File size: 5,657 Bytes
4aa3246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import re
import faiss
import numpy as np
import pandas as pd
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from sentence_transformers import SentenceTransformer, InputExample, losses
from FlagEmbedding import FlagReranker
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from datetime import datetime, timedelta


class BookSearch:
    def __init__(
        self,
        file_path="../data/book_data.csv",
        bert_model="paraphrase-MiniLM-L6-v2",
        index_path="vectors/fine_tuned_faiss_index_t.index",
        model_path="out/fine_tuned_sbert_model_test",
        retrain_period_days=30,
    ):
        self.file_path = file_path
        self.bert_model = bert_model
        self.index_path = index_path
        self.model_path = model_path
        self.model = None
        self.index = None
        self.retrain_period_days = retrain_period_days

    def preprocess_text(self, text):
        text = text.lower()
        text = re.sub(r"[^a-zA-Z\s]", "", text)
        tokens = word_tokenize(text)
        stop_words = set(stopwords.words("english"))
        tokens = [token for token in tokens if token not in stop_words]
        text = " ".join(tokens)
        return text

    def train_model(self):
        df = pd.read_csv(self.file_path)
        df = df.dropna(subset=["Title", "Description", "Genres"])

        df["Title"] = df["Title"].apply(self.preprocess_text)
        df["Description"] = df["Description"].apply(self.preprocess_text)
        df["Genres"] = df["Genres"].apply(self.preprocess_text)

        train, _ = train_test_split(df, test_size=0.2, random_state=42)

        train_examples = [
            InputExample(
                texts=[row["Title"], row["Genres"], row["Description"]], label=1.0
            )
            for _, row in train.iterrows()
        ]

        self.model = SentenceTransformer(self.bert_model)
        train_loader = DataLoader(train_examples, shuffle=True, batch_size=32)
        train_loss = losses.CosineSimilarityLoss(model=self.model)
        self.model.fit(train_objectives=[(train_loader, train_loss)], epochs=1)
        self.model.save(self.model_path)

    def load_model(self):
        if not os.path.exists(self.model_path) or self._is_file_older_than(
            self.model_path, self.retrain_period_days
        ):
            self.train_model()
        else:
            self.model = SentenceTransformer(self.model_path)

    def create_index(self):
        if not os.path.exists(self.index_path) or self._is_file_older_than(
            self.index_path, self.retrain_period_days
        ):
            df = pd.read_csv(self.file_path)
            documents = df["Description"].apply(self.preprocess_text).tolist()
            if not self.model:
                self.load_model()
            document_embeddings = self.model.encode(documents, convert_to_tensor=False)
            self.index = faiss.IndexFlatL2(document_embeddings.size(1))
            self.index.add(document_embeddings)
            faiss.write_index(self.index, self.index_path)
        else:
            self.index = faiss.read_index(self.index_path)

    def semantic_search(self, query, k=5, rerank_k=3, flag_threshold=0):
        if not self.model:
            self.load_model()
        if not self.index:
            self.create_index()

        query_embedding = self.model.encode([query], convert_to_tensor=False)
        distances, indices = self.index.search(query_embedding, k + rerank_k)

        initial_indices = indices[0][:k]

        df = pd.read_csv(self.file_path)
        initial_documents = df.iloc[initial_indices][["Title", "Description", "Genres"]]
        genres_text = "".join(initial_documents["Genres"].to_list())

        initial_documents["Text"] = (
            initial_documents["Title"].str.lower()
            + " "
            + initial_documents["Description"].str.lower()
            + genres_text
        )
        initial_distances = distances[0][:k]

        initial_results = list(
            zip(
                initial_documents["Title"], initial_documents["Text"], initial_distances
            )
        )

        if flag_threshold:
            flag_reranker = FlagReranker("BAAI/bge-small-en-v1.5", use_fp16=True)
            flag_scores = [
                flag_reranker.compute_score([query, text])
                for _, text, _ in initial_results
            ]
            reranked_results = [
                (title, text, dist + flag_score)
                for title, text, dist, flag_score in zip(
                    initial_documents["Title"],
                    initial_documents["Text"],
                    initial_distances,
                    flag_scores,
                )
                if abs(flag_score) > flag_threshold
            ]
            reranked_results = sorted(
                reranked_results, key=lambda x: x[2], reverse=True
            )[:rerank_k]
        else:
            reranked_results = initial_results[:rerank_k]

        return reranked_results

    def _is_file_older_than(self, file_path, days):
        if os.path.exists(file_path):
            modification_time = os.path.getmtime(file_path)
            modification_datetime = datetime.fromtimestamp(modification_time)
            current_datetime = datetime.now()
            return (current_datetime - modification_datetime).days > days
        return True


book_search = BookSearch()
query = "Love and Fiction"
results = book_search.semantic_search(query)
for rank, (title, text, score) in enumerate(results, start=1):
    print(f"Rank {rank}: {title} (Score: {score})")