# -*- coding: utf-8 -*- """ Updated FastAPI backend for GPT-SoVITS (*April 2025*) --------------------------------------------------- Changes compared with the previous version shipped on 30 Apr 2025 ================================================================= 1. **URL / S3 audio support** — `process_audio_path()` downloads `ref_audio_path` and each entry in `aux_ref_audio_paths` when they are HTTP(S) or S3 URLs, storing them as temporary files that are cleaned up afterwards. 2. **CUDA memory hygiene** — `torch.cuda.empty_cache()` is invoked after each request (success *or* error) to release GPU memory. 3. **Temporary‑file cleanup** — all files created by `process_audio_path()` are removed in `finally` blocks so they are guaranteed to disappear no matter how the request terminates. The public API surface (**end‑points and query parameters**) is unchanged. """ from __future__ import annotations import argparse import os import signal import subprocess import sys import traceback import urllib.parse from io import BytesIO from typing import Generator, List, Tuple import numpy as np import requests import soundfile as sf import torch import uvicorn from fastapi import FastAPI, HTTPException, Response from fastapi.responses import JSONResponse, StreamingResponse from pydantic import BaseModel # --------------------------------------------------------------------------- # Local package imports – keep *after* sys.path manipulation so relative import # resolution continues to work when this file is executed from any directory. # --------------------------------------------------------------------------- NOW_DIR = os.getcwd() sys.path.extend([NOW_DIR, f"{NOW_DIR}/GPT_SoVITS"]) from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config # noqa: E402 from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import ( # noqa: E402 get_method_names as get_cut_method_names, ) from tools.i18n.i18n import I18nAuto # noqa: E402 # --------------------------------------------------------------------------- # CLI arguments & global objects # --------------------------------------------------------------------------- i18n = I18nAuto() cut_method_names = get_cut_method_names() parser = argparse.ArgumentParser(description="GPT‑SoVITS API") parser.add_argument( "-c", "--tts_config", default="GPT_SoVITS/configs/tts_infer.yaml", help="TTS‑infer config path" ) parser.add_argument("-a", "--bind_addr", default="127.0.0.1", help="Bind address (default 127.0.0.1)") parser.add_argument("-p", "--port", type=int, default=9880, help="Port (default 9880)") args = parser.parse_args() config_path = args.tts_config or "GPT-SoVITS/configs/tts_infer.yaml" PORT = args.port HOST = None if args.bind_addr == "None" else args.bind_addr # --------------------------------------------------------------------------- # TTS initialisation # --------------------------------------------------------------------------- tts_config = TTS_Config(config_path) print(tts_config) TTS_PIPELINE = TTS(tts_config) APP = FastAPI() # --------------------------------------------------------------------------- # Helper utilities # --------------------------------------------------------------------------- TEMP_DIR = os.path.join(NOW_DIR, "_tmp_audio") os.makedirs(TEMP_DIR, exist_ok=True) def _empty_cuda_cache() -> None: """Release GPU memory if CUDA is available.""" if torch.cuda.is_available(): torch.cuda.empty_cache() def _download_to_temp(url: str) -> str: """Download *url* to a unique file inside ``TEMP_DIR`` and return the path.""" parsed = urllib.parse.urlparse(url) filename = os.path.basename(parsed.path) or f"audio_{abs(hash(url))}.wav" local_path = os.path.join(TEMP_DIR, filename) if url.startswith("s3://"): # Lazy‑load boto3 if/when the first S3 request arrives. import importlib boto3 = importlib.import_module("boto3") # pylint: disable=import-error s3_client = boto3.client("s3") s3_client.download_file(parsed.netloc, parsed.path.lstrip("/"), local_path) else: with requests.get(url, stream=True, timeout=30) as r: r.raise_for_status() with open(local_path, "wb") as f_out: for chunk in r.iter_content(chunk_size=8192): f_out.write(chunk) return local_path def process_audio_path(audio_path: str | None) -> Tuple[str | None, bool]: """Return a *local* path for *audio_path* and whether it is temporary.""" if not audio_path: return audio_path, False if audio_path.startswith(("http://", "https://", "s3://")): try: local = _download_to_temp(audio_path) return local, True except Exception as exc: # pragma: no‑cover raise HTTPException(status_code=400, detail=f"Failed to download audio: {exc}") from exc return audio_path, False # --------------------------------------------------------------------------- # Audio (de)serialisation helpers # --------------------------------------------------------------------------- def _pack_ogg(buf: BytesIO, data: np.ndarray, rate: int): with sf.SoundFile(buf, mode="w", samplerate=rate, channels=1, format="ogg") as f: f.write(data) return buf def _pack_raw(buf: BytesIO, data: np.ndarray, _rate: int): buf.write(data.tobytes()) return buf def _pack_wav(buf: BytesIO, data: np.ndarray, rate: int): sf.write(buf, data, rate, format="wav") return buf def _pack_aac(buf: BytesIO, data: np.ndarray, rate: int): proc = subprocess.Popen( [ "ffmpeg", "-f", "s16le", "-ar", str(rate), "-ac", "1", "-i", "pipe:0", "-c:a", "aac", "-b:a", "192k", "-vn", "-f", "adts", "pipe:1", ], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) out, _ = proc.communicate(input=data.tobytes()) buf.write(out) return buf def _pack_audio(buf: BytesIO, data: np.ndarray, rate: int, media_type: str): dispatch = { "ogg": _pack_ogg, "aac": _pack_aac, "wav": _pack_wav, "raw": _pack_raw, } buf = dispatch.get(media_type, _pack_raw)(buf, data, rate) buf.seek(0) return buf # --------------------------------------------------------------------------- # Schemas # --------------------------------------------------------------------------- class TTSRequest(BaseModel): text: str | None = None text_lang: str | None = None ref_audio_path: str | None = None aux_ref_audio_paths: List[str] | None = None prompt_lang: str | None = None prompt_text: str = "" top_k: int = 5 top_p: float = 1.0 temperature: float = 1.0 text_split_method: str = "cut5" batch_size: int = 1 batch_threshold: float = 0.75 split_bucket: bool = True speed_factor: float = 1.0 fragment_interval: float = 0.3 seed: int = -1 media_type: str = "wav" streaming_mode: bool = False parallel_infer: bool = True repetition_penalty: float = 1.35 sample_steps: int = 32 super_sampling: bool = False # --------------------------------------------------------------------------- # Validation helpers # --------------------------------------------------------------------------- def _validate_request(req: dict): if not req.get("text"): return "text is required" if not req.get("text_lang"): return "text_lang is required" if req["text_lang"].lower() not in tts_config.languages: return f"text_lang {req['text_lang']} not supported" if not req.get("prompt_lang"): return "prompt_lang is required" if req["prompt_lang"].lower() not in tts_config.languages: return f"prompt_lang {req['prompt_lang']} not supported" if not req.get("ref_audio_path"): return "ref_audio_path is required" mt = req.get("media_type", "wav") if mt not in {"wav", "raw", "ogg", "aac"}: return f"media_type {mt} not supported" if (not req.get("streaming_mode") and mt == "ogg"): return "ogg is only supported in streaming mode" if req.get("text_split_method", "cut5") not in cut_method_names: return f"text_split_method {req['text_split_method']} not supported" return None # --------------------------------------------------------------------------- # Core handler # --------------------------------------------------------------------------- async def _tts_handle(req: dict): error = _validate_request(req) if error: return JSONResponse(status_code=400, content={"message": error}) streaming_mode = req.get("streaming_mode", False) media_type = req.get("media_type", "wav") temp_files: List[str] = [] try: # --- resolve & download audio paths ---------------------------------- ref_path, is_tmp = process_audio_path(req["ref_audio_path"]) req["ref_audio_path"] = ref_path if is_tmp: temp_files.append(ref_path) if req.get("aux_ref_audio_paths"): resolved: List[str] = [] for p in req["aux_ref_audio_paths"]: lp, tmp = process_audio_path(p) resolved.append(lp) if tmp: temp_files.append(lp) req["aux_ref_audio_paths"] = resolved # --- run inference ---------------------------------------------------- generator = TTS_PIPELINE.run(req) if streaming_mode: async def _gen(gen: Generator, _media_type: str): first = True try: for sr, chunk in gen: if first and _media_type == "wav": # Prepend a WAV header so clients can play immediately. header = _wave_header_chunk(sample_rate=sr) yield header _media_type = "raw" first = False yield _pack_audio(BytesIO(), chunk, sr, _media_type).getvalue() finally: _cleanup(temp_files) return StreamingResponse(_gen(generator, media_type), media_type=f"audio/{media_type}") # non‑streaming -------------------------------------------------------- sr, data = next(generator) payload = _pack_audio(BytesIO(), data, sr, media_type).getvalue() resp = Response(payload, media_type=f"audio/{media_type}") _cleanup(temp_files) return resp except Exception as exc: # noqa: BLE001 _cleanup(temp_files) return JSONResponse(status_code=400, content={"message": "tts failed", "Exception": str(exc)}) # --------------------------------------------------------------------------- # Cleanup helpers # --------------------------------------------------------------------------- def _cleanup(temp_files: List[str]): for fp in temp_files: try: os.remove(fp) # print(f"[cleanup] removed {fp}") except FileNotFoundError: pass except Exception as exc: # pragma: no‑cover print(f"[cleanup‑warning] {exc}") _empty_cuda_cache() # --------------------------------------------------------------------------- # WAV header helper (for streaming WAV) # --------------------------------------------------------------------------- import wave # placed here to keep top import section tidy def _wave_header_chunk(frame: bytes = b"", *, channels: int = 1, width: int = 2, sample_rate: int = 32_000): buf = BytesIO() with wave.open(buf, "wb") as wav: wav.setnchannels(channels) wav.setsampwidth(width) wav.setframerate(sample_rate) wav.writeframes(frame) buf.seek(0) return buf.read() # --------------------------------------------------------------------------- # End‑points # --------------------------------------------------------------------------- @APP.get("/tts") async def tts_get(**query): # Normalise language codes to lower‑case where applicable for k in ("text_lang", "prompt_lang"): if k in query and query[k] is not None: query[k] = query[k].lower() return await _tts_handle(query) @APP.post("/tts") async def tts_post(request: TTSRequest): payload = request.dict() if payload.get("text_lang"): payload["text_lang"] = payload["text_lang"].lower() if payload.get("prompt_lang"): payload["prompt_lang"] = payload["prompt_lang"].lower() return await _tts_handle(payload) @APP.get("/control") async def control(command: str | None = None): if not command: raise HTTPException(status_code=400, detail="command is required") if command == "restart": os.execl(sys.executable, sys.executable, *sys.argv) elif command == "exit": os.kill(os.getpid(), signal.SIGTERM) else: raise HTTPException(status_code=400, detail="unsupported command") return {"message": "ok"} @APP.get("/set_refer_audio") async def set_refer_audio(refer_audio_path: str | None = None): if not refer_audio_path: return JSONResponse(status_code=400, content={"message": "refer_audio_path is required"}) temp_file = None try: local_path, is_tmp = process_audio_path(refer_audio_path) temp_file = local_path if is_tmp else None TTS_PIPELINE.set_ref_audio(local_path) return {"message": "success"} finally: if temp_file: try: os.remove(temp_file) except FileNotFoundError: pass _empty_cuda_cache() @APP.get("/set_gpt_weights") async def set_gpt_weights(weights_path: str | None = None): if not weights_path: return JSONResponse(status_code=400, content={"message": "gpt weight path is required"}) try: TTS_PIPELINE.init_t2s_weights(weights_path) return {"message": "success"} except Exception as exc: # noqa: BLE001 return JSONResponse(status_code=400, content={"message": str(exc)}) @APP.get("/set_sovits_weights") async def set_sovits_weights(weights_path: str | None = None): if not weights_path: return JSONResponse(status_code=400, content={"message": "sovits weight path is required"}) try: TTS_PIPELINE.init_vits_weights(weights_path) return {"message": "success"} except Exception as exc: # noqa: BLE001 return JSONResponse(status_code=400, content={"message": str(exc)}) # --------------------------------------------------------------------------- # Main entry point # --------------------------------------------------------------------------- if __name__ == "__main__": try: uvicorn.run(app=APP, host=HOST, port=PORT, workers=1) except Exception: # pragma: no‑cover traceback.print_exc() os.kill(os.getpid(), signal.SIGTERM) sys.exit(0)