File size: 15,210 Bytes
8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c 1b03734 8a8224c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# -*- coding: utf-8 -*-
"""
Updated FastAPI backend for GPT-SoVITS (*April 2025*)
---------------------------------------------------
Changes compared with the previous version shipped on 30 Apr 2025
=================================================================
1. **URL / S3 audio support** — `process_audio_path()` downloads `ref_audio_path` and
each entry in `aux_ref_audio_paths` when they are HTTP(S) or S3 URLs, storing them
as temporary files that are cleaned up afterwards.
2. **CUDA memory hygiene** — `torch.cuda.empty_cache()` is invoked after each request
(success *or* error) to release GPU memory.
3. **Temporary‑file cleanup** — all files created by `process_audio_path()` are
removed in `finally` blocks so they are guaranteed to disappear no matter how the
request terminates.
The public API surface (**end‑points and query parameters**) is unchanged.
"""
from __future__ import annotations
import argparse
import os
import signal
import subprocess
import sys
import traceback
import urllib.parse
from io import BytesIO
from typing import Generator, List, Tuple
import numpy as np
import requests
import soundfile as sf
import torch
import uvicorn
from fastapi import FastAPI, HTTPException, Response
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel
# ---------------------------------------------------------------------------
# Local package imports – keep *after* sys.path manipulation so relative import
# resolution continues to work when this file is executed from any directory.
# ---------------------------------------------------------------------------
NOW_DIR = os.getcwd()
sys.path.extend([NOW_DIR, f"{NOW_DIR}/GPT_SoVITS"])
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config # noqa: E402
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import ( # noqa: E402
get_method_names as get_cut_method_names,
)
from tools.i18n.i18n import I18nAuto # noqa: E402
# ---------------------------------------------------------------------------
# CLI arguments & global objects
# ---------------------------------------------------------------------------
i18n = I18nAuto()
cut_method_names = get_cut_method_names()
parser = argparse.ArgumentParser(description="GPT‑SoVITS API")
parser.add_argument(
"-c", "--tts_config", default="GPT_SoVITS/configs/tts_infer.yaml", help="TTS‑infer config path"
)
parser.add_argument("-a", "--bind_addr", default="127.0.0.1", help="Bind address (default 127.0.0.1)")
parser.add_argument("-p", "--port", type=int, default=9880, help="Port (default 9880)")
args = parser.parse_args()
config_path = args.tts_config or "GPT-SoVITS/configs/tts_infer.yaml"
PORT = args.port
HOST = None if args.bind_addr == "None" else args.bind_addr
# ---------------------------------------------------------------------------
# TTS initialisation
# ---------------------------------------------------------------------------
tts_config = TTS_Config(config_path)
print(tts_config)
TTS_PIPELINE = TTS(tts_config)
APP = FastAPI()
# ---------------------------------------------------------------------------
# Helper utilities
# ---------------------------------------------------------------------------
TEMP_DIR = os.path.join(NOW_DIR, "_tmp_audio")
os.makedirs(TEMP_DIR, exist_ok=True)
def _empty_cuda_cache() -> None:
"""Release GPU memory if CUDA is available."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
def _download_to_temp(url: str) -> str:
"""Download *url* to a unique file inside ``TEMP_DIR`` and return the path."""
parsed = urllib.parse.urlparse(url)
filename = os.path.basename(parsed.path) or f"audio_{abs(hash(url))}.wav"
local_path = os.path.join(TEMP_DIR, filename)
if url.startswith("s3://"):
# Lazy‑load boto3 if/when the first S3 request arrives.
import importlib
boto3 = importlib.import_module("boto3") # pylint: disable=import-error
s3_client = boto3.client("s3")
s3_client.download_file(parsed.netloc, parsed.path.lstrip("/"), local_path)
else:
with requests.get(url, stream=True, timeout=30) as r:
r.raise_for_status()
with open(local_path, "wb") as f_out:
for chunk in r.iter_content(chunk_size=8192):
f_out.write(chunk)
return local_path
def process_audio_path(audio_path: str | None) -> Tuple[str | None, bool]:
"""Return a *local* path for *audio_path* and whether it is temporary."""
if not audio_path:
return audio_path, False
if audio_path.startswith(("http://", "https://", "s3://")):
try:
local = _download_to_temp(audio_path)
return local, True
except Exception as exc: # pragma: no‑cover
raise HTTPException(status_code=400, detail=f"Failed to download audio: {exc}") from exc
return audio_path, False
# ---------------------------------------------------------------------------
# Audio (de)serialisation helpers
# ---------------------------------------------------------------------------
def _pack_ogg(buf: BytesIO, data: np.ndarray, rate: int):
with sf.SoundFile(buf, mode="w", samplerate=rate, channels=1, format="ogg") as f:
f.write(data)
return buf
def _pack_raw(buf: BytesIO, data: np.ndarray, _rate: int):
buf.write(data.tobytes())
return buf
def _pack_wav(buf: BytesIO, data: np.ndarray, rate: int):
sf.write(buf, data, rate, format="wav")
return buf
def _pack_aac(buf: BytesIO, data: np.ndarray, rate: int):
proc = subprocess.Popen(
[
"ffmpeg",
"-f",
"s16le",
"-ar",
str(rate),
"-ac",
"1",
"-i",
"pipe:0",
"-c:a",
"aac",
"-b:a",
"192k",
"-vn",
"-f",
"adts",
"pipe:1",
],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
out, _ = proc.communicate(input=data.tobytes())
buf.write(out)
return buf
def _pack_audio(buf: BytesIO, data: np.ndarray, rate: int, media_type: str):
dispatch = {
"ogg": _pack_ogg,
"aac": _pack_aac,
"wav": _pack_wav,
"raw": _pack_raw,
}
buf = dispatch.get(media_type, _pack_raw)(buf, data, rate)
buf.seek(0)
return buf
# ---------------------------------------------------------------------------
# Schemas
# ---------------------------------------------------------------------------
class TTSRequest(BaseModel):
text: str | None = None
text_lang: str | None = None
ref_audio_path: str | None = None
aux_ref_audio_paths: List[str] | None = None
prompt_lang: str | None = None
prompt_text: str = ""
top_k: int = 5
top_p: float = 1.0
temperature: float = 1.0
text_split_method: str = "cut5"
batch_size: int = 1
batch_threshold: float = 0.75
split_bucket: bool = True
speed_factor: float = 1.0
fragment_interval: float = 0.3
seed: int = -1
media_type: str = "wav"
streaming_mode: bool = False
parallel_infer: bool = True
repetition_penalty: float = 1.35
sample_steps: int = 32
super_sampling: bool = False
# ---------------------------------------------------------------------------
# Validation helpers
# ---------------------------------------------------------------------------
def _validate_request(req: dict):
if not req.get("text"):
return "text is required"
if not req.get("text_lang"):
return "text_lang is required"
if req["text_lang"].lower() not in tts_config.languages:
return f"text_lang {req['text_lang']} not supported"
if not req.get("prompt_lang"):
return "prompt_lang is required"
if req["prompt_lang"].lower() not in tts_config.languages:
return f"prompt_lang {req['prompt_lang']} not supported"
if not req.get("ref_audio_path"):
return "ref_audio_path is required"
mt = req.get("media_type", "wav")
if mt not in {"wav", "raw", "ogg", "aac"}:
return f"media_type {mt} not supported"
if (not req.get("streaming_mode") and mt == "ogg"):
return "ogg is only supported in streaming mode"
if req.get("text_split_method", "cut5") not in cut_method_names:
return f"text_split_method {req['text_split_method']} not supported"
return None
# ---------------------------------------------------------------------------
# Core handler
# ---------------------------------------------------------------------------
async def _tts_handle(req: dict):
error = _validate_request(req)
if error:
return JSONResponse(status_code=400, content={"message": error})
streaming_mode = req.get("streaming_mode", False)
media_type = req.get("media_type", "wav")
temp_files: List[str] = []
try:
# --- resolve & download audio paths ----------------------------------
ref_path, is_tmp = process_audio_path(req["ref_audio_path"])
req["ref_audio_path"] = ref_path
if is_tmp:
temp_files.append(ref_path)
if req.get("aux_ref_audio_paths"):
resolved: List[str] = []
for p in req["aux_ref_audio_paths"]:
lp, tmp = process_audio_path(p)
resolved.append(lp)
if tmp:
temp_files.append(lp)
req["aux_ref_audio_paths"] = resolved
# --- run inference ----------------------------------------------------
generator = TTS_PIPELINE.run(req)
if streaming_mode:
async def _gen(gen: Generator, _media_type: str):
first = True
try:
for sr, chunk in gen:
if first and _media_type == "wav":
# Prepend a WAV header so clients can play immediately.
header = _wave_header_chunk(sample_rate=sr)
yield header
_media_type = "raw"
first = False
yield _pack_audio(BytesIO(), chunk, sr, _media_type).getvalue()
finally:
_cleanup(temp_files)
return StreamingResponse(_gen(generator, media_type), media_type=f"audio/{media_type}")
# non‑streaming --------------------------------------------------------
sr, data = next(generator)
payload = _pack_audio(BytesIO(), data, sr, media_type).getvalue()
resp = Response(payload, media_type=f"audio/{media_type}")
_cleanup(temp_files)
return resp
except Exception as exc: # noqa: BLE001
_cleanup(temp_files)
return JSONResponse(status_code=400, content={"message": "tts failed", "Exception": str(exc)})
# ---------------------------------------------------------------------------
# Cleanup helpers
# ---------------------------------------------------------------------------
def _cleanup(temp_files: List[str]):
for fp in temp_files:
try:
os.remove(fp)
# print(f"[cleanup] removed {fp}")
except FileNotFoundError:
pass
except Exception as exc: # pragma: no‑cover
print(f"[cleanup‑warning] {exc}")
_empty_cuda_cache()
# ---------------------------------------------------------------------------
# WAV header helper (for streaming WAV)
# ---------------------------------------------------------------------------
import wave # placed here to keep top import section tidy
def _wave_header_chunk(frame: bytes = b"", *, channels: int = 1, width: int = 2, sample_rate: int = 32_000):
buf = BytesIO()
with wave.open(buf, "wb") as wav:
wav.setnchannels(channels)
wav.setsampwidth(width)
wav.setframerate(sample_rate)
wav.writeframes(frame)
buf.seek(0)
return buf.read()
# ---------------------------------------------------------------------------
# End‑points
# ---------------------------------------------------------------------------
@APP.get("/tts")
async def tts_get(**query):
# Normalise language codes to lower‑case where applicable
for k in ("text_lang", "prompt_lang"):
if k in query and query[k] is not None:
query[k] = query[k].lower()
return await _tts_handle(query)
@APP.post("/tts")
async def tts_post(request: TTSRequest):
payload = request.dict()
if payload.get("text_lang"):
payload["text_lang"] = payload["text_lang"].lower()
if payload.get("prompt_lang"):
payload["prompt_lang"] = payload["prompt_lang"].lower()
return await _tts_handle(payload)
@APP.get("/control")
async def control(command: str | None = None):
if not command:
raise HTTPException(status_code=400, detail="command is required")
if command == "restart":
os.execl(sys.executable, sys.executable, *sys.argv)
elif command == "exit":
os.kill(os.getpid(), signal.SIGTERM)
else:
raise HTTPException(status_code=400, detail="unsupported command")
return {"message": "ok"}
@APP.get("/set_refer_audio")
async def set_refer_audio(refer_audio_path: str | None = None):
if not refer_audio_path:
return JSONResponse(status_code=400, content={"message": "refer_audio_path is required"})
temp_file = None
try:
local_path, is_tmp = process_audio_path(refer_audio_path)
temp_file = local_path if is_tmp else None
TTS_PIPELINE.set_ref_audio(local_path)
return {"message": "success"}
finally:
if temp_file:
try:
os.remove(temp_file)
except FileNotFoundError:
pass
_empty_cuda_cache()
@APP.get("/set_gpt_weights")
async def set_gpt_weights(weights_path: str | None = None):
if not weights_path:
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"})
try:
TTS_PIPELINE.init_t2s_weights(weights_path)
return {"message": "success"}
except Exception as exc: # noqa: BLE001
return JSONResponse(status_code=400, content={"message": str(exc)})
@APP.get("/set_sovits_weights")
async def set_sovits_weights(weights_path: str | None = None):
if not weights_path:
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"})
try:
TTS_PIPELINE.init_vits_weights(weights_path)
return {"message": "success"}
except Exception as exc: # noqa: BLE001
return JSONResponse(status_code=400, content={"message": str(exc)})
# ---------------------------------------------------------------------------
# Main entry point
# ---------------------------------------------------------------------------
if __name__ == "__main__":
try:
uvicorn.run(app=APP, host=HOST, port=PORT, workers=1)
except Exception: # pragma: no‑cover
traceback.print_exc()
os.kill(os.getpid(), signal.SIGTERM)
sys.exit(0)
|