|
from typing import Union, Literal |
|
from tqdm import tqdm |
|
import numpy as np |
|
import os, csv |
|
from sentence_transformers.cross_encoder.evaluation import CrossEncoderNanoBEIREvaluator, CrossEncoderRerankingEvaluator |
|
from sentence_transformers.util import is_datasets_available |
|
|
|
from gliclass import ZeroShotClassificationPipeline, ZeroShotClassificationWithLabelsChunkingPipeline |
|
|
|
import logging |
|
logger = logging.getLogger(__name__) |
|
|
|
DatasetNameType = Literal[ |
|
"climatefever", |
|
"dbpedia", |
|
"fever", |
|
"fiqa2018", |
|
"hotpotqa", |
|
"msmarco", |
|
"nfcorpus", |
|
"nq", |
|
"quoraretrieval", |
|
"scidocs", |
|
"arguana", |
|
"scifact", |
|
"touche2020", |
|
] |
|
|
|
dataset_name_to_id = { |
|
"climatefever": "sentence-transformers/NanoClimateFEVER-bm25", |
|
"dbpedia": "sentence-transformers/NanoDBPedia-bm25", |
|
"fever": "sentence-transformers/NanoFEVER-bm25", |
|
"fiqa2018": "sentence-transformers/NanoFiQA2018-bm25", |
|
"hotpotqa": "sentence-transformers/NanoHotpotQA-bm25", |
|
"msmarco": "sentence-transformers/NanoMSMARCO-bm25", |
|
"nfcorpus": "sentence-transformers/NanoNFCorpus-bm25", |
|
"nq": "sentence-transformers/NanoNQ-bm25", |
|
"quoraretrieval": "sentence-transformers/NanoQuoraRetrieval-bm25", |
|
"scidocs": "sentence-transformers/NanoSCIDOCS-bm25", |
|
"arguana": "sentence-transformers/NanoArguAna-bm25", |
|
"scifact": "sentence-transformers/NanoSciFact-bm25", |
|
"touche2020": "sentence-transformers/NanoTouche2020-bm25", |
|
} |
|
|
|
dataset_name_to_human_readable = { |
|
"climatefever": "ClimateFEVER", |
|
"dbpedia": "DBPedia", |
|
"fever": "FEVER", |
|
"fiqa2018": "FiQA2018", |
|
"hotpotqa": "HotpotQA", |
|
"msmarco": "MSMARCO", |
|
"nfcorpus": "NFCorpus", |
|
"nq": "NQ", |
|
"quoraretrieval": "QuoraRetrieval", |
|
"scidocs": "SCIDOCS", |
|
"arguana": "ArguAna", |
|
"scifact": "SciFact", |
|
"touche2020": "Touche2020", |
|
} |
|
|
|
class GLiClassRerankingEvaluator(CrossEncoderRerankingEvaluator): |
|
def __call__( |
|
self, model: Union[ZeroShotClassificationPipeline|ZeroShotClassificationWithLabelsChunkingPipeline], output_path: str = None, epoch: int = -1, steps: int = -1, labels_chunk_size: int = -1 |
|
) -> dict[str, float]: |
|
|
|
if epoch != -1: |
|
if steps == -1: |
|
out_txt = f" after epoch {epoch}" |
|
else: |
|
out_txt = f" in epoch {epoch} after {steps} steps" |
|
else: |
|
out_txt = "" |
|
|
|
logger.info(f"GLiClassRerankingEvaluator: Evaluating the model on the {self.name} dataset{out_txt}:") |
|
|
|
base_mrr_scores = [] |
|
base_ndcg_scores = [] |
|
base_ap_scores = [] |
|
all_mrr_scores = [] |
|
all_ndcg_scores = [] |
|
all_ap_scores = [] |
|
num_queries = 0 |
|
num_positives = [] |
|
num_negatives = [] |
|
for instance in tqdm(self.samples, desc="Evaluating samples", disable=not self.show_progress_bar, leave=False): |
|
if "query" not in instance: |
|
raise ValueError("GLiClassRerankingEvaluator requires a 'query' key in each sample.") |
|
if "positive" not in instance: |
|
raise ValueError("GLiClassRerankingEvaluator requires a 'positive' key in each sample.") |
|
if ("negative" in instance and "documents" in instance) or ( |
|
"negative" not in instance and "documents" not in instance |
|
): |
|
raise ValueError( |
|
"GLiClassRerankingEvaluator requires exactly one of 'negative' and 'documents' in each sample." |
|
) |
|
|
|
query = instance["query"] |
|
positive = instance["positive"] |
|
if isinstance(positive, str): |
|
positive = [positive] |
|
|
|
negative = instance.get("negative", None) |
|
documents = instance.get("documents", None) |
|
|
|
if documents: |
|
base_is_relevant = [int(sample in positive) for sample in documents] |
|
if sum(base_is_relevant) == 0: |
|
base_mrr, base_ndcg, base_ap = 0, 0, 0 |
|
else: |
|
|
|
base_is_relevant += [1] * (len(positive) - sum(base_is_relevant)) |
|
base_pred_scores = np.array(range(len(base_is_relevant), 0, -1)) |
|
base_mrr, base_ndcg, base_ap = self.compute_metrics(base_is_relevant, base_pred_scores) |
|
base_mrr_scores.append(base_mrr) |
|
base_ndcg_scores.append(base_ndcg) |
|
base_ap_scores.append(base_ap) |
|
|
|
if self.always_rerank_positives: |
|
docs = positive + [doc for doc in documents if doc not in positive] |
|
is_relevant = [1] * len(positive) + [0] * (len(docs) - len(positive)) |
|
else: |
|
docs = documents |
|
is_relevant = [int(sample in positive) for sample in documents] |
|
else: |
|
docs = positive + negative |
|
is_relevant = [1] * len(positive) + [0] * len(negative) |
|
|
|
num_queries += 1 |
|
|
|
num_positives.append(len(positive)) |
|
num_negatives.append(len(is_relevant) - sum(is_relevant)) |
|
|
|
if sum(is_relevant) == 0: |
|
all_mrr_scores.append(0) |
|
all_ndcg_scores.append(0) |
|
all_ap_scores.append(0) |
|
continue |
|
|
|
if labels_chunk_size>0 and isinstance(model, ZeroShotClassificationWithLabelsChunkingPipeline): |
|
gliclass_outputs = model(query, docs, threshold=0.0, labels_chunk_size=labels_chunk_size) |
|
else: |
|
gliclass_outputs = model(query, docs, threshold=0.0) |
|
|
|
pred_scores = np.array([item['score'] for item in gliclass_outputs[0]]) |
|
|
|
if num_ignored_positives := len(is_relevant) - len(pred_scores): |
|
pred_scores = np.concatenate([pred_scores, np.zeros(num_ignored_positives)]) |
|
|
|
mrr, ndcg, ap = self.compute_metrics(is_relevant, pred_scores) |
|
|
|
all_mrr_scores.append(mrr) |
|
all_ndcg_scores.append(ndcg) |
|
all_ap_scores.append(ap) |
|
|
|
mean_mrr = np.mean(all_mrr_scores) |
|
mean_ndcg = np.mean(all_ndcg_scores) |
|
mean_ap = np.mean(all_ap_scores) |
|
metrics = { |
|
"map": mean_ap, |
|
f"mrr@{self.at_k}": mean_mrr, |
|
f"ndcg@{self.at_k}": mean_ndcg, |
|
} |
|
|
|
logger.info( |
|
f"Queries: {num_queries}\t" |
|
f"Positives: Min {np.min(num_positives):.1f}, Mean {np.mean(num_positives):.1f}, Max {np.max(num_positives):.1f}\t" |
|
f"Negatives: Min {np.min(num_negatives):.1f}, Mean {np.mean(num_negatives):.1f}, Max {np.max(num_negatives):.1f}" |
|
) |
|
if documents: |
|
mean_base_mrr = np.mean(base_mrr_scores) |
|
mean_base_ndcg = np.mean(base_ndcg_scores) |
|
mean_base_ap = np.mean(base_ap_scores) |
|
base_metrics = { |
|
"base_map": mean_base_ap, |
|
f"base_mrr@{self.at_k}": mean_base_mrr, |
|
f"base_ndcg@{self.at_k}": mean_base_ndcg, |
|
} |
|
logger.info(f"{' ' * len(str(self.at_k))} Base -> Reranked") |
|
logger.info(f"MAP:{' ' * len(str(self.at_k))} {mean_base_ap * 100:.2f} -> {mean_ap * 100:.2f}") |
|
logger.info(f"MRR@{self.at_k}: {mean_base_mrr * 100:.2f} -> {mean_mrr * 100:.2f}") |
|
logger.info(f"NDCG@{self.at_k}: {mean_base_ndcg * 100:.2f} -> {mean_ndcg * 100:.2f}") |
|
|
|
model_card_metrics = { |
|
"map": f"{mean_ap:.4f} ({mean_ap - mean_base_ap:+.4f})", |
|
f"mrr@{self.at_k}": f"{mean_mrr:.4f} ({mean_mrr - mean_base_mrr:+.4f})", |
|
f"ndcg@{self.at_k}": f"{mean_ndcg:.4f} ({mean_ndcg - mean_base_ndcg:+.4f})", |
|
} |
|
model_card_metrics = self.prefix_name_to_metrics(model_card_metrics, self.name) |
|
|
|
metrics.update(base_metrics) |
|
metrics = self.prefix_name_to_metrics(metrics, self.name) |
|
else: |
|
logger.info(f"MAP:{' ' * len(str(self.at_k))} {mean_ap * 100:.2f}") |
|
logger.info(f"MRR@{self.at_k}: {mean_mrr * 100:.2f}") |
|
logger.info(f"NDCG@{self.at_k}: {mean_ndcg * 100:.2f}") |
|
|
|
metrics = self.prefix_name_to_metrics(metrics, self.name) |
|
self.store_metrics_in_model_card_data(model, metrics, epoch, steps) |
|
|
|
if output_path is not None and self.write_csv: |
|
csv_path = os.path.join(output_path, self.csv_file) |
|
output_file_exists = os.path.isfile(csv_path) |
|
with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: |
|
writer = csv.writer(f) |
|
if not output_file_exists: |
|
writer.writerow(self.csv_headers) |
|
|
|
writer.writerow([epoch, steps, mean_ap, mean_mrr, mean_ndcg]) |
|
|
|
return metrics |
|
|
|
class GLiClassNanoBEIREvaluator(CrossEncoderNanoBEIREvaluator): |
|
def _load_dataset(self, dataset_name, **ir_evaluator_kwargs) -> CrossEncoderRerankingEvaluator: |
|
if not is_datasets_available(): |
|
raise ValueError( |
|
"datasets is not available. Please install it to use the CrossEncoderNanoBEIREvaluator via `pip install datasets`." |
|
) |
|
from datasets import load_dataset |
|
|
|
dataset_path = dataset_name_to_id[dataset_name.lower()] |
|
corpus = load_dataset(dataset_path, "corpus", split="train") |
|
corpus_mapping = dict(zip(corpus["_id"], corpus["text"])) |
|
queries = load_dataset(dataset_path, "queries", split="train") |
|
query_mapping = dict(zip(queries["_id"], queries["text"])) |
|
relevance = load_dataset(dataset_path, "relevance", split="train") |
|
|
|
def mapper(sample, corpus_mapping: dict[str, str], query_mapping: dict[str, str], rerank_k: int): |
|
query = query_mapping[sample["query-id"]] |
|
positives = [corpus_mapping[positive_id] for positive_id in sample["positive-corpus-ids"]] |
|
documents = [corpus_mapping[document_id] for document_id in sample["bm25-ranked-ids"][:rerank_k]] |
|
return { |
|
"query": query, |
|
"positive": positives, |
|
"documents": documents, |
|
} |
|
|
|
relevance = relevance.map( |
|
mapper, |
|
fn_kwargs={"corpus_mapping": corpus_mapping, "query_mapping": query_mapping, "rerank_k": self.rerank_k}, |
|
) |
|
|
|
human_readable_name = self._get_human_readable_name(dataset_name) |
|
return GLiClassRerankingEvaluator( |
|
samples=list(relevance), |
|
name=human_readable_name, |
|
**ir_evaluator_kwargs, |
|
) |
|
|
|
def __call__( |
|
self, model: Union[ZeroShotClassificationPipeline|ZeroShotClassificationWithLabelsChunkingPipeline], output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs |
|
) -> dict[str, float]: |
|
per_metric_results = {} |
|
per_dataset_results = {} |
|
if epoch != -1: |
|
if steps == -1: |
|
out_txt = f" after epoch {epoch}" |
|
else: |
|
out_txt = f" in epoch {epoch} after {steps} steps" |
|
else: |
|
out_txt = "" |
|
logger.info(f"NanoBEIR Evaluation of the model on {self.dataset_names} dataset{out_txt}:") |
|
|
|
for evaluator in tqdm(self.evaluators, desc="Evaluating datasets", disable=not self.show_progress_bar): |
|
logger.info(f"Evaluating {evaluator.name}") |
|
evaluation = evaluator(model, output_path, epoch, steps) |
|
for k in evaluation: |
|
dataset, _rerank_k, metric = k.split("_", maxsplit=2) |
|
if metric not in per_metric_results: |
|
per_metric_results[metric] = [] |
|
per_dataset_results[f"{dataset}_R{self.rerank_k}_{metric}"] = evaluation[k] |
|
per_metric_results[metric].append(evaluation[k]) |
|
logger.info("") |
|
|
|
agg_results = {} |
|
for metric in per_metric_results: |
|
agg_results[metric] = self.aggregate_fn(per_metric_results[metric]) |
|
|
|
if output_path is not None and self.write_csv: |
|
csv_path = os.path.join(output_path, self.csv_file) |
|
if not os.path.isfile(csv_path): |
|
fOut = open(csv_path, mode="w", encoding="utf-8") |
|
fOut.write(",".join(self.csv_headers)) |
|
fOut.write("\n") |
|
|
|
else: |
|
fOut = open(csv_path, mode="a", encoding="utf-8") |
|
|
|
output_data = [ |
|
epoch, |
|
steps, |
|
agg_results["map"], |
|
agg_results[f"mrr@{self.at_k}"], |
|
agg_results[f"ndcg@{self.at_k}"], |
|
] |
|
|
|
fOut.write(",".join(map(str, output_data))) |
|
fOut.write("\n") |
|
fOut.close() |
|
|
|
logger.info("CrossEncoderNanoBEIREvaluator: Aggregated Results:") |
|
logger.info(f"{' ' * len(str(self.at_k))} Base -> Reranked") |
|
logger.info( |
|
f"MAP:{' ' * len(str(self.at_k))} {agg_results['base_map'] * 100:.2f} -> {agg_results['map'] * 100:.2f}" |
|
) |
|
logger.info( |
|
f"MRR@{self.at_k}: {agg_results[f'base_mrr@{self.at_k}'] * 100:.2f} -> {agg_results[f'mrr@{self.at_k}'] * 100:.2f}" |
|
) |
|
logger.info( |
|
f"NDCG@{self.at_k}: {agg_results[f'base_ndcg@{self.at_k}'] * 100:.2f} -> {agg_results[f'ndcg@{self.at_k}'] * 100:.2f}" |
|
) |
|
|
|
model_card_metrics = { |
|
"map": f"{agg_results['map']:.4f} ({agg_results['map'] - agg_results['base_map']:+.4f})", |
|
f"mrr@{self.at_k}": f"{agg_results[f'mrr@{self.at_k}']:.4f} ({agg_results[f'mrr@{self.at_k}'] - agg_results[f'base_mrr@{self.at_k}']:+.4f})", |
|
f"ndcg@{self.at_k}": f"{agg_results[f'ndcg@{self.at_k}']:.4f} ({agg_results[f'ndcg@{self.at_k}'] - agg_results[f'base_ndcg@{self.at_k}']:+.4f})", |
|
} |
|
|
|
agg_results = self.prefix_name_to_metrics(agg_results, self.name) |
|
per_dataset_results.update(agg_results) |
|
|
|
return per_dataset_results |
|
|
|
if __name__ == '__main__': |
|
from gliclass import GLiClassModel, ZeroShotClassificationPipeline, ZeroShotClassificationWithLabelsChunkingPipeline |
|
from transformers import AutoTokenizer |
|
|
|
chunk_pipeline = True |
|
|
|
model_path = "knowledgator/gliclass-modern-base-v2.0" |
|
|
|
model = GLiClassModel.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, add_prefix_space=True) |
|
if not chunk_pipeline: |
|
pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0', max_length=8192, progress_bar=False) |
|
else: |
|
pipeline = ZeroShotClassificationWithLabelsChunkingPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0', max_length=8192, progress_bar=False) |
|
|
|
dataset_names = ["msmarco", "nfcorpus", "nq"] |
|
evaluator = GLiClassNanoBEIREvaluator(dataset_names) |
|
results = evaluator(pipeline) |
|
print(results) |