|
import os |
|
import random |
|
import torch |
|
import torchaudio |
|
import torch.utils.data |
|
import torchaudio.functional as aF |
|
|
|
|
|
def amp_pha_stft(audio, n_fft, hop_size, win_size, center=True): |
|
hann_window = torch.hann_window(win_size).to(audio.device) |
|
stft_spec = torch.stft( |
|
audio, |
|
n_fft, |
|
hop_length=hop_size, |
|
win_length=win_size, |
|
window=hann_window, |
|
center=center, |
|
pad_mode="reflect", |
|
normalized=False, |
|
return_complex=True, |
|
) |
|
log_amp = torch.log(torch.abs(stft_spec) + 1e-4) |
|
pha = torch.angle(stft_spec) |
|
|
|
com = torch.stack((torch.exp(log_amp) * torch.cos(pha), torch.exp(log_amp) * torch.sin(pha)), dim=-1) |
|
|
|
return log_amp, pha, com |
|
|
|
|
|
def amp_pha_istft(log_amp, pha, n_fft, hop_size, win_size, center=True): |
|
amp = torch.exp(log_amp) |
|
com = torch.complex(amp * torch.cos(pha), amp * torch.sin(pha)) |
|
hann_window = torch.hann_window(win_size).to(com.device) |
|
audio = torch.istft(com, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window, center=center) |
|
|
|
return audio |
|
|
|
|
|
def get_dataset_filelist(a): |
|
with open(a.input_training_file, "r", encoding="utf-8") as fi: |
|
training_indexes = [x.split("|")[0] for x in fi.read().split("\n") if len(x) > 0] |
|
|
|
with open(a.input_validation_file, "r", encoding="utf-8") as fi: |
|
validation_indexes = [x.split("|")[0] for x in fi.read().split("\n") if len(x) > 0] |
|
|
|
return training_indexes, validation_indexes |
|
|
|
|
|
class Dataset(torch.utils.data.Dataset): |
|
def __init__( |
|
self, |
|
training_indexes, |
|
wavs_dir, |
|
segment_size, |
|
hr_sampling_rate, |
|
lr_sampling_rate, |
|
split=True, |
|
shuffle=True, |
|
n_cache_reuse=1, |
|
device=None, |
|
): |
|
self.audio_indexes = training_indexes |
|
random.seed(1234) |
|
if shuffle: |
|
random.shuffle(self.audio_indexes) |
|
self.wavs_dir = wavs_dir |
|
self.segment_size = segment_size |
|
self.hr_sampling_rate = hr_sampling_rate |
|
self.lr_sampling_rate = lr_sampling_rate |
|
self.split = split |
|
self.cached_wav = None |
|
self.n_cache_reuse = n_cache_reuse |
|
self._cache_ref_count = 0 |
|
self.device = device |
|
|
|
def __getitem__(self, index): |
|
filename = self.audio_indexes[index] |
|
if self._cache_ref_count == 0: |
|
audio, orig_sampling_rate = torchaudio.load(os.path.join(self.wavs_dir, filename + ".wav")) |
|
self.cached_wav = audio |
|
self._cache_ref_count = self.n_cache_reuse |
|
else: |
|
audio = self.cached_wav |
|
self._cache_ref_count -= 1 |
|
|
|
if orig_sampling_rate == self.hr_sampling_rate: |
|
audio_hr = audio |
|
else: |
|
audio_hr = aF.resample(audio, orig_freq=orig_sampling_rate, new_freq=self.hr_sampling_rate) |
|
|
|
audio_lr = aF.resample(audio, orig_freq=orig_sampling_rate, new_freq=self.lr_sampling_rate) |
|
audio_lr = aF.resample(audio_lr, orig_freq=self.lr_sampling_rate, new_freq=self.hr_sampling_rate) |
|
audio_lr = audio_lr[:, : audio_hr.size(1)] |
|
|
|
if self.split: |
|
if audio_hr.size(1) >= self.segment_size: |
|
max_audio_start = audio_hr.size(1) - self.segment_size |
|
audio_start = random.randint(0, max_audio_start) |
|
audio_hr = audio_hr[:, audio_start : audio_start + self.segment_size] |
|
audio_lr = audio_lr[:, audio_start : audio_start + self.segment_size] |
|
else: |
|
audio_hr = torch.nn.functional.pad(audio_hr, (0, self.segment_size - audio_hr.size(1)), "constant") |
|
audio_lr = torch.nn.functional.pad(audio_lr, (0, self.segment_size - audio_lr.size(1)), "constant") |
|
|
|
return (audio_hr.squeeze(), audio_lr.squeeze()) |
|
|
|
def __len__(self): |
|
return len(self.audio_indexes) |
|
|