Upload SynthStroke synth_pseudo model
Browse files- README.md +90 -0
- model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: pytorch
|
4 |
+
tags:
|
5 |
+
- medical
|
6 |
+
- segmentation
|
7 |
+
- stroke
|
8 |
+
- neurology
|
9 |
+
- mri
|
10 |
+
pipeline_tag: image-segmentation
|
11 |
+
---
|
12 |
+
|
13 |
+
# SynthPseudo
|
14 |
+
|
15 |
+
Synthseg-style model trained on synthetic data derived from OASIS3 tissue maps and ATLAS binary lesion masks. Augmented with pseudo-labels from a private T1w dataset.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
- **Name**: SynthPseudo
|
20 |
+
- **Classes**: 0 (Background), 1 (Gray Matter), 2 (White Matter), 3 (Gray/White Matter Partial Volume), 4 (Cerebro-Spinal Fluid), 5 (Stroke)
|
21 |
+
- **Patch Size**: 192³
|
22 |
+
- **Voxel Spacing**: 1mm³
|
23 |
+
- **Input Channels**: 1
|
24 |
+
|
25 |
+
## Usage
|
26 |
+
|
27 |
+
### Loading from Hugging Face Hub
|
28 |
+
|
29 |
+
```python
|
30 |
+
import torch
|
31 |
+
from synthstroke_model import SynthStrokeModel
|
32 |
+
|
33 |
+
# Load the model from Hugging Face Hub
|
34 |
+
model = SynthStrokeModel.from_pretrained("liamchalcroft/synthstroke-synth-pseudo")
|
35 |
+
|
36 |
+
# Prepare your input (example shape: batch_size=1, channels=1, H, W, D)
|
37 |
+
input_tensor = torch.randn(1, 1, 192, 192, 192)
|
38 |
+
|
39 |
+
# Get predictions (with optional TTA for improved accuracy)
|
40 |
+
predictions = model.predict_segmentation(input_tensor, use_tta=True)
|
41 |
+
|
42 |
+
# Get tissue probability maps
|
43 |
+
background = predictions[:, 0] # Background
|
44 |
+
gray_matter = predictions[:, 1] # Gray Matter
|
45 |
+
white_matter = predictions[:, 2] # White Matter
|
46 |
+
partial_volume = predictions[:, 3] # Gray/White Matter PV
|
47 |
+
csf = predictions[:, 4] # Cerebro-Spinal Fluid
|
48 |
+
stroke = predictions[:, 5] # Stroke lesion
|
49 |
+
|
50 |
+
# Alternative: Get logits without TTA
|
51 |
+
logits = model.predict_segmentation(input_tensor, apply_softmax=False)
|
52 |
+
```
|
53 |
+
|
54 |
+
## Citation
|
55 |
+
|
56 |
+
```bibtex
|
57 |
+
@article{chalcroft2025synthetic,
|
58 |
+
title={Synthetic Data for Robust Stroke Segmentation},
|
59 |
+
author={Chalcroft, Liam and Pappas, Ioannis and Price, Cathy J. and Ashburner, John},
|
60 |
+
journal={Machine Learning for Biomedical Imaging},
|
61 |
+
volume={3},
|
62 |
+
pages={317--346},
|
63 |
+
year={2025},
|
64 |
+
publisher={Machine Learning for Biomedical Imaging},
|
65 |
+
doi={10.59275/j.melba.2025-f3g6},
|
66 |
+
url={https://www.melba-journal.org/papers/2025:014.html}
|
67 |
+
}
|
68 |
+
```
|
69 |
+
|
70 |
+
For the original arXiv preprint:
|
71 |
+
|
72 |
+
```bibtex
|
73 |
+
@article{Chalcroft_2025,
|
74 |
+
title={Synthetic Data for Robust Stroke Segmentation},
|
75 |
+
volume={3},
|
76 |
+
ISSN={2766-905X},
|
77 |
+
url={http://dx.doi.org/10.59275/j.melba.2025-f3g6},
|
78 |
+
DOI={10.59275/j.melba.2025-f3g6},
|
79 |
+
number={August 2025},
|
80 |
+
journal={Machine Learning for Biomedical Imaging},
|
81 |
+
publisher={Machine Learning for Biomedical Imaging},
|
82 |
+
author={Chalcroft, Liam and Pappas, Ioannis and Price, Cathy J. and Ashburner, John},
|
83 |
+
year={2025},
|
84 |
+
month=aug, pages={317–346}
|
85 |
+
}
|
86 |
+
```
|
87 |
+
|
88 |
+
## License
|
89 |
+
|
90 |
+
MIT License - see the [LICENSE](https://github.com/liamchalcroft/synthstroke/blob/main/LICENSE) file for details.
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea482afb1754326e4f1ee257f3e833ee2b7ce899dd083cd28233e47b3c345e04
|
3 |
+
size 74499236
|