File size: 11,842 Bytes
955f8d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import argparse
import os
import sys
import shutil
import random
import numpy as np
import time
import copy
import math
import matplotlib.pyplot as plt

import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.autograd import Variable
import transformers
from transformers import GPT2TokenizerFast

# ---------------------------
# Utility masks & helpers
# ---------------------------

def subsequent_mask(size):
    """Mask out subsequent positions for autoregressive decoding."""
    attn_shape = (1, size, size)
    mask = torch.triu(torch.ones(attn_shape), diagonal=1).bool()
    return mask


def read_corpus(filename, tokenizer):
    """Tokenise a plain‑text corpus into a single long id sequence."""
    seq = []
    with open(filename, "rt") as f:
        for line in f:
            line = line.rstrip("\n")
            tokens = tokenizer(line)
            seq.extend(tokens["input_ids"])
    return seq

# ---------------------------
# Embedding & positional code
# ---------------------------

class Embedder(nn.Module):
    def __init__(self, vocab_size, d_model):
        super().__init__()
        self.d_model = d_model
        self.embed = nn.Embedding(vocab_size, d_model)

    def forward(self, x):
        return self.embed(x.long())


class PositionalEncoder(nn.Module):
    def __init__(self, d_model, max_seq_len: int = 4096, dropout: float = 0.1):
        super().__init__()
        self.d_model = d_model
        self.dropout = nn.Dropout(dropout)

        pe = torch.zeros(max_seq_len, d_model)
        position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer("pe", pe)

    def forward(self, x):
        x = x * math.sqrt(self.d_model)
        seq_len = x.size(1)
        x = x + self.pe[:, :seq_len]
        return self.dropout(x)


class Norm(nn.Module):
    """Layer‑norm with learnable gain/bias (identical to nn.LayerNorm but explicit)."""

    def __init__(self, d_model: int, eps: float = 1e-6):
        super().__init__()
        self.size = d_model
        self.alpha = nn.Parameter(torch.ones(d_model))
        self.bias = nn.Parameter(torch.zeros(d_model))
        self.eps = eps

    def forward(self, x):
        return self.alpha * (x - x.mean(dim=-1, keepdim=True)) / (x.std(dim=-1, keepdim=True) + self.eps) + self.bias

# ---------------------------
# Attention (Euclidean metric)
# ---------------------------

def euclidean_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, d_k: int, mask=None, dropout=None):
    """Scaled Euclidean‑distance attention.

    Attention weights are computed from *negative scaled squared Euclidean distances*:
        score_{ij} = -||q_i - k_j||^2 / sqrt(d_k)
    A softmax over the key dimension then yields the usual attention distribution.
    """
    # q, k, v: (bs, h, len, d_k)
    # Compute ||q||^2 and ||k||^2 terms
    q_norm = (q ** 2).sum(dim=-1, keepdim=True)  # (bs, h, len_q, 1)
    k_norm = (k ** 2).sum(dim=-1).unsqueeze(-2)   # (bs, h, 1, len_k)
    # Pairwise squared distances via (a-b)^2 = a^2 + b^2 - 2ab
    scores = q_norm + k_norm - 2 * torch.matmul(q, k.transpose(-2, -1))  # (bs, h, len_q, len_k)
    scores = -scores / math.sqrt(d_k)  # negate & scale so that *smaller distance => larger score*

    if mask is not None:
        mask = mask.unsqueeze(1)  # broadcast across heads
        scores = scores.masked_fill(mask == 0, -1e9)

    attn = F.softmax(scores, dim=-1)
    if dropout is not None:
        attn = dropout(attn)
    output = torch.matmul(attn, v)
    return output


class MultiHeadAttention(nn.Module):
    def __init__(self, heads: int, d_model: int, dropout: float = 0.1):
        super().__init__()
        assert d_model % heads == 0, "d_model must be divisible by heads"
        self.d_k = d_model // heads
        self.h = heads

        self.q_linear = nn.Linear(d_model, d_model)
        self.k_linear = nn.Linear(d_model, d_model)
        self.v_linear = nn.Linear(d_model, d_model)
        self.dropout = nn.Dropout(dropout)
        self.out = nn.Linear(d_model, d_model)

    def forward(self, q, k, v, mask=None):
        bs = q.size(0)

        # project and split multi‑head
        k = self.k_linear(k).view(bs, -1, self.h, self.d_k).transpose(1, 2)  # (bs, h, len, d_k)
        q = self.q_linear(q).view(bs, -1, self.h, self.d_k).transpose(1, 2)
        v = self.v_linear(v).view(bs, -1, self.h, self.d_k).transpose(1, 2)

        # Euclidean attention
        scores = euclidean_attention(q, k, v, self.d_k, mask, self.dropout)

        # merge heads
        concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.h * self.d_k)
        return self.out(concat)

# ---------------------------
# Feed‑forward & decoder
# ---------------------------

class FeedForward(nn.Module):
    def __init__(self, d_model: int, d_ff: int = 2048, dropout: float = 0.1):
        super().__init__()
        self.linear_1 = nn.Linear(d_model, d_ff)
        self.dropout = nn.Dropout(dropout)
        self.linear_2 = nn.Linear(d_ff, d_model)

    def forward(self, x):
        return self.linear_2(self.dropout(F.relu(self.linear_1(x))))


def get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])


class DecoderLayer(nn.Module):
    def __init__(self, d_model: int, heads: int, dropout: float = 0.1):
        super().__init__()
        self.norm_1 = Norm(d_model)
        self.norm_2 = Norm(d_model)
        self.attn = MultiHeadAttention(heads, d_model, dropout)
        self.ff = FeedForward(d_model, dropout=dropout)
        self.dropout_1 = nn.Dropout(dropout)
        self.dropout_2 = nn.Dropout(dropout)

    def forward(self, x, trg_mask):
        x2 = self.norm_1(x)
        x = x + self.dropout_1(self.attn(x2, x2, x2, trg_mask))
        x2 = self.norm_2(x)
        x = x + self.dropout_2(self.ff(x2))
        return x


class Decoder(nn.Module):
    def __init__(self, vocab_size: int, d_model: int, N: int, heads: int, dropout: float):
        super().__init__()
        self.embed = Embedder(vocab_size, d_model)
        self.pe = PositionalEncoder(d_model, dropout=dropout)
        self.layers = get_clones(DecoderLayer(d_model, heads, dropout), N)
        self.norm = Norm(d_model)

    def forward(self, x, trg_mask):
        x = self.embed(x)
        x = self.pe(x)
        for layer in self.layers:
            x = layer(x, trg_mask)
        return self.norm(x)


class GPT2LM(nn.Module):
    def __init__(self, vocab_size: int, d_model: int, N: int, heads: int, dropout: float, tie_weights: bool = False):
        super().__init__()
        self.decoder = Decoder(vocab_size, d_model, N, heads, dropout)
        self.out = nn.Linear(d_model, vocab_size)
        if tie_weights:
            self.out.weight = self.decoder.embed.embed.weight
            print("✅ Tied embeddings enabled.")

    def forward(self, x, mask):
        return self.out(self.decoder(x, mask))

# ---------------------------
# Data batcher
# ---------------------------

def batchify(data, batch_size, seq_len):
    nbatch = len(data) // batch_size
    data = torch.tensor(data[: nbatch * batch_size], dtype=torch.long)
    data = data.view(batch_size, -1)
    for i in range(0, data.size(1) - 1, seq_len):
        seq_len_i = min(seq_len, data.size(1) - 1 - i)
        src = data[:, i : i + seq_len_i]
        tgt = data[:, i + 1 : i + 1 + seq_len_i]
        yield src, tgt

# ---------------------------
# Train / eval loops
# ---------------------------

def train_model(model, opt):
    print("Starting training (Euclidean attention)…")
    model.train()
    train_ppls, valid_ppls = [], []

    for epoch in range(opt.epochs):
        total_loss, batches = 0.0, 0
        for src, tgt in batchify(opt.train, opt.batchsize, opt.seqlen):
            src, tgt = src.to(opt.device), tgt.to(opt.device)
            mask = subsequent_mask(src.size(1)).to(opt.device)

            output = model(src, mask)
            loss = F.cross_entropy(output.view(-1, opt.vocab_size), tgt.reshape(-1), ignore_index=opt.src_pad)

            opt.optimizer.zero_grad()
            loss.backward()
            opt.optimizer.step()

            total_loss += loss.item()
            batches += 1

        avg_loss = total_loss / batches
        train_ppl = math.exp(avg_loss)
        train_ppls.append(train_ppl)
        print(f"Epoch {epoch+1}/{opt.epochs}  •  Train PPL: {train_ppl:.2f}")

        valid_ppl = evaluate(model, opt.valid, opt, tag=f"valid‑e{epoch+1}")
        valid_ppls.append(valid_ppl)

    # --- bookkeeping ---
    dir_name = os.path.join("saved", opt.dir_name)
    os.makedirs(dir_name, exist_ok=True)

    torch.save(model.state_dict(), os.path.join(dir_name, "gpt2lm_euclid.pth"))

    plt.plot(range(1, opt.epochs + 1), train_ppls, label="Train PPL")
    plt.plot(range(1, opt.epochs + 1), valid_ppls, label="Valid PPL")
    plt.xlabel("Epoch"); plt.ylabel("Perplexity"); plt.title("Euclidean‑Attention GPT‑2 on WikiText‑2")
    plt.legend()
    plt.savefig(os.path.join(dir_name, "learning_curve.png"))
    plt.close()

    with open(os.path.join(dir_name, "perplexity_log.txt"), "w") as f:
        for i in range(opt.epochs):
            f.write(f"Epoch {i+1}: Train {train_ppls[i]:.2f}  Valid {valid_ppls[i]:.2f}\n")


def evaluate(model, data, opt, tag="valid"):
    model.eval()
    total_loss, batches = 0.0, 0
    with torch.no_grad():
        for src, tgt in batchify(data, opt.batchsize, opt.seqlen):
            src, tgt = src.to(opt.device), tgt.to(opt.device)
            mask = subsequent_mask(src.size(1)).to(opt.device)
            output = model(src, mask)
            loss = F.cross_entropy(output.view(-1, opt.vocab_size), tgt.reshape(-1), ignore_index=opt.src_pad)
            total_loss += loss.item()
            batches += 1
    ppl = math.exp(total_loss / batches)
    print(f"{tag.capitalize()} PPL: {ppl:.2f}")
    model.train()
    return ppl

# ---------------------------
# Main entry
# ---------------------------

def main():
    random.seed(10)

    parser = argparse.ArgumentParser()
    parser.add_argument("-no_cuda", action="store_true")
    parser.add_argument("-epochs", type=int, default=20)
    parser.add_argument("-d_model", type=int, default=512)
    parser.add_argument("-n_layers", type=int, default=6)
    parser.add_argument("-heads", type=int, default=8)
    parser.add_argument("-dropout", type=float, default=0.1)
    parser.add_argument("-batchsize", type=int, default=1)
    parser.add_argument("-lr", type=float, default=1e-5)
    parser.add_argument("-seqlen", type=int, default=512)
    parser.add_argument("-tied", type=int, default=1)
    parser.add_argument("-dir_name", type=str, default="model_euclid")
    opt = parser.parse_args()

    opt.device = torch.device("cuda:0" if (not opt.no_cuda and torch.cuda.is_available()) else "cpu")

    tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
    opt.train = read_corpus("wiki2.train.txt", tokenizer)
    opt.valid = read_corpus("wiki2.valid.txt", tokenizer)
    opt.test = read_corpus("wiki2.test.txt", tokenizer)

    opt.vocab_size = 50257
    opt.src_pad = opt.trg_pad = 0

    model = GPT2LM(opt.vocab_size, opt.d_model, opt.n_layers, opt.heads, opt.dropout, tie_weights=(opt.tied == 1)).to(opt.device)
    print(f"Model parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.1f}M")

    opt.optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr, betas=(0.9, 0.98), eps=1e-9)

    train_model(model, opt)

    evaluate(model, opt.test, opt, tag="test")


if __name__ == "__main__":
    main()