File size: 1,983 Bytes
95fc94b
 
 
 
 
 
 
5e59e06
3754e38
95fc94b
 
 
 
 
 
 
 
 
 
 
 
19981c9
95fc94b
19981c9
95fc94b
19981c9
95fc94b
19981c9
 
95fc94b
 
19981c9
 
 
 
 
 
95fc94b
0cbb30a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
license: apache-2.0
tags:
- text-to-image
---

# Text2Earth Model Card
This model card focuses on the model associated with the [**Text2Earth model**](https://github.com/Chen-Yang-Liu/Text2Earth).
Paper is [[**here**](https://arxiv.org/pdf/2501.00895)]

## Examples

Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Text2Earth in a simple and efficient manner.

```bash
pip install diffusers transformers accelerate scipy safetensors
```

Running the pipeline (if you don't swap the scheduler it will run with the default DDIM, in this example we are swapping it to EulerDiscreteScheduler):

```python
import torch
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler

model_id = "lcybuaa/Text2Earth"
# Running the pipeline (if you don't swap the scheduler it will run with the default DDIM, in this example we are swapping it to DPMSolverMultistepScheduler):
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, scheduler=scheduler, 
                                         custom_pipeline="pipeline_text2earth_diffusion", safety_checker=None)
pipe = pipe.to("cuda")
prompt = "Seven green circular farmlands are neatly arranged on the ground"
image = pipe(prompt,
             height=256,
             width=256,
             num_inference_steps=50, 
             guidance_scale=4.0).images[0]

image.save("circular.png")
```

## Citation
If you find this paper useful in your research, please consider citing:
```
@ARTICLE{10988859,
  author={Liu, Chenyang and Chen, Keyan and Zhao, Rui and Zou, Zhengxia and Shi, Zhenwei},
  journal={IEEE Geoscience and Remote Sensing Magazine}, 
  title={Text2Earth: Unlocking text-driven remote sensing image generation with a global-scale dataset and a foundation model}, 
  year={2025},
  volume={},
  number={},
  pages={2-23},
  doi={10.1109/MGRS.2025.3560455}}
```