indices,
|
31 |
+
b.offsets_t,
|
32 |
+
b.column_indices_t,
|
33 |
+
b.block_offsets_t,
|
34 |
+
not b.is_contiguous())
|
35 |
+
|
36 |
+
|
37 |
+
def sdd(a, b, topo):
|
38 |
+
assert isinstance(a, torch.Tensor)
|
39 |
+
assert isinstance(b, torch.Tensor)
|
40 |
+
assert isinstance(topo, Matrix)
|
41 |
+
assert topo.is_contiguous()
|
42 |
+
out = sputnik.sdd(
|
43 |
+
a, b,
|
44 |
+
topo.size(),
|
45 |
+
topo.data,
|
46 |
+
topo.offsets,
|
47 |
+
topo.row_indices,
|
48 |
+
topo.column_indices,
|
49 |
+
topo.offsets_t,
|
50 |
+
topo.column_indices_t,
|
51 |
+
topo.block_offsets_t)
|
52 |
+
return Matrix(topo.size(),
|
53 |
+
out,
|
54 |
+
topo.row_indices,
|
55 |
+
topo.column_indices,
|
56 |
+
topo.offsets,
|
57 |
+
topo.column_indices_t,
|
58 |
+
topo.offsets_t,
|
59 |
+
topo.block_offsets_t)
|
torch-ext/megablocks/stk/ops/linear_ops_test.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
import itertools
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from absl.testing import parameterized
|
6 |
+
|
7 |
+
import stk
|
8 |
+
|
9 |
+
|
10 |
+
def allclose(x, y, pct=0.25):
|
11 |
+
mask = torch.isclose(x, y, rtol=5e-2)
|
12 |
+
pct_diff = (mask.numel() - mask.sum()) / mask.numel() * 100
|
13 |
+
if pct_diff > pct:
|
14 |
+
print("{:.2f}% of values not close.".format(pct_diff))
|
15 |
+
return False
|
16 |
+
return True
|
17 |
+
|
18 |
+
|
19 |
+
# An assortment of problems designed to make sure
|
20 |
+
# the bindings are operating correctly.
|
21 |
+
_MATRIX_SIZES = (
|
22 |
+
(128, 128, 128, 0.0),
|
23 |
+
(256, 256, 256, 0.5),
|
24 |
+
(2048, 1024, 512, 0.8),
|
25 |
+
(512, 128, 128, 0.0),
|
26 |
+
(128, 128, 512, 0.0),
|
27 |
+
(1024, 512, 512, 0.0),
|
28 |
+
(1024, 512, 512, 0.5),
|
29 |
+
(1024, 512, 512, 0.75),
|
30 |
+
(512, 512, 1024, 0.0),
|
31 |
+
(512, 512, 1024, 0.5),
|
32 |
+
(512, 512, 1024, 0.75),
|
33 |
+
(1024, 1024, 1024, 0.0),
|
34 |
+
(1024, 1024, 1024, 0.5),
|
35 |
+
(1024, 1024, 1024, 0.75),
|
36 |
+
)
|
37 |
+
|
38 |
+
_TRANSPOSE = (
|
39 |
+
(False, False),
|
40 |
+
(False, True),
|
41 |
+
(True, False),
|
42 |
+
(True, True),
|
43 |
+
)
|
44 |
+
|
45 |
+
_DTYPE = (
|
46 |
+
torch.float16, torch.bfloat16
|
47 |
+
)
|
48 |
+
|
49 |
+
def _generate_testcases():
|
50 |
+
testcases = itertools.product(_MATRIX_SIZES, _TRANSPOSE, _DTYPE)
|
51 |
+
testcases = [(*size, *trans, 128, dtype) for
|
52 |
+
(size, trans, dtype) in testcases]
|
53 |
+
return testcases
|
54 |
+
|
55 |
+
_LINEAR_OP_TESTS = _generate_testcases()
|
56 |
+
|
57 |
+
def _dense_and_sparse(rows, cols, sparsity, blocking, dtype, std=0.1):
|
58 |
+
mask = stk.random.dense_mask(rows, cols, sparsity, blocking)
|
59 |
+
dense = (torch.randn(rows, cols) * std * mask).type(dtype)
|
60 |
+
sparse = stk.ops.to_sparse(dense, blocking)
|
61 |
+
cuda_device = torch.device("cuda")
|
62 |
+
return (dense.to(cuda_device).requires_grad_(True),
|
63 |
+
sparse.to(cuda_device).requires_grad_(True))
|
64 |
+
|
65 |
+
|
66 |
+
def _dense(rows, cols, dtype, std=0.1):
|
67 |
+
cuda_device = torch.device("cuda")
|
68 |
+
out = (torch.randn(rows, cols) * std).type(dtype)
|
69 |
+
return out.to(cuda_device).requires_grad_(True)
|
70 |
+
|
71 |
+
|
72 |
+
def _dense_2x(rows, cols, dtype):
|
73 |
+
a = _dense(rows, cols, dtype)
|
74 |
+
return a, a.detach().requires_grad_(True)
|
75 |
+
|
76 |
+
|
77 |
+
def _with_transpose(op, a, b, trans_a, trans_b):
|
78 |
+
a = a.t() if trans_a else a
|
79 |
+
b = b.t() if trans_b else b
|
80 |
+
return op(a, b)
|
81 |
+
|
82 |
+
|
83 |
+
def _mmm(a, b, topo):
|
84 |
+
mask = stk.ops.to_dense(stk.ops.ones_like(topo))
|
85 |
+
return torch.mm(a, b) * mask
|
86 |
+
|
87 |
+
|
88 |
+
def _sparse_out_with_transpose(op, a, b, topo, trans_a, trans_b):
|
89 |
+
a = a.t() if trans_a else a
|
90 |
+
b = b.t() if trans_b else b
|
91 |
+
return op(a, b, topo)
|
92 |
+
|
93 |
+
|
94 |
+
def _mask(x, mask):
|
95 |
+
mask = stk.ops.to_dense(stk.ops.ones_like(mask))
|
96 |
+
return x * mask
|
97 |
+
|
98 |
+
|
99 |
+
@parameterized.parameters(*_LINEAR_OP_TESTS)
|
100 |
+
class LinearOpsTest(parameterized.TestCase):
|
101 |
+
|
102 |
+
def testLinearOps_Dsd(self, m, k, n, sparsity, trans_a, trans_b, blocking, dtype):
|
103 |
+
# Construct the operands.
|
104 |
+
a_shape = (k, m) if trans_a else (m, k)
|
105 |
+
a_dense, a = _dense_and_sparse(*a_shape, sparsity, blocking, dtype)
|
106 |
+
b_shape = (n, k) if trans_b else (k, n)
|
107 |
+
b, bcp = _dense_2x(*b_shape, dtype)
|
108 |
+
|
109 |
+
# Execute the matmul.
|
110 |
+
out = _with_transpose(stk.ops.dsd, a, b, trans_a, trans_b)
|
111 |
+
expected_out = _with_transpose(torch.mm, a_dense, bcp, trans_a, trans_b)
|
112 |
+
|
113 |
+
# Compute the gradients w.r.t. the inputs.
|
114 |
+
expected_out.sum().backward()
|
115 |
+
out.sum().backward()
|
116 |
+
|
117 |
+
# Validate the results.
|
118 |
+
self.assertEqual(out.dim(), 2)
|
119 |
+
self.assertEqual(expected_out.size()[0], out.size()[0])
|
120 |
+
self.assertEqual(expected_out.size()[1], out.size()[1])
|
121 |
+
self.assertTrue(allclose(out, expected_out))
|
122 |
+
|
123 |
+
# LHS gradient.
|
124 |
+
grad = stk.ops.to_dense(a.grad)
|
125 |
+
expected_grad = _mask(a_dense.grad, a.grad)
|
126 |
+
self.assertEqual(grad.dim(), 2)
|
127 |
+
self.assertEqual(expected_grad.size()[0], grad.size()[0])
|
128 |
+
self.assertEqual(expected_grad.size()[1], grad.size()[1])
|
129 |
+
self.assertTrue(allclose(grad, expected_grad))
|
130 |
+
|
131 |
+
# RHS gradient.
|
132 |
+
grad = b.grad
|
133 |
+
expected_grad = bcp.grad
|
134 |
+
self.assertEqual(grad.dim(), 2)
|
135 |
+
self.assertEqual(expected_grad.size()[0], grad.size()[0])
|
136 |
+
self.assertEqual(expected_grad.size()[1], grad.size()[1])
|
137 |
+
self.assertTrue(allclose(grad, expected_grad))
|
138 |
+
|
139 |
+
def testLinearOps_Dds(self, m, k, n, sparsity, trans_a, trans_b, blocking, dtype):
|
140 |
+
# Construct the operands.
|
141 |
+
a_shape = (k, m) if trans_a else (m, k)
|
142 |
+
a, acp = _dense_2x(*a_shape, dtype)
|
143 |
+
b_shape = (n, k) if trans_b else (k, n)
|
144 |
+
b_dense, b = _dense_and_sparse(*b_shape, sparsity, blocking, dtype)
|
145 |
+
|
146 |
+
# Execute the matmul.
|
147 |
+
out = _with_transpose(stk.ops.dds, a, b, trans_a, trans_b)
|
148 |
+
expected_out = _with_transpose(torch.mm, acp, b_dense, trans_a, trans_b)
|
149 |
+
|
150 |
+
# Compute the gradients w.r.t. the inputs.
|
151 |
+
expected_out.sum().backward()
|
152 |
+
out.sum().backward()
|
153 |
+
|
154 |
+
# Validate the results.
|
155 |
+
self.assertEqual(out.dim(), 2)
|
156 |
+
self.assertEqual(expected_out.size()[0], out.size()[0])
|
157 |
+
self.assertEqual(expected_out.size()[1], out.size()[1])
|
158 |
+
self.assertTrue(allclose(out, expected_out))
|
159 |
+
|
160 |
+
# LHS gradient.
|
161 |
+
grad = a.grad
|
162 |
+
expected_grad = acp.grad
|
163 |
+
self.assertEqual(grad.dim(), 2)
|
164 |
+
self.assertEqual(expected_grad.size()[0], grad.size()[0])
|
165 |
+
self.assertEqual(expected_grad.size()[1], grad.size()[1])
|
166 |
+
self.assertTrue(allclose(grad, expected_grad))
|
167 |
+
|
168 |
+
# RHS gradient.
|
169 |
+
grad = stk.ops.to_dense(b.grad)
|
170 |
+
expected_grad = _mask(b_dense.grad, b.grad)
|
171 |
+
self.assertEqual(grad.dim(), 2)
|
172 |
+
self.assertEqual(expected_grad.size()[0], grad.size()[0])
|
173 |
+
self.assertEqual(expected_grad.size()[1], grad.size()[1])
|
174 |
+
self.assertTrue(allclose(grad, expected_grad))
|
175 |
+
|
176 |
+
def testLinearOps_Sdd(self, m, k, n, sparsity, trans_a, trans_b, blocking, dtype):
|
177 |
+
# Construct the operands.
|
178 |
+
a_shape = (k, m) if trans_a else (m, k)
|
179 |
+
a, acp = _dense_2x(*a_shape, dtype)
|
180 |
+
b_shape = (n, k) if trans_b else (k, n)
|
181 |
+
b, bcp = _dense_2x(*b_shape, dtype)
|
182 |
+
_, topo = _dense_and_sparse(m, n, sparsity, blocking, dtype)
|
183 |
+
|
184 |
+
# Execute the matmul.
|
185 |
+
out = _sparse_out_with_transpose(stk.ops.sdd, a, b, topo, trans_a, trans_b)
|
186 |
+
expected_out = _sparse_out_with_transpose(_mmm, acp, bcp, topo, trans_a, trans_b)
|
187 |
+
|
188 |
+
# Compute the gradients w.r.t. the inputs.
|
189 |
+
expected_out.sum().backward()
|
190 |
+
stk.ops.sum(out).backward()
|
191 |
+
|
192 |
+
# Validate the results.
|
193 |
+
out = stk.ops.to_dense(out)
|
194 |
+
self.assertEqual(out.dim(), 2)
|
195 |
+
self.assertEqual(expected_out.size()[0], out.size()[0])
|
196 |
+
self.assertEqual(expected_out.size()[1], out.size()[1])
|
197 |
+
self.assertTrue(allclose(out, expected_out))
|
198 |
+
|
199 |
+
# LHS gradient.
|
200 |
+
grad = a.grad
|
201 |
+
expected_grad = acp.grad
|
202 |
+
self.assertEqual(grad.dim(), 2)
|
203 |
+
self.assertEqual(expected_grad.size()[0], grad.size()[0])
|
204 |
+
self.assertEqual(expected_grad.size()[1], grad.size()[1])
|
205 |
+
self.assertTrue(allclose(grad, expected_grad))
|
206 |
+
|
207 |
+
# RHS gradient.
|
208 |
+
grad = b.grad
|
209 |
+
expected_grad = bcp.grad
|
210 |
+
self.assertEqual(grad.dim(), 2)
|
211 |
+
self.assertEqual(expected_grad.size()[0], grad.size()[0])
|
212 |
+
self.assertEqual(expected_grad.size()[1], grad.size()[1])
|
213 |
+
self.assertTrue(allclose(grad, expected_grad))
|
214 |
+
|
215 |
+
if __name__ == '__main__':
|
216 |
+
unittest.main()
|
torch-ext/megablocks/stk/ops/matrix_ops.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..backend import sputnik
|
2 |
+
from ..matrix import Matrix
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
@torch.no_grad()
|
8 |
+
def row_indices(shape, data, offsets, column_indices):
|
9 |
+
return sputnik.row_indices(shape, data, offsets, column_indices)
|
10 |
+
|
11 |
+
|
12 |
+
# TODO(tgale): Replace this helper with a custom kernel. This operation
|
13 |
+
# is much simpler to do than how it's currently implemented.
|
14 |
+
@torch.no_grad()
|
15 |
+
def _expand_for_blocking(idxs, blocking):
|
16 |
+
# Duplicate for block column dimension.
|
17 |
+
idxs = torch.reshape(idxs, [idxs.size()[0], 1, 2]).repeat(1, blocking, 1)
|
18 |
+
|
19 |
+
# Update the column indices.
|
20 |
+
idxs[:, :, 1] *= blocking
|
21 |
+
idxs[:, :, 1] += torch.reshape(torch.arange(blocking, device=idxs.device), [1, blocking])
|
22 |
+
|
23 |
+
# Duplicate for block row dimension.
|
24 |
+
idxs = torch.reshape(idxs, [idxs.size()[0], 1, blocking, 2])
|
25 |
+
idxs = idxs.repeat(1, blocking, 1, 1)
|
26 |
+
|
27 |
+
# Update the row indices.
|
28 |
+
idxs[:, :, :, 0] *= blocking
|
29 |
+
idxs[:, :, :, 0] += torch.reshape(torch.arange(blocking, device=idxs.device), [1, blocking, 1])
|
30 |
+
idxs = torch.reshape(idxs, [-1, 2])
|
31 |
+
return idxs
|
32 |
+
|
33 |
+
|
34 |
+
# TODO(tgale): Add input type checking.
|
35 |
+
@torch.no_grad()
|
36 |
+
def to_dense(x):
|
37 |
+
assert isinstance(x, Matrix)
|
38 |
+
|
39 |
+
shape = (np.prod(x.shape[:-1]), x.shape[-1])
|
40 |
+
row_idxs = x.row_indices.type(torch.int32)
|
41 |
+
col_idxs = x.column_indices.type(torch.int32)
|
42 |
+
indices = _expand_for_blocking(torch.stack([row_idxs, col_idxs], dim=1), x.blocking)
|
43 |
+
indices = (indices[:, 0] * shape[1] + indices[:, 1]).type(torch.int64)
|
44 |
+
|
45 |
+
out = torch.zeros(shape[0] * shape[1], dtype=x.dtype, device=x.device)
|
46 |
+
out.scatter_(0, indices, x.data.flatten())
|
47 |
+
return out.reshape(x.size())
|
48 |
+
|
49 |
+
|
50 |
+
@torch.no_grad()
|
51 |
+
def _mask(x, blocking=1):
|
52 |
+
assert x.dim() == 2
|
53 |
+
assert x.size()[0] % blocking == 0
|
54 |
+
assert x.size()[1] % blocking == 0
|
55 |
+
block_rows = x.size()[0] // blocking
|
56 |
+
block_cols = x.size()[1] // blocking
|
57 |
+
x = torch.reshape(x, [block_rows, blocking, block_cols, blocking])
|
58 |
+
x = torch.sum(torch.abs(x), dim=(1, 3))
|
59 |
+
return x != 0
|
60 |
+
|
61 |
+
|
62 |
+
# TODO(tgale): Add input type checking.
|
63 |
+
@torch.no_grad()
|
64 |
+
def to_sparse(x, blocking=1):
|
65 |
+
m = _mask(x, blocking)
|
66 |
+
|
67 |
+
# TODO(tgale): Set to appropriate type for input matrix.
|
68 |
+
row_nnzs = torch.sum(m, dim=1).type(torch.int32)
|
69 |
+
zeros = torch.zeros((1,), dtype=row_nnzs.dtype, device=row_nnzs.device)
|
70 |
+
offsets = torch.cat([zeros, torch.cumsum(row_nnzs, dim=0)])
|
71 |
+
offsets = offsets.type(torch.int32)
|
72 |
+
|
73 |
+
indices = torch.nonzero(m).type(torch.int16)
|
74 |
+
row_indices = indices[:, 0]
|
75 |
+
column_indices = indices[:, 1]
|
76 |
+
|
77 |
+
# Nonzero indices in the dense matrix.
|
78 |
+
nonzero_indices = torch.nonzero(m)
|
79 |
+
nonzero_indices = _expand_for_blocking(nonzero_indices, blocking)
|
80 |
+
nonzero_indices = nonzero_indices[:, 0] * x.size()[1] + nonzero_indices[:, 1]
|
81 |
+
|
82 |
+
# Gather the data and construct the sparse matrix.
|
83 |
+
data = torch.gather(x.flatten(), dim=0, index=nonzero_indices)
|
84 |
+
data = torch.reshape(data, [-1, blocking, blocking])
|
85 |
+
return Matrix(x.size(), data, row_indices, column_indices, offsets)
|
86 |
+
|
87 |
+
|
88 |
+
@torch.no_grad()
|
89 |
+
def ones_like(x):
|
90 |
+
return Matrix(x.size(),
|
91 |
+
torch.ones_like(x.data),
|
92 |
+
x.row_indices,
|
93 |
+
x.column_indices, x.offsets)
|
94 |
+
|
95 |
+
|
96 |
+
def sum(x):
|
97 |
+
assert isinstance(x, Matrix)
|
98 |
+
return x.data.sum()
|
torch-ext/megablocks/stk/ops/matrix_ops_test.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
from absl.testing import parameterized
|
4 |
+
import stk
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
@parameterized.parameters(
|
9 |
+
(8, 16, 0.0, 1),
|
10 |
+
(8, 16, 0.5, 1),
|
11 |
+
(8, 16, .95, 1),
|
12 |
+
(16, 8, 0.0, 1),
|
13 |
+
(16, 8, 0.5, 1),
|
14 |
+
(16, 8, .95, 1),
|
15 |
+
(8, 16, 0.0, 8),
|
16 |
+
(8, 16, 0.5, 8),
|
17 |
+
(8, 16, 1.0, 8),
|
18 |
+
(16, 8, 0.0, 8),
|
19 |
+
(16, 8, 0.5, 8),
|
20 |
+
(16, 8, 1.0, 8),
|
21 |
+
(128, 256, 0.5, 16),
|
22 |
+
(256, 128, 0.75, 32),
|
23 |
+
(512, 512, .875, 128))
|
24 |
+
class MatrixOpsTest(parameterized.TestCase):
|
25 |
+
|
26 |
+
def testMatrixOps_FormatConversion(self, rows, cols, sparsity, blocking):
|
27 |
+
mask = stk.random.dense_mask(rows, cols, sparsity, blocking)
|
28 |
+
x = (torch.randn(rows, cols) * mask).type(torch.float16)
|
29 |
+
|
30 |
+
# Convert the matrix to sparse format.
|
31 |
+
sparse_x = stk.ops.to_sparse(x, blocking)
|
32 |
+
|
33 |
+
# Validate the matrix.
|
34 |
+
sparse_x.validate()
|
35 |
+
|
36 |
+
# Validate the shape.
|
37 |
+
self.assertEqual(sparse_x.dim(), 2)
|
38 |
+
self.assertEqual(sparse_x.size()[0], rows)
|
39 |
+
self.assertEqual(sparse_x.size()[1], cols)
|
40 |
+
|
41 |
+
# Validate the sparsity.
|
42 |
+
numblocks = rows // blocking * cols // blocking
|
43 |
+
nnz = round(numblocks * (1 - sparsity)) * blocking ** 2
|
44 |
+
self.assertEqual(sparse_x.nnz, nnz)
|
45 |
+
|
46 |
+
# Convert back to dense format.
|
47 |
+
dense_x = stk.ops.to_dense(sparse_x)
|
48 |
+
|
49 |
+
# Validate the shape.
|
50 |
+
self.assertEqual(dense_x.dim(), 2)
|
51 |
+
self.assertEqual(dense_x.size()[0], rows)
|
52 |
+
self.assertEqual(dense_x.size()[1], cols)
|
53 |
+
|
54 |
+
# Validate the sparsity
|
55 |
+
self.assertEqual(torch.count_nonzero(dense_x).item(), nnz)
|
56 |
+
|
57 |
+
# Validate the output.
|
58 |
+
self.assertTrue(torch.all(torch.eq(x, dense_x)))
|
59 |
+
|
60 |
+
|
61 |
+
if __name__ == '__main__':
|
62 |
+
unittest.main()
|
torch-ext/megablocks/stk/random/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# from stk.random.random_ops import dense_mask, mask, randn
|
2 |
+
from .random_ops import dense_mask, mask, randn
|
torch-ext/megablocks/stk/random/random_ops.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from ..ops import matrix_ops
|
4 |
+
|
5 |
+
|
6 |
+
@torch.no_grad()
|
7 |
+
def dense_mask(rows, cols, sparsity, blocking=1):
|
8 |
+
assert sparsity >= 0.0 and sparsity <= 1.0
|
9 |
+
assert rows % blocking == 0 and cols % blocking == 0
|
10 |
+
|
11 |
+
block_rows, block_cols = (rows // blocking, cols // blocking)
|
12 |
+
nnz = round(block_rows * block_cols * (1 - sparsity))
|
13 |
+
|
14 |
+
out = np.ones(block_rows * block_cols)
|
15 |
+
mask = np.random.choice(out.size, out.size - nnz, replace=False)
|
16 |
+
out[mask] = 0.0
|
17 |
+
|
18 |
+
out = np.tile(
|
19 |
+
np.reshape(out, [block_rows, 1, block_cols, 1]),
|
20 |
+
(1, blocking, 1, blocking))
|
21 |
+
out = np.reshape(out, [rows, cols])
|
22 |
+
return torch.from_numpy(out.astype(np.float32))
|
23 |
+
|
24 |
+
|
25 |
+
@torch.no_grad()
|
26 |
+
def mask(m, n, sparsity, blocking=1):
|
27 |
+
out = dense_mask(m, n, sparsity, blocking).type(torch.float16)
|
28 |
+
return matrix_ops.to_sparse(out, blocking=blocking)
|
29 |
+
|
30 |
+
|
31 |
+
@torch.no_grad()
|
32 |
+
def randn(shape, sparsity, blocking=1):
|
33 |
+
shape_2d = (np.prod(shape[:-1]), shape[-1])
|
34 |
+
out = mask(*shape_2d, sparsity, blocking)
|
35 |
+
out.data.copy_(torch.randn(*out.data.shape))
|
36 |
+
return out.view(*shape)
|
torch-ext/megablocks/stk/random/random_ops_test.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
from absl.testing import parameterized
|
4 |
+
from . import random
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
@parameterized.parameters(
|
9 |
+
(8, 16, 0.0, 1),
|
10 |
+
(8, 16, 0.5, 1),
|
11 |
+
(8, 16, .95, 1),
|
12 |
+
(16, 8, 0.0, 1),
|
13 |
+
(16, 8, 0.5, 1),
|
14 |
+
(16, 8, .95, 1),
|
15 |
+
(8, 16, 0.0, 8),
|
16 |
+
(8, 16, 0.5, 8),
|
17 |
+
(8, 16, 1.0, 8),
|
18 |
+
(16, 8, 0.0, 8),
|
19 |
+
(16, 8, 0.5, 8),
|
20 |
+
(16, 8, 1.0, 8),
|
21 |
+
(128, 256, 0.5, 16),
|
22 |
+
(256, 128, 0.75, 32),
|
23 |
+
(512, 512, .875, 128))
|
24 |
+
class RandomOpsTest(parameterized.TestCase):
|
25 |
+
|
26 |
+
def testRandomOps_DenseMask(self, rows, cols, sparsity, blocking):
|
27 |
+
mask = random.dense_mask(
|
28 |
+
rows, cols, sparsity, blocking)
|
29 |
+
|
30 |
+
# Validate the shape.
|
31 |
+
self.assertEqual(mask.dim(), 2)
|
32 |
+
self.assertEqual(mask.size()[0], rows)
|
33 |
+
self.assertEqual(mask.size()[1], cols)
|
34 |
+
|
35 |
+
# Validate the sparsity
|
36 |
+
numblocks = rows // blocking * cols // blocking
|
37 |
+
nnz = round(numblocks * (1 - sparsity)) * blocking ** 2
|
38 |
+
self.assertEqual(
|
39 |
+
torch.count_nonzero(mask).item(),
|
40 |
+
nnz)
|
41 |
+
|
42 |
+
# Check values are zero or one.
|
43 |
+
self.assertTrue(
|
44 |
+
torch.all(torch.logical_or(
|
45 |
+
torch.eq(mask, 0),
|
46 |
+
torch.eq(mask, 1))))
|
47 |
+
|
48 |
+
def testRandomOps_SparseMask(self, rows, cols, sparsity, blocking):
|
49 |
+
mask = random.mask(
|
50 |
+
rows, cols, sparsity, blocking)
|
51 |
+
|
52 |
+
# Validate the matrix.
|
53 |
+
mask.validate()
|
54 |
+
|
55 |
+
# Validate the shape.
|
56 |
+
self.assertEqual(mask.dim(), 2)
|
57 |
+
self.assertEqual(mask.size()[0], rows)
|
58 |
+
self.assertEqual(mask.size()[1], cols)
|
59 |
+
|
60 |
+
# Validate the sparsity.
|
61 |
+
numblocks = rows // blocking * cols // blocking
|
62 |
+
nnz = round(numblocks * (1 - sparsity)) * blocking ** 2
|
63 |
+
self.assertEqual(mask.nnz, nnz)
|
64 |
+
|
65 |
+
# Check values are zero or one.
|
66 |
+
self.assertTrue(
|
67 |
+
torch.all(torch.logical_or(
|
68 |
+
torch.eq(mask.data, 0),
|
69 |
+
torch.eq(mask.data, 1))))
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == '__main__':
|
73 |
+
unittest.main()
|