Update README.md
Browse files
README.md
CHANGED
@@ -3,52 +3,95 @@ library_name: transformers
|
|
3 |
license: apache-2.0
|
4 |
base_model: hustvl/yolos-tiny
|
5 |
tags:
|
6 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
model-index:
|
8 |
- name: practica_2
|
9 |
results: []
|
10 |
---
|
11 |
|
12 |
-
|
13 |
-
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
|
23 |
-
## Intended uses & limitations
|
24 |
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
-
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
|
35 |
-
The
|
36 |
-
- learning_rate: 1e-05
|
37 |
-
- train_batch_size: 8
|
38 |
-
- eval_batch_size: 8
|
39 |
-
- seed: 42
|
40 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
41 |
-
- lr_scheduler_type: linear
|
42 |
-
- num_epochs: 100
|
43 |
-
- mixed_precision_training: Native AMP
|
44 |
|
45 |
-
###
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
license: apache-2.0
|
4 |
base_model: hustvl/yolos-tiny
|
5 |
tags:
|
6 |
+
- object-detection
|
7 |
+
- transformers
|
8 |
+
- vision
|
9 |
+
- pytorch
|
10 |
+
- raccoon
|
11 |
+
- yolos
|
12 |
+
- fine-tuning
|
13 |
+
- huggingface
|
14 |
model-index:
|
15 |
- name: practica_2
|
16 |
results: []
|
17 |
---
|
18 |
|
19 |
+
# practica_2 โ YOLOS Tiny fine-tuned on Raccoon Dataset ๐ฆ
|
|
|
20 |
|
21 |
+
This model is a fine-tuned version of [`hustvl/yolos-tiny`](https://huggingface.co/hustvl/yolos-tiny) on the [Raccoon Dataset](https://github.com/datitran/raccoon_dataset), converted to COCO format. It detects **raccoons** in images using a transformer-based object detection architecture.
|
22 |
|
23 |
+
## ๐ง Model description
|
24 |
|
25 |
+
YOLOS ("You Only Look One-level Series") is a pure Transformer-based object detector. This particular model uses the **Tiny** variant of YOLOS as the base, making it lightweight and efficient for quick inference on small datasets or low-resource environments.
|
26 |
|
27 |
+
This version has been fine-tuned to detect a single class: **raccoon**.
|
28 |
|
29 |
+
## ๐ Intended uses & limitations
|
30 |
|
31 |
+
### Use cases
|
32 |
+
- Wildlife monitoring (specifically raccoons)
|
33 |
+
- Educational/demo applications for transformer-based object detection
|
34 |
+
- Transfer learning starter for similar single-class detection tasks
|
35 |
|
36 |
+
### Limitations
|
37 |
+
- Trained only to detect raccoons โ not suitable for general-purpose detection.
|
38 |
+
- May underperform on complex or cluttered scenes due to dataset size.
|
39 |
+
- Limited generalization beyond the training distribution.
|
40 |
|
41 |
+
## ๐ Training and evaluation data
|
42 |
|
43 |
+
- **Dataset**: [Raccoon Dataset by Dat Tran](https://github.com/datitran/raccoon_dataset)
|
44 |
+
- **Format**: Converted from Pascal VOC to COCO
|
45 |
+
- **Size**: ~200 annotated images
|
46 |
+
- **Split**: 80% training, 20% test
|
47 |
|
48 |
+
## โ๏ธ Training procedure
|
49 |
|
50 |
+
The model was trained using the Hugging Face `Trainer` API with the following settings:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
### ๐งพ Hyperparameters
|
53 |
|
54 |
+
- **Base model**: `hustvl/yolos-tiny`
|
55 |
+
- **Epochs**: 100
|
56 |
+
- **Train batch size**: 8
|
57 |
+
- **Learning rate**: 1e-5
|
58 |
+
- **Weight decay**: 1e-4
|
59 |
+
- **Mixed precision**: Native AMP (`fp16=True`)
|
60 |
+
- **Scheduler**: Linear
|
61 |
+
- **Optimizer**: AdamW (betas=(0.9, 0.999), epsilon=1e-8)
|
62 |
|
63 |
+
### ๐ผ๏ธ Data augmentation
|
64 |
|
65 |
+
Applied using Albumentations:
|
66 |
+
- Resize (480x480)
|
67 |
+
- Horizontal flip
|
68 |
+
- Random brightness and contrast
|
69 |
|
70 |
+
### ๐งช Evaluation
|
71 |
+
|
72 |
+
Evaluation was performed on the 20% test split, but metrics were not included in this version of the model card. You can run custom evaluation using the `Trainer.evaluate()` method.
|
73 |
+
|
74 |
+
## ๐๏ธ Classes
|
75 |
+
|
76 |
+
| ID | Class |
|
77 |
+
|----|----------|
|
78 |
+
| 1 | raccoon |
|
79 |
+
|
80 |
+
## ๐ฆ Framework versions
|
81 |
+
|
82 |
+
- `transformers`: 4.52.2
|
83 |
+
- `pytorch`: 2.6.0+cu124
|
84 |
+
- `datasets`: 2.14.4
|
85 |
+
- `tokenizers`: 0.21.1
|
86 |
+
|
87 |
+
## โ๏ธ Citation
|
88 |
+
|
89 |
+
If you use this model, please consider citing the original YOLOS paper:
|
90 |
+
|
91 |
+
```bibtex
|
92 |
+
@inproceedings{fang2021you,
|
93 |
+
title={You Only Look One-level Feature},
|
94 |
+
author={Fang, Wanli and Yang, Xiaolin and Wang, Qiang},
|
95 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
96 |
+
year={2021}
|
97 |
+
}
|