from transformers.configuration_utils import PretrainedConfig from loguru import logger as logging class BuddyGPTConfig(PretrainedConfig): """ TinyLLM 配置文件 """ model_type = "buddygpt" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=151669, hidden_size=4096, intermediate_size=4096, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act="silu", num_seq_len=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=None, eos_token_id=None, tie_word_embeddings=False, rope_theta=10000.0, attention_dropout=0.0, _attn_implementation="sdpa", q_lora_rank: int = 16, qk_rope_head_dim: int = 4, kv_lora_rank: int = 16, v_head_dim: int = 16, qk_nope_head_dim: int = 12, n_expert=None, n_expert_per_token=2, n_group=2, n_topk_group=1, norm_topk_prob=True, routed_scaling_factor=0.2, scoring_func='sigmoid', topk_method='noaux_tc', moe_intermediate_size=10, n_shared_experts=2, **kwargs, ): self.vocab_size = vocab_size self.num_seq_len = num_seq_len self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_dropout = attention_dropout self._attn_implementation = _attn_implementation # mla self.q_lora_rank = q_lora_rank self.qk_rope_head_dim = qk_rope_head_dim self.kv_lora_rank = kv_lora_rank self.v_head_dim = v_head_dim self.qk_nope_head_dim = qk_nope_head_dim # moe self.n_expert = n_expert self.n_expert_per_token = n_expert_per_token self.n_group = n_group self.n_topk_group = n_topk_group self.norm_topk_prob = norm_topk_prob self.routed_scaling_factor=routed_scaling_factor self.scoring_func = scoring_func self.topk_method = topk_method self.moe_intermediate_size = moe_intermediate_size self.n_shared_experts = n_shared_experts super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs )