mariusjabami commited on
Commit
4c120d6
·
verified ·
1 Parent(s): e3435fb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -155
README.md CHANGED
@@ -1,202 +1,116 @@
1
  ---
2
- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
3
- library_name: peft
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
 
 
 
132
 
 
 
 
 
133
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.15.2
 
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ ---
4
+ license: mit
5
+ datasets:
6
+ - HuggingFaceH4/MATH
7
+ language:
8
+ - en
9
+ tags:
10
+ - math
11
+ - number-theory
12
+ - lora
13
+ - quantized
14
+ - tinyllama
15
+ - reasoning
16
+ - education
17
+ inference:
18
+ parameters:
19
+ max_new_tokens: 256
20
+ temperature: 0.7
21
+ top_p: 0.95
22
+ top_k: 50
23
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ <div align="center">
26
 
27
+ # lambdai · TinyLlama-1.1B finetuned on Number Theory
28
+ [![Lambda Logo](https://raw.githubusercontent.com/lambdaindie/assets/main/lambda-banner.png)](https://huggingface.co/lambdaindie)
29
 
30
+ </div>
31
 
32
+ **lambdai** é o primeiro modelo oficial da organização **Lambda (Λ)** uma startup solo angolana de pesquisa em IA liderada por Marius Jabami.
33
 
34
+ Esse modelo foi finetunado a partir do [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) usando **LoRA + quantização em 8 bits**, com foco em **raciocínio matemático simbólico**, especialmente **teoria dos números**.
35
 
36
+ ---
37
 
38
+ ## Dataset
39
 
40
+ Treinado com o subset `number_theory` do benchmark [HuggingFaceH4/MATH](https://huggingface.co/datasets/HuggingFaceH4/MATH), no split `test`, que contém problemas complexos de matemática com soluções detalhadas.
41
 
42
+ ---
43
 
44
+ ## Treinamento
45
 
46
+ **Parâmetros LoRA**:
47
+ - `r=8`, `alpha=16`
48
+ - `target_modules=["q_proj", "v_proj"]`
49
+ - `dropout=0.05`
50
+ - Quantização 8-bit (QLoRA)
51
 
52
+ **Formato de entrada:**
53
+ ```text
54
+ Problem: <descrição do problema>
55
+ Solution:
56
 
57
 
58
+ ---
59
 
60
+ Exemplo de uso
61
 
62
+ from transformers import AutoModelForCausalLM, AutoTokenizer
63
 
64
+ model = AutoModelForCausalLM.from_pretrained("lambdaindie/lambdai")
65
+ tokenizer = AutoTokenizer.from_pretrained("lambdaindie/lambdai")
66
 
67
+ prompt = "Problem: What is the smallest prime factor of 91?\nSolution:"
68
+ inputs = tokenizer(prompt, return_tensors="pt")
69
+ outputs = model.generate(**inputs, max_new_tokens=256)
70
 
71
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
72
 
 
 
 
 
 
73
 
74
+ ---
75
 
76
+ Aplicações
77
 
78
+ IA explicativa para matemática
79
 
80
+ Tutores autônomos com raciocínio passo a passo
81
 
82
+ Assistência em resolução simbólica
83
 
84
+ Agentes educacionais
85
 
86
+ Treinamento de reasoning agents
87
 
 
88
 
 
89
 
90
+ ---
91
 
92
+ Sobre a Lambda
93
 
94
+ Λ Lambda é uma startup indie fundada por Marius Jabami, com foco em IA educacional, modelos compactos e agentes autônomos. lambdai é parte do ΛCore, núcleo de pesquisa e experimentação em LLMs e raciocínio simbólico.
95
 
 
96
 
97
+ ---
98
 
99
+ Links
100
 
101
+ Lambda Indie @ Hugging Face
102
 
103
+ TinyLlama Base Model
104
 
105
+ Dataset: HuggingFaceH4/MATH
106
 
 
107
 
 
108
 
109
+ ---
110
 
111
+ Licença
112
 
113
+ MIT License uso livre para fins educacionais, de pesquisa ou pessoais.
114
 
115
+ ---
 
116