# Copyright 2024 Databricks # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest import torch from megablocks import ops PADDED_GATHER_TESTS = ( (4, 2, 2, 1), (4, 2, 2, 2), (1024, 1, 4, 1), (1024, 1, 4, 2), (1024, 1, 4, 4), (1024, 1, 64, 1), (1024, 1, 64, 2), (1024, 1, 64, 4), (1024, 1, 128, 1), (1024, 1, 128, 2), (1024, 1, 128, 4), (1024, 1536, 4, 1), (1024, 1536, 4, 2), (1024, 1536, 4, 4), (1024, 1536, 64, 1), (1024, 1536, 64, 2), (1024, 1536, 64, 4), (1024, 1536, 128, 1), (1024, 1536, 128, 2), (1024, 1536, 128, 4), (16384, 768, 4, 1), (16384, 768, 4, 2), (16384, 768, 4, 4), (16384, 768, 64, 1), (16384, 768, 64, 2), (16384, 768, 64, 4), (16384, 768, 128, 1), (16384, 768, 128, 2), (16384, 768, 128, 4), (16384, 1, 4, 1), (16384, 1, 4, 2), (16384, 1, 4, 4), (16384, 1, 64, 1), (16384, 1, 64, 2), (16384, 1, 64, 4), (16384, 1, 128, 1), (16384, 1, 128, 2), (16384, 1, 128, 4), ) @pytest.mark.gpu @pytest.mark.parametrize(('sl', 'hs', 'ne', 'top_k'), PADDED_GATHER_TESTS) def testPaddedGather(sl: int, hs: int, ne: int, top_k: int): # Create the data and indices. x = torch.randn((sl, hs)).cuda().half() # Randomly assign tokens to experts. top_expert = torch.randint(0, ne, (sl * top_k,)).cuda().int() bin_ids, indices = ops.sort(top_expert) tokens_per_expert = ops.histogram(top_expert, ne) padded_tokens_per_expert = ops.round_up(tokens_per_expert, 128) padded_bins = ops.inclusive_cumsum(padded_tokens_per_expert, 0) bins = ops.inclusive_cumsum(tokens_per_expert, 0) def padded_gather( x: torch.Tensor, indices: torch.Tensor, bin_ids: torch.Tensor, bins: torch.Tensor, padded_bins: torch.Tensor, top_k: int, ): x = x.cpu().numpy() indices = indices.cpu().numpy() bin_ids = bin_ids.cpu().numpy() bins = bins.cpu().numpy() padded_bins = padded_bins.cpu().numpy() out = np.zeros((padded_bins[-1], hs)) in_idx = 0 for i, end in enumerate(bins): out_idx = 0 if i == 0 else padded_bins[i - 1] end = bins[i] while in_idx < end: load_idx = indices[in_idx] // top_k out[out_idx, :] = x[load_idx, :] in_idx += 1 out_idx += 1 return torch.from_numpy(out).cuda().half() out = ops.padded_gather(x, indices, bin_ids, bins, padded_bins, top_k) expected_out = padded_gather(x, indices, bin_ids, bins, padded_bins, top_k) assert torch.all(torch.eq(out, expected_out))