kernel
File size: 15,603 Bytes
01fbc17
29e93ec
 
 
 
 
 
 
 
 
 
 
 
 
6eaa88c
29e93ec
6eaa88c
29e93ec
6eaa88c
29e93ec
 
01fbc17
 
 
29e93ec
 
 
 
 
01fbc17
29e93ec
 
 
6eaa88c
 
 
 
 
01fbc17
6eaa88c
01fbc17
6eaa88c
 
 
 
 
 
01fbc17
6eaa88c
01fbc17
6eaa88c
 
 
 
 
 
01fbc17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eaa88c
 
 
 
 
 
 
 
01fbc17
6eaa88c
 
 
 
01fbc17
 
 
6eaa88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01fbc17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eaa88c
 
 
 
01fbc17
 
6eaa88c
01fbc17
 
6eaa88c
01fbc17
6eaa88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01fbc17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eaa88c
 
 
01fbc17
29e93ec
 
 
 
 
 
 
 
 
6eaa88c
29e93ec
 
 
 
 
 
 
 
 
 
 
01fbc17
29e93ec
 
 
 
 
 
 
 
 
 
 
01fbc17
 
29e93ec
 
 
 
 
 
 
 
 
 
 
 
 
 
01fbc17
 
29e93ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01fbc17
 
29e93ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01fbc17
 
 
 
29e93ec
01fbc17
 
 
 
 
 
29e93ec
 
 
01fbc17
 
29e93ec
 
01fbc17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29e93ec
01fbc17
 
 
 
 
 
 
 
 
 
 
 
29e93ec
 
01fbc17
 
 
 
29e93ec
 
 
 
01fbc17
 
 
 
29e93ec
 
01fbc17
 
 
29e93ec
 
01fbc17
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# SPDX-License-Identifier: Apache-2.0
"""Tests for the MOE layers.

Run `pytest tests/kernels/test_moe.py`.
"""

from typing import List

import pytest
import torch

from moe._ops import ops
from moe.fused_moe import fused_moe, fused_topk, moe_align_block_size
from moe.fused_marlin_moe import fused_marlin_moe
from moe.platforms import current_platform
from moe.scalar_type import scalar_types
from moe.utils.marlin_utils_test import marlin_quantize, quantize_weights

from .utils import compute_max_diff, opcheck, torch_moe


from torch.nn import Parameter
from torch.nn import functional as F

def stack_and_dev(tensors: List[torch.Tensor]):
    dev = tensors[0].device
    return torch.stack(tensors, dim=0).to(dev)

NUM_EXPERTS = [8, 64]
EP_SIZE = [1, 4]
TOP_KS = [2, 6]


@pytest.mark.parametrize("m", [1, 33, 64, 222, 1024 * 128])
@pytest.mark.parametrize("n", [128, 1024, 2048])
@pytest.mark.parametrize("k", [128, 511, 1024])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("ep_size", EP_SIZE)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("padding", [True, False])
def test_fused_moe(
    m: int,
    n: int,
    k: int,
    e: int,
    topk: int,
    ep_size: int,
    dtype: torch.dtype,
    padding: bool,
):
    a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
    w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
    w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10

    score = torch.randn((m, e), device="cuda", dtype=dtype)

    if ep_size > 1:
        local_e = e // ep_size
        e_ids = torch.randint(0,
                              e, (local_e, ),
                              device="cuda",
                              dtype=torch.int32)
        e_map = torch.full((e, ), -1, device="cuda", dtype=torch.int32)
        e_map[e_ids] = torch.arange(local_e, device="cuda", dtype=torch.int32)
        w1 = w1[e_ids]
        w2 = w2[e_ids]
    else:
        e_map = None

    torch_output = torch_moe(a, w1, w2, score, topk, e_map)
    if padding:
        w1 = F.pad(w1, (0, 128), "constant", 0)[..., 0:-128]
        torch.cuda.empty_cache()
        w2 = F.pad(w2, (0, 128), "constant", 0)[..., 0:-128]
        torch.cuda.empty_cache()

    triton_output = fused_moe(a,
                              w1,
                              w2,
                              score,
                              topk,
                              global_num_experts=e,
                              expert_map=e_map,
                              renormalize=False)
    torch.testing.assert_close(triton_output, torch_output, atol=2e-2, rtol=0)


@pytest.mark.parametrize("m", [1, 32, 222])
@pytest.mark.parametrize("n", [128, 1024, 2048])
@pytest.mark.parametrize("k", [128, 1024])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("ep_size", EP_SIZE)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("group_size", [64, 128])
@pytest.mark.parametrize("has_zp", [True, False])
@pytest.mark.parametrize("weight_bits", [4, 8])
def test_fused_moe_wn16(m: int, n: int, k: int, e: int, topk: int,
                        ep_size: int, dtype: torch.dtype, group_size: int,
                        has_zp: bool, weight_bits: int):
    print(m, n, k, e, topk, dtype, group_size, has_zp, weight_bits)
    a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
    w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
    w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
    score = torch.randn((m, e), device="cuda", dtype=dtype)

    if weight_bits == 4:
        pack_factor = 2
        quant_type = scalar_types.uint4 if has_zp else scalar_types.uint4b8
    elif weight_bits == 8:
        pack_factor = 1
        quant_type = scalar_types.uint8 if has_zp else scalar_types.uint8b128

    w1_ref = w1.clone()
    w2_ref = w2.clone()
    w1_qweight = torch.empty((e, 2 * n, k // pack_factor),
                             device="cuda",
                             dtype=torch.uint8)
    w2_qweight = torch.empty((e, k, n // pack_factor),
                             device="cuda",
                             dtype=torch.uint8)
    w1_scales = torch.empty((e, 2 * n, k // group_size),
                            device="cuda",
                            dtype=dtype)
    w2_scales = torch.empty((e, k, n // group_size),
                            device="cuda",
                            dtype=dtype)
    w1_qzeros = torch.empty((e, 2 * n // pack_factor, k // group_size),
                            device="cuda",
                            dtype=torch.uint8)
    w2_qzeros = torch.empty((e, k // pack_factor, n // group_size),
                            device="cuda",
                            dtype=torch.uint8)

    for i in range(e * 2):
        expert_id = i % e
        if i // e == 0:
            w, w_ref, w_qweight, w_scales, w_qzeros = \
                w1, w1_ref, w1_qweight, w1_scales, w1_qzeros
        else:
            w, w_ref, w_qweight, w_scales, w_qzeros = \
                w2, w2_ref, w2_qweight, w2_scales, w2_qzeros
        weight, qweight, scales, qzeros = quantize_weights(
            w[expert_id].T, quant_type, group_size, has_zp, False)
        weight = weight.T
        qweight = qweight.T.contiguous().to(torch.uint8)
        scales = scales.T
        if has_zp:
            qzeros = qzeros.T.contiguous().to(torch.uint8)
        if weight_bits == 4:
            qweight = qweight[:, 1::2] * 16 + qweight[:, ::2]
            if has_zp:
                qzeros = qzeros[1::2, :] * 16 + qzeros[::2, :]

        w_ref[expert_id] = weight
        w_qweight[expert_id] = qweight
        w_scales[expert_id] = scales
        if has_zp:
            w_qzeros[expert_id] = qzeros

    if ep_size > 1:
        local_e = e // ep_size
        e_ids = torch.randint(0,
                              e, (local_e, ),
                              device="cuda",
                              dtype=torch.int32)
        e_map = torch.full((e, ), -1, device="cuda", dtype=torch.int32)
        e_map[e_ids] = torch.arange(local_e, device="cuda", dtype=torch.int32)
        w1_ref = w1_ref[e_ids]
        w2_ref = w2_ref[e_ids]
        w1_qweight = w1_qweight[e_ids]
        w2_qweight = w2_qweight[e_ids]
        w1_scales = w1_scales[e_ids]
        w2_scales = w2_scales[e_ids]
        w1_qzeros = w1_qzeros[e_ids]
        w2_qzeros = w2_qzeros[e_ids]
    else:
        e_map = None

    triton_output = fused_moe(a,
                              w1_qweight,
                              w2_qweight,
                              score,
                              topk,
                              renormalize=False,
                              use_int4_w4a16=weight_bits == 4,
                              use_int8_w8a16=weight_bits == 8,
                              global_num_experts=e,
                              expert_map=e_map,
                              w1_scale=w1_scales,
                              w2_scale=w2_scales,
                              w1_zp=w1_qzeros if has_zp else None,
                              w2_zp=w2_qzeros if has_zp else None,
                              block_shape=[0, group_size])
    torch_output = torch_moe(a, w1_ref, w2_ref, score, topk, e_map)
    torch.testing.assert_close(triton_output, torch_output, atol=2e-2, rtol=0)



@pytest.mark.parametrize("m", [1, 33, 64, 222])
@pytest.mark.parametrize("n", [128, 2048])
@pytest.mark.parametrize("k", [128, 1024])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("group_size", [-1, 32, 128])
@pytest.mark.parametrize("act_order", [True, False])
@pytest.mark.parametrize("num_bits", [4, 8])
@pytest.mark.parametrize("is_k_full", [True, False])
@pytest.mark.skipif(current_platform.is_rocm(), reason="Skip for rocm")
def test_fused_marlin_moe(
    m: int,
    n: int,
    k: int,
    e: int,
    topk: int,
    group_size: int,
    act_order: bool,
    num_bits: int,
    is_k_full: bool,
):
    current_platform.seed_everything(7)

    # Filter act_order
    if act_order:
        if group_size == -1:
            return
        if group_size in (k, n):
            return
    else:
        if not is_k_full:
            return

    quant_type = (scalar_types.uint4b8
                  if num_bits == 4 else scalar_types.uint8b128)
    dtype = torch.float16
    a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
    w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
    w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10

    w_ref1_l = []
    qweight1_l = []
    scales1_l = []
    g_idx1_l = []
    sort_indices1_l = []

    for i in range(w1.shape[0]):
        test_perm = torch.randperm(k)
        w_ref1, qweight1, scales1, g_idx1, sort_indices1, _ = marlin_quantize(
            w1[i].transpose(1, 0), quant_type, group_size, act_order,
            test_perm)
        w_ref1_l.append(w_ref1)
        qweight1_l.append(qweight1)
        scales1_l.append(scales1)
        g_idx1_l.append(g_idx1)
        sort_indices1_l.append(sort_indices1)

    w_ref1 = stack_and_dev(w_ref1_l)
    qweight1 = stack_and_dev(qweight1_l).contiguous()
    scales1 = stack_and_dev(scales1_l)
    g_idx1 = stack_and_dev(g_idx1_l)
    sort_indices1 = stack_and_dev(sort_indices1_l)

    w_ref2_l = []
    qweight2_l = []
    scales2_l = []
    g_idx2_l = []
    sort_indices2_l = []

    for i in range(w2.shape[0]):
        test_perm = torch.randperm(n)
        w_ref2, qweight2, scales2, g_idx2, sort_indices2, _ = marlin_quantize(
            w2[i].transpose(1, 0), quant_type, group_size, act_order,
            test_perm)
        w_ref2_l.append(w_ref2)
        qweight2_l.append(qweight2)
        scales2_l.append(scales2)
        g_idx2_l.append(g_idx2)
        sort_indices2_l.append(sort_indices2)

    w_ref2 = stack_and_dev(w_ref2_l)
    qweight2 = stack_and_dev(qweight2_l).contiguous()
    scales2 = stack_and_dev(scales2_l)
    g_idx2 = stack_and_dev(g_idx2_l)
    sort_indices2 = stack_and_dev(sort_indices2_l)

    score = torch.randn((m, e), device="cuda", dtype=dtype)

    topk_weights, topk_ids = fused_topk(a, score, topk, False)

    triton_output = fused_moe(
        a,
        w_ref1.transpose(1, 2).contiguous(),
        w_ref2.transpose(1, 2).contiguous(),
        score,
        topk,
        renormalize=False,
    )
    marlin_output = fused_marlin_moe(
        a,
        qweight1,
        qweight2,
        scales1,
        scales2,
        score,
        topk_weights,
        topk_ids,
        g_idx1=g_idx1,
        g_idx2=g_idx2,
        sort_indices1=sort_indices1,
        sort_indices2=sort_indices2,
        num_bits=num_bits,
        is_k_full=is_k_full,
    )

    assert compute_max_diff(marlin_output, triton_output) < 4e-2

    token_expert_indicies = torch.empty(m,
                                        topk,
                                        dtype=torch.int32,
                                        device=a.device)

    opcheck(ops.topk_softmax, (
        topk_weights,
        topk_ids,
        token_expert_indicies,
        score.float(),
    ))

    block_size_m = 4

    sorted_token_ids, _, _ = moe_align_block_size(topk_ids, block_size_m,
                                                    e)

    max_workspace_size = ((m + 255) // 256) * (max(2 * n, k) // 64) * 16
    workspace = torch.zeros(max_workspace_size,
                            dtype=torch.int,
                            device="cuda",
                            requires_grad=False)

    zp = torch.empty((0, 0),
                        dtype=dtype,
                        device="cuda",
                        requires_grad=False)
    opcheck(ops.marlin_gemm_moe,
            (a, qweight1, sorted_token_ids, topk_weights, topk_ids,
                scales1, zp, g_idx1, sort_indices1, workspace, quant_type.id,
                m, 2 * n, k, True, e, topk, block_size_m, True, False))


@pytest.mark.skip("This test is here for the sake of debugging, "
                  "don't run it in automated tests.")
@pytest.mark.parametrize("m", [64, 512, 222, 33, 1])
@pytest.mark.parametrize("n", [128, 2048, 256, 1024])
@pytest.mark.parametrize("k", [128, 1024, 512])
@pytest.mark.parametrize("e", [8, 64])
@pytest.mark.parametrize("topk", [2, 6])
@pytest.mark.parametrize("group_size", [-1, 32, 64, 128])
@pytest.mark.parametrize("act_order", [True, False])
@pytest.mark.parametrize("num_bits", [4, 8])
@pytest.mark.parametrize("is_k_full", [True, False])
@pytest.mark.skipif(current_platform.is_rocm(), reason="Skip for rocm")
def test_single_marlin_moe_multiply(
    m: int,
    n: int,
    k: int,
    e: int,
    topk: int,
    group_size: int,
    act_order: bool,
    num_bits: int,
    is_k_full: bool,
):

    # Filter act_order
    if act_order:
        if group_size == -1:
            return
        if group_size == k:
            return
    else:
        if not is_k_full:
            return

    quant_type = (scalar_types.uint4b8
                  if num_bits == 4 else scalar_types.uint8b128)
    dtype = torch.float16
    a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
    w = torch.randn((e, n, k), device="cuda", dtype=dtype) / 10

    w_ref_l = []
    qweights_l = []
    scales_l = []
    g_idx_l = []
    sort_indices_l = []

    for i in range(w.shape[0]):
        test_perm = torch.randperm(k)
        w_ref, qweight, scales, g_idx, sort_indices, _ = marlin_quantize(
            w[i].transpose(1, 0), quant_type, group_size, act_order, test_perm)
        w_ref_l.append(w_ref)
        qweights_l.append(qweight)
        scales_l.append(scales)
        g_idx_l.append(g_idx)
        sort_indices_l.append(sort_indices)

    w_ref = stack_and_dev(w_ref_l)
    qweight = stack_and_dev(qweights_l).contiguous()
    scales = stack_and_dev(scales_l)
    g_idx = stack_and_dev(g_idx_l)
    sort_indices = stack_and_dev(sort_indices_l)

    score = torch.randn((m, e), device="cuda", dtype=dtype)
    marlin_output = ops.single_marlin_moe(
        a,
        qweight,
        scales,
        score,
        topk,
        renormalize=False,
        g_idx=g_idx,
        sort_indices=sort_indices,
        num_bits=num_bits,
        is_k_full=is_k_full,
    )

    torch_output = torch_moe_single(a, w_ref.transpose(1, 2), score, topk)

    assert compute_max_diff(marlin_output, torch_output) < 1e-2


def test_moe_align_block_size_opcheck():
    num_experts = 4
    block_size = 4
    topk_ids = torch.randint(0,
                             num_experts, (3, 4),
                             dtype=torch.int32,
                             device='cuda')

    max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
    sorted_ids = torch.empty((max_num_tokens_padded, ),
                             dtype=torch.int32,
                             device=topk_ids.device)
    sorted_ids.fill_(topk_ids.numel())
    max_num_m_blocks = max_num_tokens_padded // block_size
    expert_ids = torch.empty((max_num_m_blocks, ),
                             dtype=torch.int32,
                             device=topk_ids.device)
    num_tokens_post_pad = torch.empty((1),
                                      dtype=torch.int32,
                                      device=topk_ids.device)

    opcheck(ops.moe_align_block_size,
            (topk_ids, num_experts, block_size, sorted_ids, expert_ids,
             num_tokens_post_pad))