Update README.md
Browse files
README.md
CHANGED
@@ -3,39 +3,39 @@ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
|
3 |
library_name: transformers
|
4 |
license: mit
|
5 |
language:
|
6 |
-
- en
|
7 |
-
- pt
|
8 |
metrics:
|
9 |
-
- accuracy
|
10 |
-
new_version: lambdaindie/lambdai
|
11 |
pipeline_tag: text-generation
|
12 |
tags:
|
13 |
-
-
|
14 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
Tokens: até 512 por amostra
|
28 |
-
|
29 |
-
Batch: 20 por device
|
30 |
-
|
31 |
-
Epochs: 3
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
---
|
36 |
-
|
37 |
-
Exemplo de uso (Python)
|
38 |
|
|
|
39 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
40 |
|
41 |
model = AutoModelForCausalLM.from_pretrained("lambdaindie/lambdai")
|
@@ -43,16 +43,20 @@ tokenizer = AutoTokenizer.from_pretrained("lambdaindie/lambdai")
|
|
43 |
|
44 |
input_text = "Problema: Prove que 17 é um número primo."
|
45 |
inputs = tokenizer(input_text, return_tensors="pt")
|
|
|
46 |
output = model.generate(**inputs, max_new_tokens=100)
|
|
|
47 |
|
48 |
-
|
49 |
|
|
|
50 |
|
51 |
-
|
52 |
|
53 |
-
Sobre a Lambda
|
54 |
|
55 |
-
|
|
|
|
|
56 |
|
|
|
57 |
|
58 |
-
---
|
|
|
3 |
library_name: transformers
|
4 |
license: mit
|
5 |
language:
|
6 |
+
- en
|
7 |
+
- pt
|
8 |
metrics:
|
9 |
+
- accuracy
|
|
|
10 |
pipeline_tag: text-generation
|
11 |
tags:
|
12 |
+
- education
|
13 |
+
- logic
|
14 |
+
- math
|
15 |
+
- low-resource
|
16 |
+
- transformers
|
17 |
+
- open-source
|
18 |
+
- causal-lm
|
19 |
+
- lambdaindie
|
20 |
---
|
21 |
|
22 |
+
# lambdAI — Lightweight Math & Logic Reasoning Model
|
23 |
|
24 |
+
**lambdAI** is a compact, fine-tuned language model built on top of `TinyLlama-1.1B-Chat-v1.0`, designed for educational reasoning tasks in both Portuguese and English. It focuses on logic, number theory, and mathematics, delivering fast performance with minimal computational requirements.
|
25 |
|
26 |
+
## Model Architecture
|
27 |
|
28 |
+
- **Base Model**: TinyLlama-1.1B-Chat
|
29 |
+
- **Fine-Tuning Strategy**: LoRA (applied to `q_proj` and `v_proj`)
|
30 |
+
- **Quantization**: 8-bit (NF4 via `bnb_config`)
|
31 |
+
- **Dataset**: [`HuggingFaceH4/MATH`](https://huggingface.co/datasets/HuggingFaceH4/MATH) — subset: `number_theory`
|
32 |
+
- **Max Tokens per Sample**: 512
|
33 |
+
- **Batch Size**: 20 per device
|
34 |
+
- **Epochs**: 3
|
35 |
|
36 |
+
## Example Usage (Python)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
```python
|
39 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
40 |
|
41 |
model = AutoModelForCausalLM.from_pretrained("lambdaindie/lambdai")
|
|
|
43 |
|
44 |
input_text = "Problema: Prove que 17 é um número primo."
|
45 |
inputs = tokenizer(input_text, return_tensors="pt")
|
46 |
+
|
47 |
output = model.generate(**inputs, max_new_tokens=100)
|
48 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))```
|
49 |
|
50 |
+
About Lambda
|
51 |
|
52 |
+
Lambda is an indie tech startup founded by Marius Jabami in Angola, focused on AI-driven educational tools, automation, and lightweight software solutions. The lambdAI model is the first release in a planned series of educational LLMs optimized for reasoning, logic, and low-resource deployment.
|
53 |
|
54 |
+
Stay updated on the project at lambdaindie.github.io and huggingface.co/lambdaindie.
|
55 |
|
|
|
56 |
|
57 |
+
---
|
58 |
+
|
59 |
+
Developed with care by Marius Jabami — Powered by ambition and open source.
|
60 |
|
61 |
+
---
|
62 |
|
|