File size: 51,126 Bytes
165b25c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 |
/*
* Adapted from
* https://github.com/IST-DASLab/marlin/blob/master/marlin/marlin_cuda_kernel.cu
* https://github.com/IST-DASLab/marlin/blob/master/marlin/marlin_cuda.cpp
* Modified by HandH1998
* Copyright (C) 2024 HandH1998
* Copyright (C) Marlin.2024 Elias Frantar
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <iostream>
#include "../dense/common/base.h"
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#include "../dense/common/mem.h"
#endif
template <typename T>
inline std::string str(T x) {
return std::to_string(x);
}
namespace {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
using I4 = Vec<int, 4>;
// Matrix fragments for tensor core instructions; their precise layout is
// documented here:
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-integer-type
using FragA = Vec<uint32_t, 2>;
using FragB = Vec<uint32_t, 1>;
using FragC = Vec<int, 4>;
using FragS_GROUP = Vec<half2, 1>; // weight per-group quantization scales
using FragS_CHANNEL =
Vec<float, 2>; // weight per-channel quantization scales or activaton
// per-token quantization scales
// NOTE(HandH1998): cp.async.cg only support BYTES = 16, however,
// cp.async.ca can support BYTES = 4, 8, 16;
// as s_tok's shape is equal to prob_m, we need set s_tok to float type,
// and cp_size = 1 float, i.e., 4 BYTES
// Asynchronous global->shared copy for activation quantizaton scales s_tok
__device__ inline void cp_async1(void* smem_ptr, const void* glob_ptr) {
const int BYTES = 4;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile(
"{\n"
" cp.async.ca.shared.global [%0], [%1], %2;\n"
"}\n" ::"r"(smem),
"l"(glob_ptr), "n"(BYTES));
}
// m16n8k16 tensor core mma instruction with int8 inputs and int32
// output/accumulation.
__device__ inline void mma(const FragA& a_frag, const FragB& frag_b,
FragC& frag_c) {
const uint32_t* a = reinterpret_cast<const uint32_t*>(&a_frag);
const uint32_t* b = reinterpret_cast<const uint32_t*>(&frag_b);
int* c = reinterpret_cast<int*>(&frag_c);
asm volatile(
"mma.sync.aligned.m16n8k16.row.col.satfinite.s32.s8.s8.s32 "
"{%0,%1,%2,%3}, {%4,%5}, {%6}, {%7,%8,%9,%10};\n"
: "=r"(c[0]), "=r"(c[1]), "=r"(c[2]), "=r"(c[3])
: "r"(a[0]), "r"(a[1]), "r"(b[0]), "r"(c[0]), "r"(c[1]), "r"(c[2]),
"r"(c[3]));
}
// Instruction for loading a full 16x16 matrix fragment of operand A from shared
// memory, directly in int8 tensor core layout.
__device__ inline void ldsm4(FragA& frag_a, const void* smem_ptr) {
uint32_t* a = reinterpret_cast<uint32_t*>(&frag_a);
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile("ldmatrix.sync.aligned.m8n8.x2.shared.b16 {%0,%1}, [%2];\n"
: "=r"(a[0]), "=r"(a[1])
: "r"(smem));
}
inline __device__ half2 float2_to_half2(float2 f) {
uint32_t res;
// NOTE(HandH1998): h0,h1 should be uint16_t, not half
uint16_t h0, h1;
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(h0) : "f"(f.x));
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(h1) : "f"(f.y));
asm volatile("mov.b32 %0, {%1, %2};\n" : "=r"(res) : "h"(h0), "h"(h1));
return reinterpret_cast<half2&>(res);
}
inline __device__ float int32_to_float(int h) {
float res;
asm volatile("cvt.rn.f32.s32 %0, %1;\n" : "=f"(res) : "r"(h));
return res;
}
// Lookup-table based 3-input logical operation; explicitly used for
// dequantization as the compiler does not seem to automatically recognize it in
// all cases.
template <int lut>
__device__ inline int lop3(int a, int b, int c) {
int res;
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(res)
: "r"(a), "r"(b), "r"(c), "n"(lut));
return res;
}
// Efficiently dequantize an int32 value into a full B-fragment of 4 int8 values
// for weight per channel dequant.
__device__ inline FragB dequant_per_channel(int q) {
static constexpr int MASK = 0xf0f0f0f0;
FragB frag_b;
frag_b[0] = (q & MASK);
return frag_b;
}
// Efficiently dequantize an int32 value into a full B-fragment of 4 int8 values
// for weight per group dequant.
__device__ inline FragB dequant_per_group(int q, FragS_GROUP& frag_s, int i) {
static constexpr uint32_t LO = 0x000f000f;
static constexpr uint32_t HI = 0x00f000f0;
static constexpr uint32_t EX = 0x64006400;
// Guarantee that the `(a & b) | c` operations are LOP3s.
uint32_t t0 = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX);
uint32_t t1 = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX);
// We want signed int4 outputs, hence we fuse the `-8` symmetric zero point
// directly into `SUB` and `ADD`.
static constexpr uint32_t SUB = 0x64086408;
static constexpr uint32_t MUL = 0x2c002c00;
static constexpr uint32_t ADD = 0xd480d480;
*reinterpret_cast<half2*>(&t0) = __hsub2(
*reinterpret_cast<half2*>(&t0), *reinterpret_cast<const half2*>(&SUB));
*reinterpret_cast<half2*>(&t1) = __hfma2(
*reinterpret_cast<half2*>(&t1), *reinterpret_cast<const half2*>(&MUL),
*reinterpret_cast<const half2*>(&ADD));
uint16_t s = reinterpret_cast<uint16_t*>(&frag_s)[i];
uint32_t double_s;
// pack 2xfp16 to half2
asm volatile("mov.b32 %0, {%1, %2};\n" : "=r"(double_s) : "h"(s), "h"(s));
// dequant and convert 4 half to 4 uint8 (be placed at the low 8 bits of 4
// half, respectively)
static constexpr uint32_t MAGIC_NUM = 0x64806480;
*reinterpret_cast<half2*>(&t0) = __hfma2(
*reinterpret_cast<half2*>(&t0), *reinterpret_cast<half2*>(&double_s),
*reinterpret_cast<const half2*>(&MAGIC_NUM));
*reinterpret_cast<half2*>(&t1) = __hfma2(
*reinterpret_cast<half2*>(&t1), *reinterpret_cast<half2*>(&double_s),
*reinterpret_cast<const half2*>(&MAGIC_NUM));
// take out the 4 uint8 from 4 half, then convert them to 4 int8 and pack 4
// int8 into 1 uint32
FragB frag_b;
uint32_t uint8s;
static constexpr uint32_t MASK_0246 = 0x6420;
static constexpr uint32_t UINT8s_TO_INT8s_MASK = 0x80808080;
asm volatile("prmt.b32 %0,%1,%2,%3;\n"
: "=r"(uint8s)
: "r"(t0), "r"(t1), "n"(MASK_0246));
frag_b[0] = (uint8s ^ UINT8s_TO_INT8s_MASK);
return frag_b;
}
template <const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
// threadblock
const int thread_n_blocks, // same for n dimension (output)
const int thread_k_blocks, // same for k dimension (reduction)
const int stages, // number of stages for the async global->shared
// fetch pipeline
const int group_blocks = -1 // number of consecutive 16x16 blocks
// with a separate quantization scale
>
__global__ void Marlin(
const int4* __restrict__ A, // int8 input matrix of shape mxk
const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
int4* __restrict__ C, // int32 global_reduce buffer of shape
// (max_par*16*4)xn, as int8 tensor core's output is
// int32 dtype
int4* __restrict__ D, // fp16 output buffer of shape mxn
const float* __restrict__ s_tok, // fp32 activation per-token quantization
// scales of shape mx1
const int4* __restrict__ s_ch, // fp32 weight per-channel quantization
// scales of shape 1xn
const int4* __restrict__ s_group, // fp16 weight per-group quantization
// scales of shape (k/groupsize)xn, when
// group_blocks=-1, it should be nullptr
int prob_m, // batch dimension m
int prob_n, // output dimension n
int prob_k, // reduction dimension k
int* locks // extra global storage for barrier synchronization
) {
// Each threadblock processes one "stripe" of the B matrix with (roughly) the
// same size, which might involve multiple column "slices" (of width 16 *
// `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM
// example:
// 0 1 3
// 0 2 3
// 1 2 4
// While this kind of partitioning makes things somewhat more complicated, it
// ensures good utilization of all SMs for many kinds of shape and GPU
// configurations, while requiring as few slow global cross-threadblock
// reductions as possible.
// For larger GEMMs we run multiple batchsize 64 versions in parallel for a
// better partitioning with less reductions
int parallel = 1;
if (prob_m > 16 * thread_m_blocks) {
parallel = prob_m / (16 * thread_m_blocks);
prob_m = 16 * thread_m_blocks;
}
int k_tiles = prob_k / 16 / thread_k_blocks;
int n_tiles = prob_n / 16 / thread_n_blocks;
int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x);
// Ensure that the number of tiles in each stripe is a multiple of the
// groupsize; this avoids an annoying special case where a stripe starts in
// the middle of group.
if constexpr (group_blocks != -1)
iters = (group_blocks / thread_k_blocks) *
ceildiv(iters, (group_blocks / thread_k_blocks));
int slice_row = (iters * blockIdx.x) % k_tiles;
int slice_col_par = (iters * blockIdx.x) / k_tiles;
int slice_col = slice_col_par;
int slice_iters; // number of threadblock tiles in the current slice
int slice_count =
0; // total number of active threadblocks in the current slice
int slice_idx; // index of threadblock in current slice; numbered bottom to
// top
// We can easily implement parallel problem execution by just remapping
// indices and advancing global pointers
if (slice_col_par >= n_tiles) {
A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_k / 16;
C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 4;
D += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8;
s_tok += (slice_col_par / n_tiles) * 16 * thread_m_blocks;
locks += (slice_col_par / n_tiles) * n_tiles;
slice_col = slice_col_par % n_tiles;
}
// Compute all information about the current slice which is required for
// synchronization.
auto init_slice = [&]() {
slice_iters =
iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row);
if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0;
if (slice_iters == 0) return;
if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row;
slice_count = 1;
slice_idx = 0;
int col_first = iters * ceildiv(k_tiles * slice_col_par, iters);
if (col_first <= k_tiles * (slice_col_par + 1)) {
int col_off = col_first - k_tiles * slice_col_par;
slice_count = ceildiv(k_tiles - col_off, iters);
if (col_off > 0) slice_count++;
int delta_first = iters * blockIdx.x - col_first;
if (delta_first < 0 || (col_off == 0 && delta_first == 0))
slice_idx = slice_count - 1;
else {
slice_idx = slice_count - 1 - delta_first / iters;
if (col_off > 0) slice_idx--;
}
}
if (slice_col == n_tiles) {
A += 16 * thread_m_blocks * prob_k / 16;
C += 16 * thread_m_blocks * prob_n / 4;
D += 16 * thread_m_blocks * prob_n / 8;
s_tok += 16 * thread_m_blocks;
locks += n_tiles;
slice_col = 0;
}
};
init_slice();
int a_gl_stride = prob_k / 16; // stride of the A matrix in global memory
// We typically use `constexpr` to indicate that this value is a compile-time
// constant
constexpr int a_sh_stride =
16 * thread_k_blocks / 16; // stride of an A matrix tile in shared memory
constexpr int a_gl_rd_delta_o =
16 * thread_k_blocks /
16; // delta between subsequent A tiles in global memory
int a_gl_rd_delta_i =
a_gl_stride *
(threads / a_gl_rd_delta_o); // between subsequent accesses within a tile
constexpr int a_sh_wr_delta =
a_sh_stride *
(threads / a_gl_rd_delta_o); // between shared memory writes
constexpr int a_sh_rd_delta_o =
1 * ((threads / 32) /
(thread_n_blocks / 4)); // between shared memory tile reads
constexpr int a_sh_rd_delta_i =
a_sh_stride * 16; // within a shared memory tile
constexpr int a_sh_stage =
a_sh_stride * (16 * thread_m_blocks); // overall size of a tile
constexpr int a_sh_wr_iters =
ceildiv(a_sh_stage,
a_sh_wr_delta); // number of shared write iterations for a tile
int b_gl_stride = 16 * prob_n / 32;
constexpr int b_sh_stride = 32 * thread_n_blocks / 4;
int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks;
int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride);
constexpr int b_sh_wr_delta = threads;
constexpr int b_sh_rd_delta = threads;
constexpr int b_sh_stage = b_sh_stride * thread_k_blocks;
constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta;
constexpr int s_tok_sh_stride = 16 * thread_m_blocks;
constexpr int s_ch_sh_stride = 16 * thread_n_blocks / 4;
int s_group_gl_stride = prob_n / 8;
constexpr int s_group_sh_stride = 16 * thread_n_blocks / 8;
constexpr int s_group_sh_stage = s_group_sh_stride;
int s_group_gl_rd_delta = s_group_gl_stride;
// Global A read index of current thread.
int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
(threadIdx.x % a_gl_rd_delta_o);
a_gl_rd += a_gl_rd_delta_o * slice_row;
// Shared write index of current thread.
int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) +
(threadIdx.x % a_gl_rd_delta_o);
// Shared read index.
// NOTE(HandH1998): int8 input a only need 16 threads to load 16x16 matrix
int a_sh_rd = a_sh_stride * ((threadIdx.x % 32) % 16);
a_sh_rd += 1 * ((threadIdx.x / 32) / (thread_n_blocks / 4));
int b_gl_rd =
b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride);
b_gl_rd += b_sh_stride * slice_col;
b_gl_rd += b_gl_rd_delta_o * slice_row;
int b_sh_wr = threadIdx.x;
int b_sh_rd = threadIdx.x;
int s_tok_gl_rd = threadIdx.x;
// NOTE(HandH1998): activation scale s_tok need shuffle to [0, 8, 1, 9, 2, 10,
// 3, 11, 4, 12, 5, 13, 6, 14, 7, 15] for example, 0, 8 row scales serve for
// thread 0, 1, 2, 3. For more details, refer to mma operand A layout as
// s_tok's size is not fixed, we can not shuffle before inference we shuffle
// it when fetching s_tok from global memory to shared memory, that's why
// s_tok_sh_wr is like this
int s_tok_sh_wr =
(threadIdx.x / 16) * 16 + (threadIdx.x % 8) * 2 + (threadIdx.x % 16) / 8;
int s_tok_sh_rd = (threadIdx.x % 32) / 4;
bool s_tok_sh_wr_pred = threadIdx.x < prob_m;
int s_ch_gl_rd = s_ch_sh_stride * slice_col + threadIdx.x;
int s_ch_sh_wr = threadIdx.x;
int s_ch_sh_rd = 16 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
2 * ((threadIdx.x % 32) % 4);
bool s_ch_sh_wr_pred = threadIdx.x < s_ch_sh_stride;
int s_group_gl_rd, s_group_sh_wr, s_group_sh_rd;
bool s_group_sh_wr_pred;
if constexpr (group_blocks != -1) {
s_group_gl_rd =
s_group_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) +
s_group_sh_stride * slice_col + threadIdx.x;
s_group_sh_wr = threadIdx.x;
// NOTE(HandH1998): s_group_sh_rd is related to mma output C
s_group_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) +
(threadIdx.x % 32) / 4;
s_group_sh_wr_pred = threadIdx.x < s_group_sh_stride;
}
// Precompute which thread should not read memory in which iterations; this is
// needed if there are more threads than required for a certain tilesize or
// when the batchsize is not a multiple of 16.
bool a_sh_wr_pred[a_sh_wr_iters];
#pragma unroll
for (int i = 0; i < a_sh_wr_iters; i++)
a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m;
// To ensure that writing and reading A tiles to/from shared memory, the
// latter in fragment format, is fully bank conflict free, we need to use a
// rather fancy XOR-based layout. The key here is that neither reads nor
// writes of the 16-byte `int4` blocks of 8 consecutive threads involve the
// same shared memory banks. Further, it seems (based on NSight-Compute) that
// each warp must also write a consecutive memory segment?
auto transform_a = [&](int i) {
int row = i / a_gl_rd_delta_o;
return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row;
};
// Since the computation of this remapping is non-trivial and, due to our main
// loop unrolls, all shared memory accesses are static, we simply precompute
// both transformed reads and writes.
int a_sh_wr_trans[a_sh_wr_iters];
#pragma unroll
for (int i = 0; i < a_sh_wr_iters; i++)
a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr);
int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks];
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++) {
#pragma unroll
for (int j = 0; j < thread_m_blocks; j++)
a_sh_rd_trans[i][j] =
transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd);
}
// Since B-accesses have non-constant stride they have to be computed at
// runtime; we break dependencies between subsequent accesses with a tile by
// maintining multiple pointers (we have enough registers), a tiny
// optimization.
const int4* B_ptr[b_sh_wr_iters];
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++)
B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd;
extern __shared__ int4 sh[];
// Shared memory storage for global fetch pipelines.
// NOTE(HandH1998): stages need >= 4, otherwise, sh_s_tok = sh + max(stages *
// a_sh_stage + stages * b_sh_stage, 4 * stages * a_sh_stage)
int4* sh_a = sh;
int4* sh_b = sh_a + (stages * a_sh_stage);
int4* sh_s_tok = sh_b + (stages * b_sh_stage);
int4* sh_s_ch = sh_s_tok + s_tok_sh_stride;
int4* sh_s_group = sh_s_ch + s_ch_sh_stride;
// Register storage for double buffer of shared memory reads.
FragA frag_a[2][thread_m_blocks];
I4 frag_b_quant[2];
FragC frag_c[thread_m_blocks][4][2];
FragS_GROUP frag_s_group[2][4];
FragS_CHANNEL frag_s_tok[thread_m_blocks];
FragS_CHANNEL frag_s_ch[2][4];
// Zero accumulators.
auto zero_accums = [&]() {
#pragma unroll
for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++)
reinterpret_cast<int*>(frag_c)[i] = 0;
};
// Asynchronously fetch the next A, B and s tile from global to the next
// shared memory pipeline location.
auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) {
if (pred) {
int4* sh_a_stage = sh_a + a_sh_stage * pipe;
#pragma unroll
for (int i = 0; i < a_sh_wr_iters; i++) {
cp_async4_pred(
&sh_a_stage[a_sh_wr_trans[i]],
&A[a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off],
a_sh_wr_pred[i]);
}
int4* sh_b_stage = sh_b + b_sh_stage * pipe;
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++) {
cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]);
B_ptr[i] += b_gl_rd_delta_o;
}
// Only fetch scales if this tile starts a new group
if constexpr (group_blocks != -1) {
if (pipe % (group_blocks / thread_k_blocks) == 0) {
int4* sh_s_group_stage = sh_s_group + s_group_sh_stage * pipe;
if (s_group_sh_wr_pred)
cp_async4(&sh_s_group_stage[s_group_sh_wr],
&s_group[s_group_gl_rd]);
s_group_gl_rd += s_group_gl_rd_delta;
}
}
}
// Insert a fence even when we are winding down the pipeline to ensure that
// waiting is also correct at this point.
cp_async_fence();
};
// Wait until the next thread tile has been loaded to shared memory.
auto wait_for_stage = [&]() {
// We only have `stages - 2` active fetches since we are double buffering
// and can only issue the next fetch when it is guaranteed that the previous
// shared memory load is fully complete (as it may otherwise be
// overwritten).
cp_async_wait<stages - 2>();
__syncthreads();
};
// Load the next sub-tile from the current location in the shared memory pipe
// into the current register buffer.
auto fetch_to_registers = [&](int k, int pipe) {
// It may seem inefficient that we reload the groups for every sub-tile;
// however, this does not seem to be a significant bottleneck, while some
// theoretically better attempts have lead to bad instruction ordering by
// the compiler and correspondingly a noticeable drop in performance.
if constexpr (group_blocks != -1) {
int4* sh_s_group_stage =
sh_s_group +
s_group_sh_stage * ((group_blocks / thread_k_blocks) *
(pipe / (group_blocks / thread_k_blocks)));
reinterpret_cast<int4*>(&frag_s_group[k % 2])[0] =
sh_s_group_stage[s_group_sh_rd];
}
int4* sh_a_stage = sh_a + a_sh_stage * pipe;
#pragma unroll
for (int i = 0; i < thread_m_blocks; i++)
ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]);
int4* sh_b_stage = sh_b + b_sh_stage * pipe;
frag_b_quant[k % 2] = *reinterpret_cast<I4*>(
&sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd]);
};
// Execute the actual tensor core matmul of a sub-tile.
auto matmul = [&](int k) {
// We have the m dimension as the inner loop in order to encourage overlapping
// dequantization and matmul operations.
#pragma unroll
for (int j = 0; j < 4; j++) {
int b_quant = frag_b_quant[k % 2][j];
// int b_quant_shift = b_quant << 4;
FragB frag_b0, frag_b1;
// If there are no groups, we can just scale the final output once and can
// avoid doing so for each weight.
if constexpr (group_blocks != -1) {
int b_quant_shift = b_quant >> 8;
frag_b0 = dequant_per_group(b_quant, frag_s_group[k % 2][j], 0);
frag_b1 = dequant_per_group(b_quant_shift, frag_s_group[k % 2][j], 1);
} else {
int b_quant_shift = b_quant << 4;
frag_b0 = dequant_per_channel(b_quant);
frag_b1 = dequant_per_channel(b_quant_shift);
}
#pragma unroll
for (int i = 0; i < thread_m_blocks; i++) {
mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]);
mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]);
}
}
};
// Since we slice across the k dimension of a tile in order to increase the
// number of warps while keeping the n dimension of a tile reasonable, we have
// multiple warps that accumulate their partial sums of the same output
// location; which we have to reduce over in the end. We do in shared memory.
auto thread_block_reduce = [&]() {
constexpr int red_off = threads / b_sh_stride / 2;
if (red_off >= 1) {
int red_idx = threadIdx.x / b_sh_stride;
constexpr int red_sh_stride = b_sh_stride * 4 * 2;
constexpr int red_sh_delta = b_sh_stride;
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) +
(threadIdx.x % b_sh_stride);
// Parallel logarithmic shared memory reduction. We make sure to avoid any
// unnecessary read or write iterations, e.g., for two warps we write only
// once by warp 1 and read only once by warp 0.
#pragma unroll
for (int m_block = 0; m_block < thread_m_blocks; m_block++) {
#pragma unroll
for (int i = red_off; i > 0; i /= 2) {
if (i <= red_idx && red_idx < 2 * i) {
#pragma unroll
for (int j = 0; j < 4 * 2; j++) {
int red_sh_wr =
red_sh_delta * j + (red_sh_rd - red_sh_stride * i);
if (i < red_off) {
int* c_rd =
reinterpret_cast<int*>(&sh[red_sh_delta * j + red_sh_rd]);
int* c_wr = reinterpret_cast<int*>(&sh[red_sh_wr]);
#pragma unroll
for (int k = 0; k < 4; k++)
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + j][k] +=
c_rd[k] + c_wr[k];
}
sh[red_sh_wr] =
reinterpret_cast<int4*>(&frag_c)[4 * 2 * m_block + j];
}
}
__syncthreads();
}
if (red_idx == 0) {
#pragma unroll
for (int i = 0; i < 4 * 2; i++) {
int* c_rd =
reinterpret_cast<int*>(&sh[red_sh_delta * i + red_sh_rd]);
#pragma unroll
for (int j = 0; j < 4; j++)
reinterpret_cast<FragC*>(frag_c)[4 * 2 * m_block + i][j] +=
c_rd[j];
}
}
__syncthreads();
}
}
};
// Since multiple threadblocks may process parts of the same column slice, we
// finally have to globally reduce over the results. As the striped
// partitioning minimizes the number of such reductions and our outputs are
// usually rather small, we perform this reduction serially in L2 cache.
// global_reduce works on INT32 elements, which are the results of INT8 GEMM.
// This is why we need another INT32 maxtrix `C` to reduce instead of the
// original half matrix `D`.
auto global_reduce = [&](bool first = false, bool last = false) {
// We are very careful here to reduce directly in the output buffer to
// maximize L2 cache utilization in this step. To do this, we write out
// results in FP16 (but still reduce with FP32 compute).
constexpr int active_threads = 32 * thread_n_blocks / 4;
if (threadIdx.x < active_threads) {
int c_gl_stride = prob_n / 4;
int c_gl_wr_delta_o = 8 * c_gl_stride;
int c_gl_wr_delta_i = 8 * (active_threads / 32);
int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) +
8 * (threadIdx.x / 32) + (threadIdx.x % 4) * 2;
c_gl_wr += (4 * thread_n_blocks) * slice_col;
constexpr int c_sh_wr_delta = active_threads * 2;
int c_sh_wr = 2 * threadIdx.x;
int row = (threadIdx.x % 32) / 4;
if (!first) {
// Interestingly, doing direct global accesses here really seems to mess up
// the compiler and lead to slowdowns, hence we also use async-copies even
// though these fetches are not actually asynchronous.
#pragma unroll
for (int i = 0; i < thread_m_blocks * 4; i++) {
cp_async4_pred(
&sh[c_sh_wr + c_sh_wr_delta * i],
&C[c_gl_wr + c_gl_wr_delta_o * (i / 2) +
c_gl_wr_delta_i * (i % 2)],
i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m);
cp_async4_pred(
&sh[c_sh_wr + c_sh_wr_delta * i + 1],
&C[c_gl_wr + c_gl_wr_delta_o * (i / 2) +
c_gl_wr_delta_i * (i % 2) + 1],
i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m);
}
cp_async_fence();
cp_async_wait<0>();
}
#pragma unroll
for (int i = 0; i < thread_m_blocks * 4; i++) {
if (i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m) {
if (!first) {
int4 d_red1 = sh[c_sh_wr + i * c_sh_wr_delta];
int4 d_red2 = sh[c_sh_wr + i * c_sh_wr_delta + 1];
#pragma unroll
for (int j = 0; j < 4; j++) {
reinterpret_cast<int*>(
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] +=
reinterpret_cast<int*>(&d_red1)[j];
}
#pragma unroll
for (int j = 0; j < 4; j++) {
reinterpret_cast<int*>(
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * (j + 4) + (i % 4)] +=
reinterpret_cast<int*>(&d_red2)[j];
}
}
if (!last) {
int4 d1, d2;
#pragma unroll
for (int j = 0; j < 4; j++) {
reinterpret_cast<int*>(&d1)[j] = reinterpret_cast<int*>(
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)];
}
#pragma unroll
for (int j = 0; j < 4; j++) {
reinterpret_cast<int*>(&d2)[j] = reinterpret_cast<int*>(
&frag_c)[4 * 2 * 4 * (i / 4) + 4 * (j + 4) + (i % 4)];
}
C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)] =
d1;
C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2) +
1] = d2;
}
}
}
}
};
// Write out the reduce final result in the correct layout. We only actually
// reshuffle matrix fragments in this step, the reduction above is performed
// in fragment layout.
auto write_result = [&]() {
int d_gl_stride = prob_n / 8;
constexpr int d_sh_stride = 2 * thread_n_blocks + 1;
int d_gl_wr_delta = d_gl_stride * (threads / (2 * thread_n_blocks));
constexpr int d_sh_rd_delta =
d_sh_stride * (threads / (2 * thread_n_blocks));
int d_gl_wr = d_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) +
(threadIdx.x % (2 * thread_n_blocks));
d_gl_wr += (2 * thread_n_blocks) * slice_col;
int d_sh_wr =
(4 * d_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4;
d_sh_wr += 32 * (threadIdx.x / 32);
int d_sh_rd = d_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) +
(threadIdx.x % (2 * thread_n_blocks));
int d_gl_wr_end = d_gl_stride * prob_m;
// We first reorder in shared memory to guarantee the most efficient final
// global write patterns
auto write = [&](int idx, int c0, int c1, float a_s, FragS_CHANNEL& w_s) {
float2 deq_res;
deq_res.x = int32_to_float(c0) * w_s[0] * a_s;
deq_res.y = int32_to_float(c1) * w_s[1] * a_s;
((half2*)sh)[idx] = float2_to_half2(deq_res);
};
if (threadIdx.x / 32 < thread_n_blocks / 4) {
#pragma unroll
for (int i = 0; i < thread_m_blocks; i++) {
#pragma unroll
for (int j = 0; j < 4; j++) {
int wr = d_sh_wr + 8 * j;
write(wr + (4 * d_sh_stride) * 0 + 0, frag_c[i][j][0][0],
frag_c[i][j][0][1], frag_s_tok[i][0],
frag_s_ch[j / 2][2 * (j % 2) + 0]);
write(wr + (4 * d_sh_stride) * 8 + 0, frag_c[i][j][0][2],
frag_c[i][j][0][3], frag_s_tok[i][1],
frag_s_ch[j / 2][2 * (j % 2) + 0]);
write(wr + (4 * d_sh_stride) * 0 + 4, frag_c[i][j][1][0],
frag_c[i][j][1][1], frag_s_tok[i][0],
frag_s_ch[j / 2][2 * (j % 2) + 1]);
write(wr + (4 * d_sh_stride) * 8 + 4, frag_c[i][j][1][2],
frag_c[i][j][1][3], frag_s_tok[i][1],
frag_s_ch[j / 2][2 * (j % 2) + 1]);
}
d_sh_wr += 16 * (4 * d_sh_stride);
}
}
__syncthreads();
#pragma unroll
for (int i = 0;
i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks));
i++) {
if (d_gl_wr < d_gl_wr_end) {
D[d_gl_wr] = sh[d_sh_rd];
d_gl_wr += d_gl_wr_delta;
d_sh_rd += d_sh_rd_delta;
}
}
};
// Start global fetch and register load pipelines.
auto start_pipes = [&]() {
#pragma unroll
for (int i = 0; i < stages - 1; i++) fetch_to_shared(i, i, i < slice_iters);
zero_accums();
wait_for_stage();
fetch_to_registers(0, 0);
a_gl_rd += a_gl_rd_delta_o * (stages - 1);
};
start_pipes();
// Main loop.
while (slice_iters) {
// We unroll over both the global fetch and the register load pipeline to
// ensure all shared memory accesses are static. Note that both pipelines have
// even length meaning that the next iteration will always start at index 0.
#pragma unroll
for (int pipe = 0; pipe < stages;) {
#pragma unroll
for (int k = 0; k < b_sh_wr_iters; k++) {
fetch_to_registers(k + 1, pipe % stages);
if (k == b_sh_wr_iters - 2) {
fetch_to_shared((pipe + stages - 1) % stages, pipe,
slice_iters >= stages);
pipe++;
wait_for_stage();
}
matmul(k);
}
slice_iters--;
if (slice_iters == 0) break;
}
a_gl_rd += a_gl_rd_delta_o * stages;
// Process results and, if necessary, proceed to the next column slice.
// While this pattern may not be the most readable, other ways of writing
// the loop seemed to noticeably worse performance after compilation.
if (slice_iters == 0) {
cp_async_wait<0>();
bool last = slice_idx == slice_count - 1;
// For per-column scales, we only fetch them here in the final step before
// write-out
if (last) {
if (s_tok_sh_wr_pred) {
cp_async1(&sh_s_tok[s_tok_sh_wr], &s_tok[s_tok_gl_rd]);
}
if (s_ch_sh_wr_pred) {
cp_async4(&sh_s_ch[s_ch_sh_wr], &s_ch[s_ch_gl_rd]);
}
cp_async_fence();
}
thread_block_reduce();
if (last) {
cp_async_wait<0>();
__syncthreads();
if (threadIdx.x / 32 < thread_n_blocks / 4) {
#pragma unroll
for (int i = 0; i < thread_m_blocks; i++) {
frag_s_tok[i][0] =
*reinterpret_cast<float*>(&sh_s_tok[16 * i + 2 * s_tok_sh_rd]);
frag_s_tok[i][1] = *reinterpret_cast<float*>(
&sh_s_tok[16 * i + 2 * s_tok_sh_rd + 1]);
}
reinterpret_cast<int4*>(&frag_s_ch)[0] = sh_s_ch[s_ch_sh_rd + 0];
reinterpret_cast<int4*>(&frag_s_ch)[1] = sh_s_ch[s_ch_sh_rd + 1];
reinterpret_cast<int4*>(&frag_s_ch)[2] = sh_s_ch[s_ch_sh_rd + 8];
reinterpret_cast<int4*>(&frag_s_ch)[3] = sh_s_ch[s_ch_sh_rd + 9];
}
}
if (slice_count > 1) { // only globally reduce if there is more than one
// block in a slice
barrier_acquire(&locks[slice_col], slice_idx);
global_reduce(slice_idx == 0, last);
barrier_release(&locks[slice_col], last);
}
if (last) // only the last block in a slice actually writes the result
write_result();
slice_row = 0;
slice_col_par++;
slice_col++;
init_slice();
if (slice_iters) {
a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) +
(threadIdx.x % a_gl_rd_delta_o);
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++)
B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles;
if (slice_col == 0) {
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride;
}
s_group_gl_rd = s_group_sh_stride * slice_col + threadIdx.x;
s_ch_gl_rd = s_ch_sh_stride * slice_col + threadIdx.x;
start_pipes();
}
}
}
}
#else
template <const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
// threadblock
const int thread_n_blocks, // same for n dimension (output)
const int thread_k_blocks, // same for k dimension (reduction)
const int stages, // number of stages for the async global->shared
// fetch pipeline
const int group_blocks = -1 // number of consecutive 16x16 blocks
// with a separate quantization scale
>
__global__ void Marlin(
const int4* __restrict__ A, // int8 input matrix of shape mxk
const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn
int4* __restrict__ C, // int32 global_reduce buffer of shape
// (max_par*16*4)xn, as int8 tensor core's output is
// int32 dtype
int4* __restrict__ D, // fp16 output buffer of shape mxn
const float* __restrict__ s_tok, // fp32 activation per-token quantization
// scales of shape mx1
const int4* __restrict__ s_ch, // fp32 weight per-channel quantization
// scales of shape 1xn
const int4* __restrict__ s_group, // fp16 weight per-group quantization
// scales of shape (k/groupsize)xn, when
// group_blocks=-1, it should be nullptr
int prob_m, // batch dimension m
int prob_n, // output dimension n
int prob_k, // reduction dimension k
int* locks // extra global storage for barrier synchronization
) {
// Marlin is not implemented yet for SM < 8.0
assert(false);
return;
}
#endif
// 8 warps are a good choice since every SM has 4 schedulers and having more
// than 1 warp per schedule allows some more latency hiding. At the same time,
// we want relatively few warps to have many registers per warp and small tiles.
const int USER_THREADS =
256; // Note: This is only used with user-provided thread_k/n
const int STAGES = 4; // 4 pipeline stages fit into shared memory
static constexpr int min_thread_n = 64;
static constexpr int min_thread_k = 64;
static constexpr int tile_size = 16;
static constexpr int max_par = 16;
static constexpr int pack_factor_4bit =
8; // We have 8 4-bit vals inside a 32 bit
#define __CALL_IF(THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
GROUP_BLOCKS, NUM_THREADS) \
else if (thread_m_blocks == THREAD_M_BLOCKS && \
thread_n_blocks == THREAD_N_BLOCKS && \
thread_k_blocks == THREAD_K_BLOCKS && \
group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) { \
cudaFuncSetAttribute(Marlin<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
THREAD_K_BLOCKS, STAGES, GROUP_BLOCKS>, \
cudaFuncAttributeMaxDynamicSharedMemorySize, \
max_shared_mem); \
Marlin<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
STAGES, GROUP_BLOCKS> \
<<<blocks, NUM_THREADS, max_shared_mem, stream>>>( \
A_ptr, B_ptr, C_ptr, D_ptr, s_tok_ptr, s_ch_ptr, s_group_ptr, \
prob_m, prob_n, prob_k, locks); \
}
typedef struct {
int thread_k;
int thread_n;
int num_threads;
} thread_config_t;
thread_config_t small_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{128, 128, 256}, // Default
{128, 64, 128}, // Reduce N 2X, same K
{64, 256, 256}, // Reduce K 2X, increase N 2X
{64, 128, 128}, // Reduce K 2X, same N
};
thread_config_t large_batch_thread_configs[] = {
// Ordered by priority
// thread_k, thread_n, num_threads
{64, 256, 256}, // Default
{128, 128, 256}, // Reduce N 2X, increase K 2X
{64, 128, 128}, // Reduce N 2X, same K
{128, 64, 128}, // Reduce N 4X, increase K 2X
};
bool is_valid_config(thread_config_t const& th_config, int prob_m, int prob_n,
int prob_k) {
// Sanity
if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
th_config.num_threads == -1) {
return false;
}
// Verify K/N are divisible by thread K/N
if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
return false;
}
// thread_k can be only 128 or 64 (because it must be less than groupsize
// which is 128)
if (th_config.thread_k != 128 && th_config.thread_k != 64) {
return false;
}
// Verify min for thread K/N
if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
return false;
}
// num_threads must be at least 128 (= 4 warps)
if (th_config.num_threads < 128) {
return false;
}
return true;
}
thread_config_t determine_thread_config(int prob_m, int prob_n, int prob_k) {
if (prob_m <= 16) {
for (auto th_config : small_batch_thread_configs) {
if (is_valid_config(th_config, prob_m, prob_n, prob_k)) {
return th_config;
}
}
} else {
for (auto th_config : large_batch_thread_configs) {
if (is_valid_config(th_config, prob_m, prob_n, prob_k)) {
return th_config;
}
}
}
return thread_config_t{-1, -1, -1};
}
#define CALL_IF(N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__CALL_IF(1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
__CALL_IF(1, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \
__CALL_IF(1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
__CALL_IF(1, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \
__CALL_IF(2, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
__CALL_IF(2, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \
__CALL_IF(3, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
__CALL_IF(3, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \
__CALL_IF(4, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \
__CALL_IF(4, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS)
void marlin_qqq_cuda(const void* A, const void* B, void* C, void* D,
void* s_tok, void* s_ch, void* s_group, int prob_m,
int prob_n, int prob_k, void* workspace,
int groupsize = -1, int dev = 0, cudaStream_t stream = 0,
int thread_k = -1, int thread_n = -1, int sms = -1,
int max_par = 16) {
int tot_m = prob_m;
int tot_m_blocks = ceildiv(tot_m, 16);
int pad = 16 * tot_m_blocks - tot_m;
if (sms == -1)
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev);
int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);
// Set thread config
thread_config_t th_config;
if (thread_k != -1 && thread_n != -1) {
// User-defined config
th_config = thread_config_t{thread_k, thread_n, USER_THREADS};
} else {
// Auto config
th_config = determine_thread_config(prob_m, prob_n, prob_k);
}
if (!is_valid_config(th_config, prob_m, prob_n, prob_k)) {
throw std::runtime_error(
"Invalid thread config: thread_k = " + str(th_config.thread_k) +
", thread_n = " + str(th_config.thread_n) +
", num_threads = " + str(th_config.num_threads) + " for MKN = [" +
str(prob_m) + ", " + str(prob_k) + ", " + str(prob_n) + "]");
}
int num_threads = th_config.num_threads;
thread_k = th_config.thread_k;
thread_n = th_config.thread_n;
int thread_k_blocks = thread_k / 16;
int thread_n_blocks = thread_n / 16;
int group_blocks = (groupsize == -1) ? -1 : groupsize / 16;
int blocks = sms;
if (prob_m == 0 || prob_n == 0 || prob_k == 0) {
return;
}
TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
" is not divisible by thread_n = ", thread_n);
TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
" is not divisible by thread_k = ", thread_k);
if (group_blocks != -1) {
TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
" is not divisible by group_blocks = ", group_blocks);
}
const int4* A_ptr = (const int4*)A;
const int4* B_ptr = (const int4*)B;
int4* C_ptr = (int4*)C;
int4* D_ptr = (int4*)D;
const float* s_tok_ptr = (const float*)s_tok;
const int4* s_ch_ptr = (const int4*)s_ch;
const int4* s_group_ptr = (const int4*)s_group;
int* locks = (int*)workspace;
for (int i = 0; i < tot_m_blocks; i += 4) {
int thread_m_blocks = tot_m_blocks - i;
prob_m = tot_m - 16 * i;
int par = 1;
if (thread_m_blocks > 4) {
// Note that parallel > 1 currently only works for inputs without any
// padding
par = (16 * thread_m_blocks - pad) / 64;
if (par > max_par) par = max_par;
prob_m = 64 * par;
i += 4 * (par - 1);
thread_m_blocks = 4;
}
// For compilation speed, we only define the kernel configurations that have
// seemed useful (in terms of performance) in our testing, however many more
// are, in principle, possible.
if (false) {
}
CALL_IF(8, 8, 256)
CALL_IF(16, 4, 256)
CALL_IF(8, 4, 128)
CALL_IF(4, 8, 128)
else {
throw std::runtime_error("Unsupported shapes: MKN = [" + str(prob_m) +
", " + str(prob_k) + ", " + str(prob_n) + "]" +
", groupsize = " + str(groupsize) +
", thread_m_blocks = " + str(thread_m_blocks) +
", thread_n_blocks = " + str(thread_n_blocks) +
", thread_k_blocks = " + str(thread_k_blocks));
}
A_ptr += 16 * thread_m_blocks * (prob_k / 16) * par;
D_ptr += 16 * thread_m_blocks * (prob_n / 8) * par;
s_tok_ptr += 16 * thread_m_blocks * par;
}
}
} // anonymous namespace
torch::Tensor marlin_qqq_gemm(torch::Tensor const& a,
torch::Tensor const& b_q_weight,
torch::Tensor const& s_tok,
torch::Tensor const& s_ch,
torch::Tensor const& s_group,
torch::Tensor& workspace, int64_t size_m,
int64_t size_n, int64_t size_k) {
// Verify M
TORCH_CHECK(size_m == a.size(0),
"Shape mismatch: a.size(0) = " + str(a.size(0)) +
", size_m = " + str(size_m));
TORCH_CHECK(size_m == s_tok.numel(),
"Shape mismatch: s_tok.numel() = " + str(s_tok.numel()) +
", size_m = " + str(size_m));
// Verify K
TORCH_CHECK(size_k == a.size(1),
"Shape mismatch: a.size(1) = " + str(a.size(1)) +
", size_k = " + str(size_k));
TORCH_CHECK(size_k % tile_size == 0,
"size_k = " + str(size_k) +
" is not divisible by tile_size = " + str(tile_size));
TORCH_CHECK(
(size_k / tile_size) == b_q_weight.size(0),
"Shape mismatch: b_q_weight.size(0) = " + str(b_q_weight.size(0)) +
", size_k = " + str(size_k) + ", tile_size = " + str(tile_size));
int groupsize = (s_group.numel() == 0) ? -1 : size_k / s_group.size(0);
// Verify groupsize
TORCH_CHECK(groupsize == -1 || groupsize == 128,
"Unexpected groupsize = " + str(groupsize));
// Verify N
TORCH_CHECK(s_ch.numel() == size_n,
"Shape mismatch: s_ch.numel() = " + str(s_ch.numel()) +
", size_n = " + str(size_n));
TORCH_CHECK(b_q_weight.size(1) % tile_size == 0,
"b_q_weight.size(1) = " + str(b_q_weight.size(1)) +
" is not divisible by tile_size = " + str(tile_size));
if (groupsize != -1) {
TORCH_CHECK(s_group.size(1) == size_n,
"Shape mismatch: s_group.size(1) = " + str(s_group.size(1)) +
", size_n = " + str(size_n));
TORCH_CHECK(
size_k % s_group.size(0) == 0,
"size_k = " + str(size_k) +
", is not divisible by s_group.size(0) = " + str(s_group.size(0)));
}
int actual_size_n = (b_q_weight.size(1) / tile_size) * pack_factor_4bit;
TORCH_CHECK(size_n == actual_size_n,
"Shape mismatch: size_n = " + str(size_n) +
", actual_size_n = " + str(actual_size_n));
// Verify A device and strides
TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
TORCH_CHECK(a.is_contiguous(), "A is not contiguous");
// Verify B device and strides
TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");
// Verify s_tok device, strides and dtype
TORCH_CHECK(s_tok.device().is_cuda(), "s_tok is not on GPU");
TORCH_CHECK(s_tok.is_contiguous(), "s_tok is not contiguous");
TORCH_CHECK(s_tok.dtype() == torch::kFloat32, "s_tok's dtype is not float32");
// Verify s_ch device, strides and dtype
TORCH_CHECK(s_ch.device().is_cuda(), "s_ch is not on GPU");
TORCH_CHECK(s_ch.is_contiguous(), "s_ch is not contiguous");
TORCH_CHECK(s_ch.dtype() == torch::kFloat32, "s_ch's dtype is not float32");
// Verify s_group device, strides and dtype
TORCH_CHECK(s_group.device().is_cuda(), "s_group is not on GPU");
TORCH_CHECK(s_group.is_contiguous(), "s_group is not contiguous");
TORCH_CHECK(s_group.dtype() == torch::kFloat16,
"s_group's dtype is not float16");
// Verify workspace size
TORCH_CHECK(size_n % min_thread_n == 0,
"size_n = " + str(size_n) +
", is not divisible by min_thread_n = " + str(min_thread_n));
int min_workspace_size = (size_n / min_thread_n) * max_par;
TORCH_CHECK(workspace.numel() >= min_workspace_size,
"workspace.numel = " + str(workspace.numel()) +
" is below min_workspace_size = " + str(min_workspace_size));
// Alloc C matrix
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
auto options_c = torch::TensorOptions().dtype(torch::kInt).device(a.device());
torch::Tensor c = torch::empty({max_par * 64, size_n}, options_c);
// Alloc D matrix
auto options_d =
torch::TensorOptions().dtype(torch::kFloat16).device(a.device());
torch::Tensor d = torch::empty({size_m, size_n}, options_d);
// thread_k: `k` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_k = -1;
// thread_n: `n` size of a thread_tile in `weights` (can usually be left as
// auto -1)
int thread_n = -1;
// sms: number of SMs to use for the kernel (can usually be left as auto -1)
int sms = -1;
int dev = a.get_device();
marlin_qqq_cuda(
a.data_ptr(), b_q_weight.data_ptr(), c.data_ptr(), d.data_ptr(),
s_tok.data_ptr(), s_ch.data_ptr(), s_group.data_ptr(), size_m, size_n,
size_k, workspace.data_ptr(), groupsize, dev,
at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms, max_par);
return d;
}
|