kevanme commited on
Commit
5628092
ยท
verified ยท
1 Parent(s): 079021b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -28
README.md CHANGED
@@ -3,52 +3,95 @@ library_name: transformers
3
  license: apache-2.0
4
  base_model: hustvl/yolos-tiny
5
  tags:
6
- - generated_from_trainer
 
 
 
 
 
 
 
7
  model-index:
8
  - name: practica_2
9
  results: []
10
  ---
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
 
15
- # practica_2
16
 
17
- This model is a fine-tuned version of [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny) on the None dataset.
18
 
19
- ## Model description
20
 
21
- More information needed
22
 
23
- ## Intended uses & limitations
24
 
25
- More information needed
 
 
 
26
 
27
- ## Training and evaluation data
 
 
 
28
 
29
- More information needed
30
 
31
- ## Training procedure
 
 
 
32
 
33
- ### Training hyperparameters
34
 
35
- The following hyperparameters were used during training:
36
- - learning_rate: 1e-05
37
- - train_batch_size: 8
38
- - eval_batch_size: 8
39
- - seed: 42
40
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
41
- - lr_scheduler_type: linear
42
- - num_epochs: 100
43
- - mixed_precision_training: Native AMP
44
 
45
- ### Training results
46
 
 
 
 
 
 
 
 
 
47
 
 
48
 
49
- ### Framework versions
 
 
 
50
 
51
- - Transformers 4.52.2
52
- - Pytorch 2.6.0+cu124
53
- - Datasets 2.14.4
54
- - Tokenizers 0.21.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  license: apache-2.0
4
  base_model: hustvl/yolos-tiny
5
  tags:
6
+ - object-detection
7
+ - transformers
8
+ - vision
9
+ - pytorch
10
+ - raccoon
11
+ - yolos
12
+ - fine-tuning
13
+ - huggingface
14
  model-index:
15
  - name: practica_2
16
  results: []
17
  ---
18
 
19
+ # practica_2 โ€“ YOLOS Tiny fine-tuned on Raccoon Dataset ๐Ÿฆ
 
20
 
21
+ This model is a fine-tuned version of [`hustvl/yolos-tiny`](https://huggingface.co/hustvl/yolos-tiny) on the [Raccoon Dataset](https://github.com/datitran/raccoon_dataset), converted to COCO format. It detects **raccoons** in images using a transformer-based object detection architecture.
22
 
23
+ ## ๐Ÿง  Model description
24
 
25
+ YOLOS ("You Only Look One-level Series") is a pure Transformer-based object detector. This particular model uses the **Tiny** variant of YOLOS as the base, making it lightweight and efficient for quick inference on small datasets or low-resource environments.
26
 
27
+ This version has been fine-tuned to detect a single class: **raccoon**.
28
 
29
+ ## ๐Ÿ“Œ Intended uses & limitations
30
 
31
+ ### Use cases
32
+ - Wildlife monitoring (specifically raccoons)
33
+ - Educational/demo applications for transformer-based object detection
34
+ - Transfer learning starter for similar single-class detection tasks
35
 
36
+ ### Limitations
37
+ - Trained only to detect raccoons โ€” not suitable for general-purpose detection.
38
+ - May underperform on complex or cluttered scenes due to dataset size.
39
+ - Limited generalization beyond the training distribution.
40
 
41
+ ## ๐Ÿ“‚ Training and evaluation data
42
 
43
+ - **Dataset**: [Raccoon Dataset by Dat Tran](https://github.com/datitran/raccoon_dataset)
44
+ - **Format**: Converted from Pascal VOC to COCO
45
+ - **Size**: ~200 annotated images
46
+ - **Split**: 80% training, 20% test
47
 
48
+ ## โš™๏ธ Training procedure
49
 
50
+ The model was trained using the Hugging Face `Trainer` API with the following settings:
 
 
 
 
 
 
 
 
51
 
52
+ ### ๐Ÿงพ Hyperparameters
53
 
54
+ - **Base model**: `hustvl/yolos-tiny`
55
+ - **Epochs**: 100
56
+ - **Train batch size**: 8
57
+ - **Learning rate**: 1e-5
58
+ - **Weight decay**: 1e-4
59
+ - **Mixed precision**: Native AMP (`fp16=True`)
60
+ - **Scheduler**: Linear
61
+ - **Optimizer**: AdamW (betas=(0.9, 0.999), epsilon=1e-8)
62
 
63
+ ### ๐Ÿ–ผ๏ธ Data augmentation
64
 
65
+ Applied using Albumentations:
66
+ - Resize (480x480)
67
+ - Horizontal flip
68
+ - Random brightness and contrast
69
 
70
+ ### ๐Ÿงช Evaluation
71
+
72
+ Evaluation was performed on the 20% test split, but metrics were not included in this version of the model card. You can run custom evaluation using the `Trainer.evaluate()` method.
73
+
74
+ ## ๐Ÿ—‚๏ธ Classes
75
+
76
+ | ID | Class |
77
+ |----|----------|
78
+ | 1 | raccoon |
79
+
80
+ ## ๐Ÿ“ฆ Framework versions
81
+
82
+ - `transformers`: 4.52.2
83
+ - `pytorch`: 2.6.0+cu124
84
+ - `datasets`: 2.14.4
85
+ - `tokenizers`: 0.21.1
86
+
87
+ ## โœ๏ธ Citation
88
+
89
+ If you use this model, please consider citing the original YOLOS paper:
90
+
91
+ ```bibtex
92
+ @inproceedings{fang2021you,
93
+ title={You Only Look One-level Feature},
94
+ author={Fang, Wanli and Yang, Xiaolin and Wang, Qiang},
95
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
96
+ year={2021}
97
+ }