New version
Browse files- __init__.py +66 -5
- activation.py +1 -1
- attention.py +5 -5
- embeddings.py +3 -3
- initialization.py +3 -3
- layers.py +6 -6
- loss.py +30 -0
- mlp.py +4 -4
- model.py +1684 -0
- normalization.py +1 -1
- options.py +6 -6
__init__.py
CHANGED
|
@@ -1,7 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
-
import os
|
| 3 |
-
import sys
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .attention import (
|
| 2 |
+
BertAlibiUnpadAttention,
|
| 3 |
+
BertAlibiUnpadSelfAttention,
|
| 4 |
+
BertSelfOutput,
|
| 5 |
+
FlexBertPaddedAttention,
|
| 6 |
+
FlexBertUnpadAttention,
|
| 7 |
+
)
|
| 8 |
+
from .embeddings import (
|
| 9 |
+
BertAlibiEmbeddings,
|
| 10 |
+
FlexBertAbsoluteEmbeddings,
|
| 11 |
+
FlexBertSansPositionEmbeddings,
|
| 12 |
+
)
|
| 13 |
+
from .layers import (
|
| 14 |
+
BertAlibiEncoder,
|
| 15 |
+
BertAlibiLayer,
|
| 16 |
+
BertResidualGLU,
|
| 17 |
+
FlexBertPaddedPreNormLayer,
|
| 18 |
+
FlexBertPaddedPostNormLayer,
|
| 19 |
+
FlexBertUnpadPostNormLayer,
|
| 20 |
+
FlexBertUnpadPreNormLayer,
|
| 21 |
+
)
|
| 22 |
+
from .model import (
|
| 23 |
+
BertLMPredictionHead,
|
| 24 |
+
BertModel,
|
| 25 |
+
BertForMaskedLM,
|
| 26 |
+
BertForSequenceClassification,
|
| 27 |
+
BertForMultipleChoice,
|
| 28 |
+
BertOnlyMLMHead,
|
| 29 |
+
BertOnlyNSPHead,
|
| 30 |
+
BertPooler,
|
| 31 |
+
BertPredictionHeadTransform,
|
| 32 |
+
FlexBertModel,
|
| 33 |
+
FlexBertForMaskedLM,
|
| 34 |
+
FlexBertForSequenceClassification,
|
| 35 |
+
FlexBertForMultipleChoice,
|
| 36 |
+
)
|
| 37 |
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
__all__ = [
|
| 40 |
+
"BertAlibiEmbeddings",
|
| 41 |
+
"BertAlibiEncoder",
|
| 42 |
+
"BertForMaskedLM",
|
| 43 |
+
"BertForSequenceClassification",
|
| 44 |
+
"BertForMultipleChoice",
|
| 45 |
+
"BertResidualGLU",
|
| 46 |
+
"BertAlibiLayer",
|
| 47 |
+
"BertLMPredictionHead",
|
| 48 |
+
"BertModel",
|
| 49 |
+
"BertOnlyMLMHead",
|
| 50 |
+
"BertOnlyNSPHead",
|
| 51 |
+
"BertPooler",
|
| 52 |
+
"BertPredictionHeadTransform",
|
| 53 |
+
"BertSelfOutput",
|
| 54 |
+
"BertAlibiUnpadAttention",
|
| 55 |
+
"BertAlibiUnpadSelfAttention",
|
| 56 |
+
"FlexBertPaddedAttention",
|
| 57 |
+
"FlexBertUnpadAttention",
|
| 58 |
+
"FlexBertAbsoluteEmbeddings",
|
| 59 |
+
"FlexBertSansPositionEmbeddings",
|
| 60 |
+
"FlexBertPaddedPreNormLayer",
|
| 61 |
+
"FlexBertPaddedPostNormLayer",
|
| 62 |
+
"FlexBertUnpadPostNormLayer",
|
| 63 |
+
"FlexBertUnpadPreNormLayer",
|
| 64 |
+
"FlexBertModel",
|
| 65 |
+
"FlexBertForMaskedLM",
|
| 66 |
+
"FlexBertForSequenceClassification",
|
| 67 |
+
"FlexBertForMultipleChoice",
|
| 68 |
+
]
|
activation.py
CHANGED
|
@@ -7,7 +7,7 @@
|
|
| 7 |
from collections import OrderedDict
|
| 8 |
from typing import Union
|
| 9 |
import torch.nn as nn
|
| 10 |
-
from configuration_bert import FlexBertConfig
|
| 11 |
|
| 12 |
|
| 13 |
class ClassInstantier(OrderedDict):
|
|
|
|
| 7 |
from collections import OrderedDict
|
| 8 |
from typing import Union
|
| 9 |
import torch.nn as nn
|
| 10 |
+
from .configuration_bert import FlexBertConfig
|
| 11 |
|
| 12 |
|
| 13 |
class ClassInstantier(OrderedDict):
|
attention.py
CHANGED
|
@@ -22,10 +22,10 @@ import logging
|
|
| 22 |
import math
|
| 23 |
|
| 24 |
import bert_padding
|
| 25 |
-
from configuration_bert import FlexBertConfig, maybe_add_padding
|
| 26 |
-
from normalization import get_norm_layer
|
| 27 |
-
from initialization import ModuleType, init_weights
|
| 28 |
-
import utils # noqa: F401
|
| 29 |
|
| 30 |
IMPL_USE_FLASH3 = False
|
| 31 |
IMPL_USE_FLASH2 = False
|
|
@@ -48,7 +48,7 @@ except ImportError:
|
|
| 48 |
|
| 49 |
try:
|
| 50 |
from flash_attn.layers.rotary import RotaryEmbedding # type: ignore
|
| 51 |
-
from rotary import UnpaddedRotaryEmbedding # type: ignore
|
| 52 |
|
| 53 |
except ImportError:
|
| 54 |
RotaryEmbedding = None
|
|
|
|
| 22 |
import math
|
| 23 |
|
| 24 |
import bert_padding
|
| 25 |
+
from .configuration_bert import FlexBertConfig, maybe_add_padding
|
| 26 |
+
from .normalization import get_norm_layer
|
| 27 |
+
from .initialization import ModuleType, init_weights
|
| 28 |
+
import src.utils # noqa: F401
|
| 29 |
|
| 30 |
IMPL_USE_FLASH3 = False
|
| 31 |
IMPL_USE_FLASH2 = False
|
|
|
|
| 48 |
|
| 49 |
try:
|
| 50 |
from flash_attn.layers.rotary import RotaryEmbedding # type: ignore
|
| 51 |
+
from .rotary import UnpaddedRotaryEmbedding # type: ignore
|
| 52 |
|
| 53 |
except ImportError:
|
| 54 |
RotaryEmbedding = None
|
embeddings.py
CHANGED
|
@@ -16,9 +16,9 @@ import torch
|
|
| 16 |
import torch.nn as nn
|
| 17 |
from typing import Optional
|
| 18 |
|
| 19 |
-
from configuration_bert import FlexBertConfig
|
| 20 |
-
from normalization import get_norm_layer
|
| 21 |
-
from initialization import ModuleType, init_weights
|
| 22 |
|
| 23 |
|
| 24 |
class BertAlibiEmbeddings(nn.Module):
|
|
|
|
| 16 |
import torch.nn as nn
|
| 17 |
from typing import Optional
|
| 18 |
|
| 19 |
+
from .configuration_bert import FlexBertConfig
|
| 20 |
+
from .normalization import get_norm_layer
|
| 21 |
+
from .initialization import ModuleType, init_weights
|
| 22 |
|
| 23 |
|
| 24 |
class BertAlibiEmbeddings(nn.Module):
|
initialization.py
CHANGED
|
@@ -14,10 +14,10 @@ from typing import Optional, Union
|
|
| 14 |
import torch
|
| 15 |
import torch.nn as nn
|
| 16 |
|
| 17 |
-
from utils import StrEnum
|
| 18 |
|
| 19 |
-
from configuration_bert import FlexBertConfig
|
| 20 |
-
from normalization import RMSNorm
|
| 21 |
|
| 22 |
__all__ = ["init_weights", "ModuleType", "InitFnType"]
|
| 23 |
|
|
|
|
| 14 |
import torch
|
| 15 |
import torch.nn as nn
|
| 16 |
|
| 17 |
+
from src.utils import StrEnum
|
| 18 |
|
| 19 |
+
from .configuration_bert import FlexBertConfig
|
| 20 |
+
from .normalization import RMSNorm
|
| 21 |
|
| 22 |
__all__ = ["init_weights", "ModuleType", "InitFnType"]
|
| 23 |
|
layers.py
CHANGED
|
@@ -22,12 +22,12 @@ import torch.nn as nn
|
|
| 22 |
|
| 23 |
import bert_padding
|
| 24 |
|
| 25 |
-
from activation import get_act_fn
|
| 26 |
-
from attention import FlexBertAttentionBase, BertAlibiUnpadAttention, get_attention_layer
|
| 27 |
-
from mlp import FlexBertMLPBase, BertResidualGLU, get_mlp_layer
|
| 28 |
-
from configuration_bert import FlexBertConfig, maybe_add_padding
|
| 29 |
-
from normalization import get_norm_layer
|
| 30 |
-
from initialization import ModuleType, init_weights
|
| 31 |
|
| 32 |
|
| 33 |
class BertAlibiLayer(nn.Module):
|
|
|
|
| 22 |
|
| 23 |
import bert_padding
|
| 24 |
|
| 25 |
+
from .activation import get_act_fn
|
| 26 |
+
from .attention import FlexBertAttentionBase, BertAlibiUnpadAttention, get_attention_layer
|
| 27 |
+
from .mlp import FlexBertMLPBase, BertResidualGLU, get_mlp_layer
|
| 28 |
+
from .configuration_bert import FlexBertConfig, maybe_add_padding
|
| 29 |
+
from .normalization import get_norm_layer
|
| 30 |
+
from .initialization import ModuleType, init_weights
|
| 31 |
|
| 32 |
|
| 33 |
class BertAlibiLayer(nn.Module):
|
loss.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
| 2 |
+
# License: Apache-2.0
|
| 3 |
+
|
| 4 |
+
import inspect
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from .configuration_bert import FlexBertConfig
|
| 7 |
+
|
| 8 |
+
try:
|
| 9 |
+
from flash_attn.losses.cross_entropy import CrossEntropyLoss
|
| 10 |
+
except ImportError:
|
| 11 |
+
CrossEntropyLoss = None
|
| 12 |
+
|
| 13 |
+
LOSS2CLS = {
|
| 14 |
+
"cross_entropy": nn.CrossEntropyLoss,
|
| 15 |
+
"binary_cross_entropy": nn.BCEWithLogitsLoss,
|
| 16 |
+
"mean_squared_error": nn.MSELoss,
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
if CrossEntropyLoss is not None:
|
| 20 |
+
LOSS2CLS["fa_cross_entropy"] = CrossEntropyLoss
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def get_loss_fn(config: FlexBertConfig) -> nn.Module:
|
| 24 |
+
try:
|
| 25 |
+
loss_class = LOSS2CLS[config.loss_function]
|
| 26 |
+
signature = inspect.signature(loss_class)
|
| 27 |
+
loss_kwargs = {k: v for k, v in config.loss_kwargs.items() if k in signature.parameters}
|
| 28 |
+
return loss_class(**loss_kwargs)
|
| 29 |
+
except KeyError:
|
| 30 |
+
raise ValueError(f"Invalid loss function type: {config.loss_function}, must be one of {LOSS2CLS.keys()}.")
|
mlp.py
CHANGED
|
@@ -16,10 +16,10 @@ from typing import Optional
|
|
| 16 |
import torch
|
| 17 |
import torch.nn as nn
|
| 18 |
|
| 19 |
-
from configuration_bert import FlexBertConfig
|
| 20 |
-
from activation import get_act_fn
|
| 21 |
-
from normalization import get_norm_layer
|
| 22 |
-
from initialization import ModuleType, init_weights
|
| 23 |
|
| 24 |
|
| 25 |
class BertResidualGLU(nn.Module):
|
|
|
|
| 16 |
import torch
|
| 17 |
import torch.nn as nn
|
| 18 |
|
| 19 |
+
from .configuration_bert import FlexBertConfig
|
| 20 |
+
from .activation import get_act_fn
|
| 21 |
+
from .normalization import get_norm_layer
|
| 22 |
+
from .initialization import ModuleType, init_weights
|
| 23 |
|
| 24 |
|
| 25 |
class BertResidualGLU(nn.Module):
|
model.py
ADDED
|
@@ -0,0 +1,1684 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
| 2 |
+
# License: Apache-2.0
|
| 3 |
+
|
| 4 |
+
# RMSNorm Implementation: Copyright Meta (from their Llama RMSNorm implementation)
|
| 5 |
+
# License: LLAMA 2 COMMUNITY LICENSE AGREEMENT
|
| 6 |
+
|
| 7 |
+
# Copyright 2022 Jonas Geiping
|
| 8 |
+
# License: MIT
|
| 9 |
+
|
| 10 |
+
# Copyright 2022 MosaicML Examples authors
|
| 11 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 12 |
+
|
| 13 |
+
# Copyright 2023 MosaicML Examples authors
|
| 14 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 15 |
+
|
| 16 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
| 17 |
+
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
| 18 |
+
# Copyright (c) 2023, Tri Dao.
|
| 19 |
+
|
| 20 |
+
"""Implements Mosaic BERT, with an eye towards the Hugging Face API.
|
| 21 |
+
|
| 22 |
+
Mosaic BERT improves performance over Hugging Face BERT through the following:
|
| 23 |
+
|
| 24 |
+
1. ALiBi. This architectural change removes positional embeddings and instead encodes positional
|
| 25 |
+
information through attention biases based on query-key position distance. It improves the effectiveness
|
| 26 |
+
of training with shorter sequence lengths by enabling extrapolation to longer sequences.
|
| 27 |
+
|
| 28 |
+
2. Gated Linear Units (GLU). This architectural change replaces the FFN component of the BERT layer
|
| 29 |
+
to improve overall expressiveness, providing better convergence properties.
|
| 30 |
+
|
| 31 |
+
3. Flash Attention. The MosaicBERT's self-attention layer makes use of Flash Attention, which dramatically
|
| 32 |
+
improves the speed of self-attention. Our implementation utilizes a bleeding edge implementation that
|
| 33 |
+
supports attention biases, which allows us to use Flash Attention with ALiBi.
|
| 34 |
+
|
| 35 |
+
4. Unpadding. Padding is often used to simplify batching across sequences of different lengths. Standard BERT
|
| 36 |
+
implementations waste computation on padded tokens. MosaicBERT internally unpads to reduce unnecessary computation
|
| 37 |
+
and improve speed. It does this without changing how the user interfaces with the model, thereby
|
| 38 |
+
preserving the simple API of standard implementations.
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
Currently, MosaicBERT is available for masked language modeling :class:`BertForMaskedLM` and sequence
|
| 42 |
+
classification :class:`BertForSequenceClassification`. We aim to expand this catalogue in future releases.
|
| 43 |
+
|
| 44 |
+
See :file:`./mosaic_bert.py` for utilities to simplify working with MosaicBERT in Composer, and for example usage
|
| 45 |
+
of the core Mosaic BERT classes.
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
import logging
|
| 49 |
+
import os
|
| 50 |
+
import sys
|
| 51 |
+
import warnings
|
| 52 |
+
from dataclasses import dataclass
|
| 53 |
+
from typing import List, Optional, Tuple, Union
|
| 54 |
+
|
| 55 |
+
# Add folder root to path to allow us to use relative imports regardless of what directory the script is run from
|
| 56 |
+
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
| 57 |
+
|
| 58 |
+
import torch
|
| 59 |
+
import torch.nn as nn
|
| 60 |
+
from einops import rearrange
|
| 61 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
| 62 |
+
from transformers.modeling_outputs import (
|
| 63 |
+
MaskedLMOutput,
|
| 64 |
+
ModelOutput,
|
| 65 |
+
MultipleChoiceModelOutput,
|
| 66 |
+
SequenceClassifierOutput,
|
| 67 |
+
)
|
| 68 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel
|
| 69 |
+
|
| 70 |
+
from bert_padding import index_put_first_axis
|
| 71 |
+
|
| 72 |
+
from src.bert_layers.activation import get_act_fn
|
| 73 |
+
from src.bert_layers.attention import (
|
| 74 |
+
FlexBertPaddedAttention,
|
| 75 |
+
FlexBertPaddedParallelAttention,
|
| 76 |
+
FlexBertPaddedRopeAttention,
|
| 77 |
+
FlexBertPaddedRopeParallelAttention,
|
| 78 |
+
FlexBertUnpadAttention,
|
| 79 |
+
FlexBertUnpadParallelAttention,
|
| 80 |
+
FlexBertUnpadRopeAttention,
|
| 81 |
+
FlexBertUnpadRopeParallelAttention,
|
| 82 |
+
)
|
| 83 |
+
from src.bert_layers.configuration_bert import FlexBertConfig
|
| 84 |
+
from src.bert_layers.embeddings import (
|
| 85 |
+
BertAlibiEmbeddings,
|
| 86 |
+
FlexBertAbsoluteEmbeddings,
|
| 87 |
+
FlexBertCompiledSansPositionEmbeddings,
|
| 88 |
+
FlexBertSansPositionEmbeddings,
|
| 89 |
+
get_embedding_layer,
|
| 90 |
+
)
|
| 91 |
+
from src.bert_layers.initialization import (
|
| 92 |
+
ModuleType,
|
| 93 |
+
TileLinear,
|
| 94 |
+
TileMode,
|
| 95 |
+
init_weights,
|
| 96 |
+
tile_embedding,
|
| 97 |
+
tile_linear,
|
| 98 |
+
tile_norm,
|
| 99 |
+
)
|
| 100 |
+
from src.bert_layers.layers import (
|
| 101 |
+
BertAlibiEncoder,
|
| 102 |
+
BertPooler,
|
| 103 |
+
BertPredictionHeadTransform,
|
| 104 |
+
FlexBertCompileUnpadPreNormLayer,
|
| 105 |
+
FlexBertPaddedEncoder,
|
| 106 |
+
FlexBertPaddedParallelPreNormLayer,
|
| 107 |
+
FlexBertPaddedPostNormLayer,
|
| 108 |
+
FlexBertPaddedPreNormLayer,
|
| 109 |
+
FlexBertUnpadEncoder,
|
| 110 |
+
FlexBertUnpadParallelPreNormLayer,
|
| 111 |
+
FlexBertUnpadPostNormLayer,
|
| 112 |
+
FlexBertUnpadPreNormLayer,
|
| 113 |
+
get_encoder_layer,
|
| 114 |
+
)
|
| 115 |
+
from src.bert_layers.loss import get_loss_fn
|
| 116 |
+
from src.bert_layers.mlp import FlexBertGLU, FlexBertMLP, FlexBertParallelGLU
|
| 117 |
+
from src.bert_layers.normalization import get_norm_layer
|
| 118 |
+
from src.bert_layers.padding import pad_input, unpad_input
|
| 119 |
+
|
| 120 |
+
logger = logging.getLogger(__name__)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def _count_parameters(model: nn.Module, trainable: bool = True) -> int:
|
| 124 |
+
if trainable:
|
| 125 |
+
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 126 |
+
else:
|
| 127 |
+
return sum(p.numel() for p in model.parameters())
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class BertModel(BertPreTrainedModel):
|
| 131 |
+
"""Overall BERT model.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
config: a BertConfig class instance with the configuration to build a new model
|
| 135 |
+
|
| 136 |
+
Inputs:
|
| 137 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
| 138 |
+
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
| 139 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
| 140 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
| 141 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
| 142 |
+
a `sentence B` token (see BERT paper for more details).
|
| 143 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
| 144 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
| 145 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
| 146 |
+
a batch has varying length sentences.
|
| 147 |
+
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
| 148 |
+
|
| 149 |
+
Outputs: Tuple of (encoded_layers, pooled_output)
|
| 150 |
+
`encoded_layers`: controlled by `output_all_encoded_layers` argument:
|
| 151 |
+
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
| 152 |
+
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
|
| 153 |
+
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
| 154 |
+
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
| 155 |
+
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
| 156 |
+
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
| 157 |
+
classifier pretrained on top of the hidden state associated to the first character of the
|
| 158 |
+
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
|
| 159 |
+
|
| 160 |
+
Example usage:
|
| 161 |
+
```python
|
| 162 |
+
# Already been converted into WordPiece token ids
|
| 163 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
| 164 |
+
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
| 165 |
+
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
| 166 |
+
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
| 167 |
+
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
| 168 |
+
model = BertModel(config=config)
|
| 169 |
+
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
| 170 |
+
```
|
| 171 |
+
"""
|
| 172 |
+
|
| 173 |
+
def __init__(
|
| 174 |
+
self,
|
| 175 |
+
config,
|
| 176 |
+
add_pooling_layer: bool = True,
|
| 177 |
+
):
|
| 178 |
+
super(BertModel, self).__init__(config)
|
| 179 |
+
self.embeddings = BertAlibiEmbeddings(config)
|
| 180 |
+
self.encoder = BertAlibiEncoder(config)
|
| 181 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
| 182 |
+
self.post_init()
|
| 183 |
+
|
| 184 |
+
def get_input_embeddings(self):
|
| 185 |
+
return self.embeddings.word_embeddings
|
| 186 |
+
|
| 187 |
+
def set_input_embeddings(self, value):
|
| 188 |
+
self.embeddings.word_embeddings = value
|
| 189 |
+
|
| 190 |
+
def forward(
|
| 191 |
+
self,
|
| 192 |
+
input_ids: torch.Tensor,
|
| 193 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 194 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 195 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 196 |
+
output_all_encoded_layers: Optional[bool] = False,
|
| 197 |
+
masked_tokens_mask: Optional[torch.Tensor] = None,
|
| 198 |
+
**kwargs,
|
| 199 |
+
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
|
| 200 |
+
if attention_mask is None:
|
| 201 |
+
attention_mask = torch.ones_like(input_ids)
|
| 202 |
+
if token_type_ids is None:
|
| 203 |
+
token_type_ids = torch.zeros_like(input_ids)
|
| 204 |
+
|
| 205 |
+
embedding_output = self.embeddings(input_ids, token_type_ids, position_ids)
|
| 206 |
+
|
| 207 |
+
subset_mask = []
|
| 208 |
+
first_col_mask = []
|
| 209 |
+
|
| 210 |
+
if masked_tokens_mask is None:
|
| 211 |
+
subset_mask = None
|
| 212 |
+
else:
|
| 213 |
+
first_col_mask = torch.zeros_like(masked_tokens_mask)
|
| 214 |
+
first_col_mask[:, 0] = True
|
| 215 |
+
subset_mask = masked_tokens_mask | first_col_mask
|
| 216 |
+
|
| 217 |
+
encoder_outputs = self.encoder(
|
| 218 |
+
embedding_output,
|
| 219 |
+
attention_mask,
|
| 220 |
+
output_all_encoded_layers=output_all_encoded_layers,
|
| 221 |
+
subset_mask=subset_mask,
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
if masked_tokens_mask is None:
|
| 225 |
+
sequence_output = encoder_outputs[-1]
|
| 226 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 227 |
+
else:
|
| 228 |
+
# TD [2022-03-01]: the indexing here is very tricky.
|
| 229 |
+
attention_mask_bool = attention_mask.bool()
|
| 230 |
+
subset_idx = subset_mask[attention_mask_bool] # type: ignore
|
| 231 |
+
sequence_output = encoder_outputs[-1][masked_tokens_mask[attention_mask_bool][subset_idx]]
|
| 232 |
+
if self.pooler is not None:
|
| 233 |
+
pool_input = encoder_outputs[-1][first_col_mask[attention_mask_bool][subset_idx]]
|
| 234 |
+
pooled_output = self.pooler(pool_input, pool=False)
|
| 235 |
+
else:
|
| 236 |
+
pooled_output = None
|
| 237 |
+
|
| 238 |
+
if not output_all_encoded_layers:
|
| 239 |
+
encoder_outputs = sequence_output
|
| 240 |
+
|
| 241 |
+
if self.pooler is not None:
|
| 242 |
+
return encoder_outputs, pooled_output
|
| 243 |
+
|
| 244 |
+
return encoder_outputs, None
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
###################
|
| 248 |
+
# Bert Heads
|
| 249 |
+
###################
|
| 250 |
+
class BertLMPredictionHead(nn.Module):
|
| 251 |
+
def __init__(self, config, bert_model_embedding_weights):
|
| 252 |
+
super().__init__()
|
| 253 |
+
self.transform = BertPredictionHeadTransform(config)
|
| 254 |
+
# The output weights are the same as the input embeddings, but there is
|
| 255 |
+
# an output-only bias for each token.
|
| 256 |
+
self.decoder = nn.Linear(bert_model_embedding_weights.size(1), bert_model_embedding_weights.size(0))
|
| 257 |
+
self.decoder.weight = bert_model_embedding_weights
|
| 258 |
+
|
| 259 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 260 |
+
hidden_states = self.transform(hidden_states)
|
| 261 |
+
hidden_states = self.decoder(hidden_states)
|
| 262 |
+
return hidden_states
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
class BertOnlyMLMHead(nn.Module):
|
| 266 |
+
def __init__(self, config, bert_model_embedding_weights):
|
| 267 |
+
super().__init__()
|
| 268 |
+
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
|
| 269 |
+
|
| 270 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
| 271 |
+
prediction_scores = self.predictions(sequence_output)
|
| 272 |
+
return prediction_scores
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
class BertOnlyNSPHead(nn.Module):
|
| 276 |
+
def __init__(self, config):
|
| 277 |
+
super().__init__()
|
| 278 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
| 279 |
+
|
| 280 |
+
def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
|
| 281 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
| 282 |
+
return seq_relationship_score
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
#####################
|
| 286 |
+
# Various Bert models
|
| 287 |
+
#####################
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
class BertForPreTraining(BertPreTrainedModel):
|
| 291 |
+
# TBD: Coming in Future Commit
|
| 292 |
+
pass
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
| 296 |
+
# TBD: Coming in Future Commit
|
| 297 |
+
pass
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
| 301 |
+
def __init__(self, config):
|
| 302 |
+
super().__init__(config)
|
| 303 |
+
|
| 304 |
+
if config.is_decoder:
|
| 305 |
+
warnings.warn(
|
| 306 |
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
|
| 307 |
+
"bi-directional self-attention."
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 311 |
+
self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
|
| 312 |
+
|
| 313 |
+
# Initialize weights and apply final processing
|
| 314 |
+
self.post_init()
|
| 315 |
+
|
| 316 |
+
@classmethod
|
| 317 |
+
def from_composer(
|
| 318 |
+
cls,
|
| 319 |
+
pretrained_checkpoint,
|
| 320 |
+
state_dict=None,
|
| 321 |
+
cache_dir=None,
|
| 322 |
+
from_tf=False,
|
| 323 |
+
config=None,
|
| 324 |
+
*inputs,
|
| 325 |
+
**kwargs,
|
| 326 |
+
):
|
| 327 |
+
"""Load from pre-trained."""
|
| 328 |
+
model = cls(config, *inputs, **kwargs)
|
| 329 |
+
if from_tf:
|
| 330 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
| 331 |
+
|
| 332 |
+
state_dict = torch.load(pretrained_checkpoint)
|
| 333 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
| 334 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
| 335 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 336 |
+
|
| 337 |
+
if len(missing_keys) > 0:
|
| 338 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
| 339 |
+
if len(unexpected_keys) > 0:
|
| 340 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
| 341 |
+
|
| 342 |
+
return model
|
| 343 |
+
|
| 344 |
+
def get_output_embeddings(self):
|
| 345 |
+
return self.cls.predictions.decoder
|
| 346 |
+
|
| 347 |
+
def set_output_embeddings(self, new_embeddings):
|
| 348 |
+
self.cls.predictions.decoder = new_embeddings
|
| 349 |
+
|
| 350 |
+
def forward(
|
| 351 |
+
self,
|
| 352 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 353 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 354 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 355 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 356 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 357 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 358 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 359 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 360 |
+
labels: Optional[torch.Tensor] = None,
|
| 361 |
+
output_attentions: Optional[bool] = None,
|
| 362 |
+
output_hidden_states: Optional[bool] = None,
|
| 363 |
+
return_dict: Optional[bool] = None,
|
| 364 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 365 |
+
# labels should be a `torch.LongTensor` of shape
|
| 366 |
+
# `(batch_size, sequence_length)`. These are used for computing the
|
| 367 |
+
# masked language modeling loss.
|
| 368 |
+
#
|
| 369 |
+
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
|
| 370 |
+
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
| 371 |
+
# (masked), the loss is only computed for the tokens with labels in `[0,
|
| 372 |
+
# ..., config.vocab_size]`
|
| 373 |
+
#
|
| 374 |
+
# Prediction scores are only computed for masked tokens and the (bs,
|
| 375 |
+
# seqlen) dimensions are flattened
|
| 376 |
+
if (input_ids is not None) == (inputs_embeds is not None):
|
| 377 |
+
raise ValueError("Must specify either input_ids or input_embeds!")
|
| 378 |
+
|
| 379 |
+
if labels is None:
|
| 380 |
+
masked_tokens_mask = None
|
| 381 |
+
else:
|
| 382 |
+
masked_tokens_mask = labels > 0
|
| 383 |
+
|
| 384 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 385 |
+
|
| 386 |
+
outputs = self.bert(
|
| 387 |
+
input_ids,
|
| 388 |
+
attention_mask=attention_mask,
|
| 389 |
+
token_type_ids=token_type_ids,
|
| 390 |
+
position_ids=position_ids,
|
| 391 |
+
head_mask=head_mask,
|
| 392 |
+
inputs_embeds=inputs_embeds,
|
| 393 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 394 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 395 |
+
output_attentions=output_attentions,
|
| 396 |
+
output_hidden_states=output_hidden_states,
|
| 397 |
+
return_dict=return_dict,
|
| 398 |
+
masked_tokens_mask=masked_tokens_mask,
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
sequence_output = outputs[0]
|
| 402 |
+
prediction_scores = self.cls(sequence_output)
|
| 403 |
+
|
| 404 |
+
loss = None
|
| 405 |
+
if labels is not None:
|
| 406 |
+
# Compute loss
|
| 407 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 408 |
+
masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
|
| 409 |
+
loss = loss_fct(prediction_scores, labels.flatten()[masked_token_idx])
|
| 410 |
+
|
| 411 |
+
assert input_ids is not None, "Coding error; please open an issue"
|
| 412 |
+
batch, seqlen = input_ids.shape[:2]
|
| 413 |
+
prediction_scores = rearrange(
|
| 414 |
+
index_put_first_axis(prediction_scores, masked_token_idx, batch * seqlen),
|
| 415 |
+
"(b s) d -> b s d",
|
| 416 |
+
b=batch,
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
if not return_dict:
|
| 420 |
+
output = (prediction_scores,) + outputs[2:]
|
| 421 |
+
return ((loss,) + output) if loss is not None else output
|
| 422 |
+
|
| 423 |
+
return MaskedLMOutput(
|
| 424 |
+
loss=loss,
|
| 425 |
+
logits=prediction_scores,
|
| 426 |
+
hidden_states=None,
|
| 427 |
+
attentions=None,
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs):
|
| 431 |
+
input_shape = input_ids.shape
|
| 432 |
+
effective_batch_size = input_shape[0]
|
| 433 |
+
|
| 434 |
+
# add a dummy token
|
| 435 |
+
if self.config.pad_token_id is None:
|
| 436 |
+
raise ValueError("The PAD token should be defined for generation")
|
| 437 |
+
|
| 438 |
+
attention_mask = torch.cat(
|
| 439 |
+
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
|
| 440 |
+
dim=-1,
|
| 441 |
+
)
|
| 442 |
+
dummy_token = torch.full(
|
| 443 |
+
(effective_batch_size, 1),
|
| 444 |
+
self.config.pad_token_id,
|
| 445 |
+
dtype=torch.long,
|
| 446 |
+
device=input_ids.device,
|
| 447 |
+
)
|
| 448 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
| 449 |
+
|
| 450 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
| 454 |
+
# TBD: Push in future commit
|
| 455 |
+
pass
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
| 459 |
+
"""Bert Model transformer with a sequence classification/regression head.
|
| 460 |
+
|
| 461 |
+
This head is just a linear layer on top of the pooled output. Used for,
|
| 462 |
+
e.g., GLUE tasks.
|
| 463 |
+
"""
|
| 464 |
+
|
| 465 |
+
def __init__(self, config):
|
| 466 |
+
super().__init__(config)
|
| 467 |
+
self.num_labels = config.num_labels
|
| 468 |
+
self.config = config
|
| 469 |
+
|
| 470 |
+
self.bert = BertModel(config)
|
| 471 |
+
classifier_dropout = (
|
| 472 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 473 |
+
)
|
| 474 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 475 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 476 |
+
|
| 477 |
+
# Initialize weights and apply final processing
|
| 478 |
+
self.post_init()
|
| 479 |
+
|
| 480 |
+
@classmethod
|
| 481 |
+
def from_composer(
|
| 482 |
+
cls,
|
| 483 |
+
pretrained_checkpoint,
|
| 484 |
+
state_dict=None,
|
| 485 |
+
cache_dir=None,
|
| 486 |
+
from_tf=False,
|
| 487 |
+
config=None,
|
| 488 |
+
*inputs,
|
| 489 |
+
**kwargs,
|
| 490 |
+
):
|
| 491 |
+
"""Load from pre-trained."""
|
| 492 |
+
model = cls(config, *inputs, **kwargs)
|
| 493 |
+
if from_tf:
|
| 494 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
| 495 |
+
|
| 496 |
+
state_dict = torch.load(pretrained_checkpoint)
|
| 497 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
| 498 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
| 499 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 500 |
+
|
| 501 |
+
if len(missing_keys) > 0:
|
| 502 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
| 503 |
+
if len(unexpected_keys) > 0:
|
| 504 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
| 505 |
+
|
| 506 |
+
return model
|
| 507 |
+
|
| 508 |
+
def forward(
|
| 509 |
+
self,
|
| 510 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 511 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 512 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 513 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 514 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 515 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 516 |
+
labels: Optional[torch.Tensor] = None,
|
| 517 |
+
output_attentions: Optional[bool] = None,
|
| 518 |
+
output_hidden_states: Optional[bool] = None,
|
| 519 |
+
return_dict: Optional[bool] = None,
|
| 520 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 521 |
+
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 522 |
+
# Labels for computing the sequence classification/regression loss.
|
| 523 |
+
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 524 |
+
# If `config.num_labels == 1` a regression loss is computed
|
| 525 |
+
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
| 526 |
+
# is computed (cross-entropy).
|
| 527 |
+
|
| 528 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 529 |
+
|
| 530 |
+
outputs = self.bert(
|
| 531 |
+
input_ids,
|
| 532 |
+
attention_mask=attention_mask,
|
| 533 |
+
token_type_ids=token_type_ids,
|
| 534 |
+
position_ids=position_ids,
|
| 535 |
+
head_mask=head_mask,
|
| 536 |
+
inputs_embeds=inputs_embeds,
|
| 537 |
+
output_attentions=output_attentions,
|
| 538 |
+
output_hidden_states=output_hidden_states,
|
| 539 |
+
return_dict=return_dict,
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
pooled_output = outputs[1]
|
| 543 |
+
|
| 544 |
+
pooled_output = self.dropout(pooled_output)
|
| 545 |
+
logits = self.classifier(pooled_output)
|
| 546 |
+
|
| 547 |
+
loss = None
|
| 548 |
+
if labels is not None:
|
| 549 |
+
# Compute loss
|
| 550 |
+
if self.config.problem_type is None:
|
| 551 |
+
if self.num_labels == 1:
|
| 552 |
+
self.config.problem_type = "regression"
|
| 553 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 554 |
+
self.config.problem_type = "single_label_classification"
|
| 555 |
+
else:
|
| 556 |
+
self.config.problem_type = "multi_label_classification"
|
| 557 |
+
|
| 558 |
+
if self.config.problem_type == "regression":
|
| 559 |
+
loss_fct = nn.MSELoss()
|
| 560 |
+
if self.num_labels == 1:
|
| 561 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 562 |
+
else:
|
| 563 |
+
loss = loss_fct(logits, labels)
|
| 564 |
+
elif self.config.problem_type == "single_label_classification":
|
| 565 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 566 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 567 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 568 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
| 569 |
+
loss = loss_fct(logits, labels)
|
| 570 |
+
|
| 571 |
+
if not return_dict:
|
| 572 |
+
output = (logits,) + outputs[2:]
|
| 573 |
+
return ((loss,) + output) if loss is not None else output
|
| 574 |
+
|
| 575 |
+
return SequenceClassifierOutput(
|
| 576 |
+
loss=loss,
|
| 577 |
+
logits=logits,
|
| 578 |
+
hidden_states=None,
|
| 579 |
+
attentions=None,
|
| 580 |
+
)
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
| 584 |
+
"""
|
| 585 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
| 586 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
| 587 |
+
"""
|
| 588 |
+
|
| 589 |
+
def __init__(self, config):
|
| 590 |
+
super().__init__(config)
|
| 591 |
+
self.num_labels = config.num_labels
|
| 592 |
+
self.config = config
|
| 593 |
+
|
| 594 |
+
self.bert = BertModel(config)
|
| 595 |
+
classifier_dropout = (
|
| 596 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 597 |
+
)
|
| 598 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 599 |
+
|
| 600 |
+
# In multiple choice tasks, all choices are submitted in a batch, and
|
| 601 |
+
# we compute a logit for each option independently. The logits are then
|
| 602 |
+
# normalized in the forward pass to get a probability distribution over
|
| 603 |
+
# the choices.
|
| 604 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
| 605 |
+
|
| 606 |
+
# Initialize weights and apply final processing
|
| 607 |
+
self.post_init()
|
| 608 |
+
|
| 609 |
+
@classmethod
|
| 610 |
+
def from_composer(
|
| 611 |
+
cls,
|
| 612 |
+
pretrained_checkpoint,
|
| 613 |
+
state_dict=None,
|
| 614 |
+
cache_dir=None,
|
| 615 |
+
from_tf=False,
|
| 616 |
+
config=None,
|
| 617 |
+
*inputs,
|
| 618 |
+
**kwargs,
|
| 619 |
+
):
|
| 620 |
+
"""Load from pre-trained."""
|
| 621 |
+
model = cls(config, *inputs, **kwargs)
|
| 622 |
+
if from_tf:
|
| 623 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
| 624 |
+
|
| 625 |
+
state_dict = torch.load(pretrained_checkpoint)
|
| 626 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
| 627 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
| 628 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 629 |
+
|
| 630 |
+
if len(missing_keys) > 0:
|
| 631 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
| 632 |
+
if len(unexpected_keys) > 0:
|
| 633 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
| 634 |
+
|
| 635 |
+
return model
|
| 636 |
+
|
| 637 |
+
def forward(
|
| 638 |
+
self,
|
| 639 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 640 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 641 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 642 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 643 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 644 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 645 |
+
labels: Optional[torch.Tensor] = None,
|
| 646 |
+
output_attentions: Optional[bool] = None,
|
| 647 |
+
output_hidden_states: Optional[bool] = None,
|
| 648 |
+
return_dict: Optional[bool] = None,
|
| 649 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 650 |
+
r"""
|
| 651 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 652 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
| 653 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
| 654 |
+
`input_ids` above)
|
| 655 |
+
"""
|
| 656 |
+
|
| 657 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 658 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
| 659 |
+
|
| 660 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 661 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 662 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 663 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 664 |
+
inputs_embeds = (
|
| 665 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
| 666 |
+
if inputs_embeds is not None
|
| 667 |
+
else None
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
outputs = self.bert(
|
| 671 |
+
input_ids,
|
| 672 |
+
attention_mask=attention_mask,
|
| 673 |
+
token_type_ids=token_type_ids,
|
| 674 |
+
position_ids=position_ids,
|
| 675 |
+
head_mask=head_mask,
|
| 676 |
+
inputs_embeds=inputs_embeds,
|
| 677 |
+
output_attentions=output_attentions,
|
| 678 |
+
output_hidden_states=output_hidden_states,
|
| 679 |
+
return_dict=return_dict,
|
| 680 |
+
)
|
| 681 |
+
|
| 682 |
+
pooled_output = outputs[1]
|
| 683 |
+
|
| 684 |
+
pooled_output = self.dropout(pooled_output)
|
| 685 |
+
logits = self.classifier(pooled_output)
|
| 686 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 687 |
+
|
| 688 |
+
loss = None
|
| 689 |
+
if labels is not None:
|
| 690 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 691 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 692 |
+
|
| 693 |
+
if not return_dict:
|
| 694 |
+
output = (reshaped_logits,) + outputs[2:]
|
| 695 |
+
return ((loss,) + output) if loss is not None else output
|
| 696 |
+
|
| 697 |
+
return MultipleChoiceModelOutput(
|
| 698 |
+
loss=loss,
|
| 699 |
+
logits=reshaped_logits,
|
| 700 |
+
hidden_states=None,
|
| 701 |
+
attentions=None,
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
|
| 705 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
| 706 |
+
# TBD: Push in future commit
|
| 707 |
+
pass
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
| 711 |
+
"""Bert Model with a span classification head.
|
| 712 |
+
|
| 713 |
+
This is used for extractive question-answering tasks like SQuAD (a linear
|
| 714 |
+
layers on top of the hidden states' output to compute `span start logits`
|
| 715 |
+
and `span end logits`).
|
| 716 |
+
"""
|
| 717 |
+
|
| 718 |
+
# TBD: Push in future commit
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
###################
|
| 722 |
+
# FlexBert Heads
|
| 723 |
+
###################
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
class FlexBertPredictionHead(nn.Module):
|
| 727 |
+
def __init__(self, config: FlexBertConfig):
|
| 728 |
+
super().__init__()
|
| 729 |
+
self.config = config
|
| 730 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.head_pred_bias)
|
| 731 |
+
self.act = get_act_fn(config.head_pred_act) if config.head_pred_act else nn.Identity()
|
| 732 |
+
self.norm = (
|
| 733 |
+
get_norm_layer(config, compiled_norm=config.compile_model) if config.head_pred_norm else nn.Identity()
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
def _init_weights(self, reset_params: bool = False):
|
| 737 |
+
if reset_params:
|
| 738 |
+
self.norm.reset_parameters()
|
| 739 |
+
init_weights(self.config, self.dense, layer_dim=self.config.hidden_size, type_of_module=ModuleType.in_module)
|
| 740 |
+
|
| 741 |
+
def reset_parameters(self):
|
| 742 |
+
self._init_weights(reset_params=True)
|
| 743 |
+
|
| 744 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 745 |
+
return self.norm(self.act(self.dense(hidden_states)))
|
| 746 |
+
|
| 747 |
+
|
| 748 |
+
class FlexBertPoolingHead(nn.Module):
|
| 749 |
+
def __init__(self, config: FlexBertConfig):
|
| 750 |
+
super().__init__()
|
| 751 |
+
self.config = config
|
| 752 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.head_class_bias)
|
| 753 |
+
self.act = get_act_fn(config.head_class_act) if config.head_class_act else nn.Identity()
|
| 754 |
+
self.norm = get_norm_layer(config) if config.head_class_norm else nn.Identity()
|
| 755 |
+
self.drop = torch.nn.Dropout(config.head_class_dropout) if config.head_class_dropout > 0 else nn.Identity()
|
| 756 |
+
self.pooling_type = config.pooling_type
|
| 757 |
+
|
| 758 |
+
def forward(self, hidden_states: torch.Tensor, pool: Optional[bool] = True) -> torch.Tensor:
|
| 759 |
+
if pool:
|
| 760 |
+
if self.pooling_type == "cls":
|
| 761 |
+
output = hidden_states[:, 0]
|
| 762 |
+
elif self.pooling_type == "mean":
|
| 763 |
+
output = hidden_states.mean(dim=1)
|
| 764 |
+
elif self.pooling_type == "max":
|
| 765 |
+
output = hidden_states.max(dim=1)[0]
|
| 766 |
+
else:
|
| 767 |
+
output = hidden_states
|
| 768 |
+
|
| 769 |
+
return self.drop(self.norm(self.act(self.dense(output))))
|
| 770 |
+
|
| 771 |
+
def _init_weights(self, reset_params: bool = False):
|
| 772 |
+
init_weights(self.config, self.dense, self.config.hidden_size, type_of_module=ModuleType.out_module)
|
| 773 |
+
if reset_params and hasattr(self.norm, "reset_parameters"):
|
| 774 |
+
self.norm.reset_parameters()
|
| 775 |
+
|
| 776 |
+
def reset_parameters(self):
|
| 777 |
+
self._init_weights(reset_params=True)
|
| 778 |
+
|
| 779 |
+
|
| 780 |
+
###################
|
| 781 |
+
# FlexBert Models
|
| 782 |
+
###################
|
| 783 |
+
|
| 784 |
+
|
| 785 |
+
@dataclass
|
| 786 |
+
class MaskedLMOutput(ModelOutput):
|
| 787 |
+
"""
|
| 788 |
+
Base class for masked language models outputs.
|
| 789 |
+
|
| 790 |
+
Args:
|
| 791 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 792 |
+
Masked language modeling (MLM) loss.
|
| 793 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 794 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 795 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 796 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 797 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 798 |
+
|
| 799 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 800 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 801 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 802 |
+
sequence_length)`.
|
| 803 |
+
|
| 804 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 805 |
+
heads.
|
| 806 |
+
"""
|
| 807 |
+
|
| 808 |
+
loss: Optional[torch.FloatTensor] = None
|
| 809 |
+
logits: torch.FloatTensor = None
|
| 810 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 811 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 812 |
+
indices: Optional[torch.LongTensor] = None
|
| 813 |
+
cu_seqlens: Optional[torch.LongTensor] = None
|
| 814 |
+
max_seqlen: Optional[int] = None
|
| 815 |
+
batch_size: Optional[int] = None
|
| 816 |
+
seq_len: Optional[int] = None
|
| 817 |
+
labels: Optional[torch.LongTensor] = None
|
| 818 |
+
|
| 819 |
+
|
| 820 |
+
@dataclass
|
| 821 |
+
class MaskedLMOutputZLoss(ModelOutput):
|
| 822 |
+
"""
|
| 823 |
+
Base class for masked language models outputs.
|
| 824 |
+
|
| 825 |
+
Args:
|
| 826 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 827 |
+
Masked language modeling (MLM) loss.
|
| 828 |
+
ce_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 829 |
+
Cross entropy loss.
|
| 830 |
+
z_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 831 |
+
Z loss.
|
| 832 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 833 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 834 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 835 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 836 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 837 |
+
|
| 838 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 839 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 840 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 841 |
+
sequence_length)`.
|
| 842 |
+
|
| 843 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 844 |
+
heads.
|
| 845 |
+
indices (`torch.LongTensor` of shape `(batch_size,)`):
|
| 846 |
+
Indices of the tokens to be masked.
|
| 847 |
+
"""
|
| 848 |
+
|
| 849 |
+
loss: Optional[torch.FloatTensor] = None
|
| 850 |
+
ce_loss: Optional[torch.FloatTensor] = None
|
| 851 |
+
z_loss: Optional[torch.FloatTensor] = None
|
| 852 |
+
logits: torch.FloatTensor = None
|
| 853 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 854 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 855 |
+
indices: Optional[torch.LongTensor] = None
|
| 856 |
+
cu_seqlens: Optional[torch.LongTensor] = None
|
| 857 |
+
max_seqlen: Optional[int] = None
|
| 858 |
+
batch_size: Optional[int] = None
|
| 859 |
+
seq_len: Optional[int] = None
|
| 860 |
+
labels: Optional[torch.LongTensor] = None
|
| 861 |
+
|
| 862 |
+
|
| 863 |
+
class FlexBertPreTrainedModel(BertPreTrainedModel):
|
| 864 |
+
"""
|
| 865 |
+
An abstract class to handle custom weights initialization of modules
|
| 866 |
+
"""
|
| 867 |
+
|
| 868 |
+
def _init_module_weights(self, module: nn.Module):
|
| 869 |
+
"""
|
| 870 |
+
Custom weight init of modules using src.bert_layers.initialization.init_weights
|
| 871 |
+
Currently only supports init of embedding modules
|
| 872 |
+
"""
|
| 873 |
+
assert isinstance(module, nn.Module)
|
| 874 |
+
if isinstance(module, nn.Embedding):
|
| 875 |
+
init_weights(self.config, module, type_of_module=ModuleType.emb)
|
| 876 |
+
else:
|
| 877 |
+
raise NotImplementedError("Custom weight init for the given module is not supported")
|
| 878 |
+
|
| 879 |
+
|
| 880 |
+
class FlexBertModel(FlexBertPreTrainedModel):
|
| 881 |
+
"""Overall BERT model.
|
| 882 |
+
|
| 883 |
+
Args:
|
| 884 |
+
config: a BertConfig class instance with the configuration to build a new model
|
| 885 |
+
|
| 886 |
+
Inputs:
|
| 887 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
| 888 |
+
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
| 889 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
| 890 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
| 891 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
| 892 |
+
a `sentence B` token (see BERT paper for more details).
|
| 893 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
| 894 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
| 895 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
| 896 |
+
a batch has varying length sentences.
|
| 897 |
+
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
| 898 |
+
|
| 899 |
+
Outputs: Tuple of (encoded_layers, pooled_output)
|
| 900 |
+
`encoded_layers`: controlled by `output_all_encoded_layers` argument:
|
| 901 |
+
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
| 902 |
+
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
|
| 903 |
+
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
| 904 |
+
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
| 905 |
+
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
| 906 |
+
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
| 907 |
+
classifier pretrained on top of the hidden state associated to the first character of the
|
| 908 |
+
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
|
| 909 |
+
|
| 910 |
+
Example usage:
|
| 911 |
+
```python
|
| 912 |
+
# Already been converted into WordPiece token ids
|
| 913 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
| 914 |
+
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
| 915 |
+
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
| 916 |
+
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
| 917 |
+
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
| 918 |
+
model = BertModel(config=config)
|
| 919 |
+
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
| 920 |
+
```
|
| 921 |
+
"""
|
| 922 |
+
|
| 923 |
+
def __init__(self, config: FlexBertConfig):
|
| 924 |
+
super().__init__(config)
|
| 925 |
+
self.embeddings = get_embedding_layer(config)
|
| 926 |
+
self.encoder = get_encoder_layer(config)
|
| 927 |
+
if config.final_norm:
|
| 928 |
+
# if we use prenorm attention we need to add a final norm
|
| 929 |
+
self.final_norm = get_norm_layer(config)
|
| 930 |
+
else:
|
| 931 |
+
self.final_norm = None
|
| 932 |
+
self.unpad_embeddings = config.unpad_embeddings
|
| 933 |
+
|
| 934 |
+
def post_init(self):
|
| 935 |
+
self._init_weights(reset_params=False)
|
| 936 |
+
self._backward_compatibility_gradient_checkpointing()
|
| 937 |
+
|
| 938 |
+
def get_input_embeddings(self):
|
| 939 |
+
return self.embeddings.tok_embeddings
|
| 940 |
+
|
| 941 |
+
def set_input_embeddings(self, value):
|
| 942 |
+
self.embeddings.tok_embeddings = value
|
| 943 |
+
|
| 944 |
+
def forward(
|
| 945 |
+
self,
|
| 946 |
+
input_ids: torch.Tensor,
|
| 947 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 948 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 949 |
+
indices: Optional[torch.Tensor] = None,
|
| 950 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 951 |
+
max_seqlen: Optional[int] = None,
|
| 952 |
+
**kwargs,
|
| 953 |
+
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
|
| 954 |
+
if attention_mask is None:
|
| 955 |
+
attention_mask = torch.ones_like(input_ids)
|
| 956 |
+
|
| 957 |
+
embedding_output = self.embeddings(input_ids, position_ids)
|
| 958 |
+
|
| 959 |
+
encoder_outputs = self.encoder(
|
| 960 |
+
hidden_states=embedding_output,
|
| 961 |
+
attention_mask=attention_mask,
|
| 962 |
+
indices=indices,
|
| 963 |
+
cu_seqlens=cu_seqlens,
|
| 964 |
+
max_seqlen=max_seqlen,
|
| 965 |
+
)
|
| 966 |
+
|
| 967 |
+
if self.final_norm is not None:
|
| 968 |
+
encoder_outputs = self.final_norm(encoder_outputs)
|
| 969 |
+
return encoder_outputs
|
| 970 |
+
|
| 971 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
| 972 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
| 973 |
+
if module:
|
| 974 |
+
self._init_module_weights(module)
|
| 975 |
+
else:
|
| 976 |
+
assert isinstance(reset_params, bool)
|
| 977 |
+
self.embeddings._init_weights(reset_params=reset_params)
|
| 978 |
+
self.encoder._init_weights(reset_params=reset_params)
|
| 979 |
+
|
| 980 |
+
if reset_params and self.config.final_norm:
|
| 981 |
+
self.final_norm.reset_parameters()
|
| 982 |
+
|
| 983 |
+
def reset_parameters(self):
|
| 984 |
+
self._init_weights(reset_params=True)
|
| 985 |
+
|
| 986 |
+
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
|
| 987 |
+
"""Returns the number of parameters in the model.
|
| 988 |
+
|
| 989 |
+
Args:
|
| 990 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
| 991 |
+
trainable: only count trainable parameters.
|
| 992 |
+
"""
|
| 993 |
+
params = sum([_count_parameters(layer, trainable) for layer in self.encoder.layers])
|
| 994 |
+
if count_embeddings:
|
| 995 |
+
params += _count_parameters(self.embeddings, trainable)
|
| 996 |
+
if hasattr(self.embeddings, "position_embeddings"):
|
| 997 |
+
params -= _count_parameters(self.embeddings.position_embeddings, trainable)
|
| 998 |
+
return params
|
| 999 |
+
|
| 1000 |
+
|
| 1001 |
+
class FlexBertForMaskedLM(FlexBertPreTrainedModel):
|
| 1002 |
+
def __init__(self, config: FlexBertConfig):
|
| 1003 |
+
super().__init__(config)
|
| 1004 |
+
self.bert = FlexBertModel(config)
|
| 1005 |
+
self.head = FlexBertPredictionHead(config)
|
| 1006 |
+
|
| 1007 |
+
if config.tie_word_embeddings:
|
| 1008 |
+
decoder_weights = self.bert.embeddings.tok_embeddings.weight
|
| 1009 |
+
else:
|
| 1010 |
+
decoder_weights = nn.Linear(config.hidden_size, config.vocab_size, bias=False).weight
|
| 1011 |
+
self.decoder = nn.Linear(decoder_weights.size(1), decoder_weights.size(0), bias=config.decoder_bias)
|
| 1012 |
+
self.decoder.weight = decoder_weights
|
| 1013 |
+
|
| 1014 |
+
self.loss_fn = nn.CrossEntropyLoss() if not hasattr(config, "loss_function") else get_loss_fn(config)
|
| 1015 |
+
self.fa_ce = getattr(config, "loss_function", "cross_entropy") == "fa_cross_entropy"
|
| 1016 |
+
self.return_z_loss = config.loss_kwargs.get("return_z_loss", False)
|
| 1017 |
+
self.unpad_embeddings = config.unpad_embeddings
|
| 1018 |
+
self.pad_logits = config.pad_logits
|
| 1019 |
+
self.compile_model = config.compile_model
|
| 1020 |
+
self.masked_prediction = config.masked_prediction
|
| 1021 |
+
|
| 1022 |
+
# Initialize weights and apply final processing
|
| 1023 |
+
self._init_weights(reset_params=False)
|
| 1024 |
+
|
| 1025 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
| 1026 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
| 1027 |
+
if module:
|
| 1028 |
+
self._init_module_weights(module)
|
| 1029 |
+
else:
|
| 1030 |
+
assert isinstance(reset_params, bool)
|
| 1031 |
+
self.bert._init_weights(reset_params=reset_params)
|
| 1032 |
+
self.head._init_weights(reset_params=reset_params)
|
| 1033 |
+
|
| 1034 |
+
# Output weights.
|
| 1035 |
+
if not self.config.tie_word_embeddings:
|
| 1036 |
+
init_weights(self.config, self.decoder, self.config.hidden_size, type_of_module=ModuleType.final_out)
|
| 1037 |
+
|
| 1038 |
+
@classmethod
|
| 1039 |
+
def from_composer(
|
| 1040 |
+
cls,
|
| 1041 |
+
pretrained_checkpoint,
|
| 1042 |
+
state_dict=None,
|
| 1043 |
+
cache_dir=None,
|
| 1044 |
+
from_tf=False,
|
| 1045 |
+
config=None,
|
| 1046 |
+
*inputs,
|
| 1047 |
+
**kwargs,
|
| 1048 |
+
):
|
| 1049 |
+
"""Load from pre-trained."""
|
| 1050 |
+
model = cls(config, *inputs, **kwargs)
|
| 1051 |
+
if from_tf:
|
| 1052 |
+
raise ValueError("FlexBERT does not support loading TensorFlow weights.")
|
| 1053 |
+
|
| 1054 |
+
state_dict = torch.load(pretrained_checkpoint)
|
| 1055 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
| 1056 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
| 1057 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 1058 |
+
|
| 1059 |
+
if len(missing_keys) > 0:
|
| 1060 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
| 1061 |
+
if len(unexpected_keys) > 0:
|
| 1062 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
| 1063 |
+
|
| 1064 |
+
return model
|
| 1065 |
+
|
| 1066 |
+
def get_output_embeddings(self):
|
| 1067 |
+
return self.decoder
|
| 1068 |
+
|
| 1069 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1070 |
+
self.decoder = new_embeddings
|
| 1071 |
+
|
| 1072 |
+
@torch.no_grad()
|
| 1073 |
+
def unpad_inputs(
|
| 1074 |
+
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor, labels: torch.Tensor
|
| 1075 |
+
):
|
| 1076 |
+
return unpad_input(input_ids, attention_mask, position_ids, labels)
|
| 1077 |
+
|
| 1078 |
+
@torch.no_grad()
|
| 1079 |
+
def pad_inputs(
|
| 1080 |
+
self,
|
| 1081 |
+
inputs: torch.Tensor,
|
| 1082 |
+
indices: torch.Tensor,
|
| 1083 |
+
batch_size: int,
|
| 1084 |
+
seqlen: int,
|
| 1085 |
+
labels: Optional[torch.Tensor] = None,
|
| 1086 |
+
ignore_index: int = -100,
|
| 1087 |
+
):
|
| 1088 |
+
return pad_input(
|
| 1089 |
+
inputs=inputs, indices=indices, batch=batch_size, seqlen=seqlen, labels=labels, ignore_index=ignore_index
|
| 1090 |
+
)
|
| 1091 |
+
|
| 1092 |
+
@torch.compile(dynamic=True)
|
| 1093 |
+
def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
|
| 1094 |
+
return self.decoder(self.head(output))
|
| 1095 |
+
|
| 1096 |
+
def forward(
|
| 1097 |
+
self,
|
| 1098 |
+
input_ids: Optional[torch.Tensor],
|
| 1099 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1100 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1101 |
+
labels: Optional[torch.Tensor] = None,
|
| 1102 |
+
return_dict: Optional[bool] = None,
|
| 1103 |
+
indices: Optional[torch.Tensor] = None,
|
| 1104 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 1105 |
+
max_seqlen: Optional[int] = None,
|
| 1106 |
+
batch_size: Optional[int] = None,
|
| 1107 |
+
seq_len: Optional[int] = None,
|
| 1108 |
+
**kwargs,
|
| 1109 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 1110 |
+
# labels should be a `torch.LongTensor` of shape
|
| 1111 |
+
# `(batch_size, sequence_length)`. These are used for computing the
|
| 1112 |
+
# masked language modeling loss.
|
| 1113 |
+
#
|
| 1114 |
+
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
|
| 1115 |
+
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
| 1116 |
+
# (masked), the loss is only computed for the tokens with labels in `[0,
|
| 1117 |
+
# ..., config.vocab_size]`
|
| 1118 |
+
#
|
| 1119 |
+
# Prediction scores are only computed for masked tokens and the (bs,
|
| 1120 |
+
# seqlen) dimensions are flattened
|
| 1121 |
+
|
| 1122 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1123 |
+
|
| 1124 |
+
if self.unpad_embeddings and (indices is None and cu_seqlens is None and max_seqlen is None):
|
| 1125 |
+
batch_size, seq_len = input_ids.shape[:2]
|
| 1126 |
+
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = self.unpad_inputs(
|
| 1127 |
+
input_ids, attention_mask, position_ids, labels
|
| 1128 |
+
)
|
| 1129 |
+
|
| 1130 |
+
output = self.bert(
|
| 1131 |
+
input_ids,
|
| 1132 |
+
attention_mask=attention_mask,
|
| 1133 |
+
position_ids=position_ids,
|
| 1134 |
+
indices=indices,
|
| 1135 |
+
cu_seqlens=cu_seqlens,
|
| 1136 |
+
max_seqlen=max_seqlen,
|
| 1137 |
+
)
|
| 1138 |
+
|
| 1139 |
+
if self.masked_prediction and labels is not None:
|
| 1140 |
+
# flatten labels and output first
|
| 1141 |
+
labels = labels.view(-1)
|
| 1142 |
+
output = output.view(labels.shape[0], -1)
|
| 1143 |
+
|
| 1144 |
+
# then filter out the non-masked tokens
|
| 1145 |
+
mask_tokens = labels != self.loss_fn.ignore_index
|
| 1146 |
+
output = output[mask_tokens]
|
| 1147 |
+
labels = labels[mask_tokens]
|
| 1148 |
+
|
| 1149 |
+
if self.compile_model:
|
| 1150 |
+
logits = self.compiled_head(output)
|
| 1151 |
+
else:
|
| 1152 |
+
logits = self.decoder(self.head(output))
|
| 1153 |
+
|
| 1154 |
+
loss = None
|
| 1155 |
+
if labels is not None:
|
| 1156 |
+
if not self.masked_prediction:
|
| 1157 |
+
labels = labels.view(-1)
|
| 1158 |
+
logits = logits.view(labels.shape[0], -1)
|
| 1159 |
+
|
| 1160 |
+
if self.return_z_loss:
|
| 1161 |
+
loss, z_loss = self.loss_fn(logits, labels)
|
| 1162 |
+
if self.pad_logits:
|
| 1163 |
+
return MaskedLMOutputZLoss(
|
| 1164 |
+
loss=loss,
|
| 1165 |
+
ce_loss=loss.detach().clone() - z_loss,
|
| 1166 |
+
z_loss=z_loss,
|
| 1167 |
+
logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
|
| 1168 |
+
hidden_states=None,
|
| 1169 |
+
attentions=None,
|
| 1170 |
+
)
|
| 1171 |
+
else:
|
| 1172 |
+
return MaskedLMOutputZLoss(
|
| 1173 |
+
loss=loss,
|
| 1174 |
+
ce_loss=loss.detach().clone() - z_loss,
|
| 1175 |
+
z_loss=z_loss,
|
| 1176 |
+
logits=logits,
|
| 1177 |
+
hidden_states=None,
|
| 1178 |
+
attentions=None,
|
| 1179 |
+
indices=indices,
|
| 1180 |
+
cu_seqlens=cu_seqlens,
|
| 1181 |
+
max_seqlen=max_seqlen,
|
| 1182 |
+
batch_size=batch_size,
|
| 1183 |
+
seq_len=seq_len,
|
| 1184 |
+
labels=labels,
|
| 1185 |
+
)
|
| 1186 |
+
else:
|
| 1187 |
+
loss = self.loss_fn(logits, labels)
|
| 1188 |
+
|
| 1189 |
+
if self.pad_logits:
|
| 1190 |
+
return MaskedLMOutput(
|
| 1191 |
+
loss=loss,
|
| 1192 |
+
logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
|
| 1193 |
+
hidden_states=None,
|
| 1194 |
+
attentions=None,
|
| 1195 |
+
)
|
| 1196 |
+
else:
|
| 1197 |
+
return MaskedLMOutput(
|
| 1198 |
+
loss=loss,
|
| 1199 |
+
logits=logits,
|
| 1200 |
+
hidden_states=None,
|
| 1201 |
+
attentions=None,
|
| 1202 |
+
indices=indices,
|
| 1203 |
+
cu_seqlens=cu_seqlens,
|
| 1204 |
+
max_seqlen=max_seqlen,
|
| 1205 |
+
batch_size=batch_size,
|
| 1206 |
+
seq_len=seq_len,
|
| 1207 |
+
labels=labels,
|
| 1208 |
+
)
|
| 1209 |
+
|
| 1210 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs):
|
| 1211 |
+
input_shape = input_ids.shape
|
| 1212 |
+
effective_batch_size = input_shape[0]
|
| 1213 |
+
|
| 1214 |
+
# add a dummy token
|
| 1215 |
+
if self.config.pad_token_id is None:
|
| 1216 |
+
raise ValueError("The PAD token should be defined for generation")
|
| 1217 |
+
|
| 1218 |
+
attention_mask = torch.cat(
|
| 1219 |
+
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
|
| 1220 |
+
dim=-1,
|
| 1221 |
+
)
|
| 1222 |
+
dummy_token = torch.full(
|
| 1223 |
+
(effective_batch_size, 1),
|
| 1224 |
+
self.config.pad_token_id,
|
| 1225 |
+
dtype=torch.long,
|
| 1226 |
+
device=input_ids.device,
|
| 1227 |
+
)
|
| 1228 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
| 1229 |
+
|
| 1230 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
| 1231 |
+
|
| 1232 |
+
def get_number_parameters(
|
| 1233 |
+
self, count_embeddings: bool = True, count_decoder: bool = False, trainable: bool = True
|
| 1234 |
+
) -> int:
|
| 1235 |
+
"""Returns the number of parameters in the model.
|
| 1236 |
+
|
| 1237 |
+
Args:
|
| 1238 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
| 1239 |
+
count_decoder: count the parameters in the decoder layer if weights are not tied.
|
| 1240 |
+
trainable: only count trainable parameters.
|
| 1241 |
+
"""
|
| 1242 |
+
params = self.bert.get_number_parameters(count_embeddings, trainable)
|
| 1243 |
+
params += _count_parameters(self.head, trainable)
|
| 1244 |
+
if count_decoder and not self.config.tie_word_embeddings:
|
| 1245 |
+
params += _count_parameters(self.decoder, trainable)
|
| 1246 |
+
return params
|
| 1247 |
+
|
| 1248 |
+
|
| 1249 |
+
class FlexBertForSequenceClassification(FlexBertPreTrainedModel):
|
| 1250 |
+
"""Bert Model transformer with a sequence classification/regression head.
|
| 1251 |
+
|
| 1252 |
+
This head is just a linear layer on top of the pooled output. Used for,
|
| 1253 |
+
e.g., GLUE tasks.
|
| 1254 |
+
"""
|
| 1255 |
+
|
| 1256 |
+
def __init__(self, config: FlexBertConfig):
|
| 1257 |
+
super().__init__(config)
|
| 1258 |
+
self.num_labels = config.num_labels
|
| 1259 |
+
self.config = config
|
| 1260 |
+
|
| 1261 |
+
self.bert = FlexBertModel(config)
|
| 1262 |
+
self.head = FlexBertPoolingHead(config)
|
| 1263 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1264 |
+
|
| 1265 |
+
# Initialize weights and apply final processing
|
| 1266 |
+
self._init_weights(reset_params=False)
|
| 1267 |
+
|
| 1268 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
| 1269 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
| 1270 |
+
if module:
|
| 1271 |
+
self._init_module_weights(module)
|
| 1272 |
+
else:
|
| 1273 |
+
assert isinstance(reset_params, bool)
|
| 1274 |
+
self.bert._init_weights(reset_params=reset_params)
|
| 1275 |
+
self.head._init_weights(reset_params=reset_params)
|
| 1276 |
+
init_weights(self.config, self.classifier, self.config.hidden_size, type_of_module=ModuleType.final_out)
|
| 1277 |
+
|
| 1278 |
+
@classmethod
|
| 1279 |
+
def from_composer(
|
| 1280 |
+
cls,
|
| 1281 |
+
pretrained_checkpoint,
|
| 1282 |
+
state_dict=None,
|
| 1283 |
+
cache_dir=None,
|
| 1284 |
+
from_tf=False,
|
| 1285 |
+
config=None,
|
| 1286 |
+
*inputs,
|
| 1287 |
+
**kwargs,
|
| 1288 |
+
):
|
| 1289 |
+
"""Load from pre-trained."""
|
| 1290 |
+
model = cls(config, *inputs, **kwargs)
|
| 1291 |
+
if from_tf:
|
| 1292 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
| 1293 |
+
|
| 1294 |
+
state_dict = torch.load(pretrained_checkpoint)
|
| 1295 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
| 1296 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
| 1297 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 1298 |
+
|
| 1299 |
+
if len(missing_keys) > 0:
|
| 1300 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
| 1301 |
+
if len(unexpected_keys) > 0:
|
| 1302 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
| 1303 |
+
|
| 1304 |
+
return model
|
| 1305 |
+
|
| 1306 |
+
def forward(
|
| 1307 |
+
self,
|
| 1308 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1309 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1310 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1311 |
+
labels: Optional[torch.Tensor] = None,
|
| 1312 |
+
return_dict: Optional[bool] = None,
|
| 1313 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 1314 |
+
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1315 |
+
# Labels for computing the sequence classification/regression loss.
|
| 1316 |
+
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 1317 |
+
# If `config.num_labels == 1` a regression loss is computed
|
| 1318 |
+
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
| 1319 |
+
# is computed (cross-entropy).
|
| 1320 |
+
|
| 1321 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1322 |
+
|
| 1323 |
+
output = self.bert(
|
| 1324 |
+
input_ids,
|
| 1325 |
+
attention_mask=attention_mask,
|
| 1326 |
+
position_ids=position_ids,
|
| 1327 |
+
)
|
| 1328 |
+
|
| 1329 |
+
pooled_output = self.head(output)
|
| 1330 |
+
logits = self.classifier(pooled_output)
|
| 1331 |
+
|
| 1332 |
+
loss = None
|
| 1333 |
+
if labels is not None:
|
| 1334 |
+
# Compute loss
|
| 1335 |
+
if self.config.problem_type is None:
|
| 1336 |
+
if self.num_labels == 1:
|
| 1337 |
+
self.config.problem_type = "regression"
|
| 1338 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1339 |
+
self.config.problem_type = "single_label_classification"
|
| 1340 |
+
else:
|
| 1341 |
+
self.config.problem_type = "multi_label_classification"
|
| 1342 |
+
|
| 1343 |
+
if self.config.problem_type == "regression":
|
| 1344 |
+
loss_fct = nn.MSELoss()
|
| 1345 |
+
if self.num_labels == 1:
|
| 1346 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1347 |
+
else:
|
| 1348 |
+
loss = loss_fct(logits, labels)
|
| 1349 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1350 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1351 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1352 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1353 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
| 1354 |
+
loss = loss_fct(logits, labels)
|
| 1355 |
+
|
| 1356 |
+
if not return_dict:
|
| 1357 |
+
output = (logits,) + output
|
| 1358 |
+
return ((loss,) + output) if loss is not None else output
|
| 1359 |
+
|
| 1360 |
+
return SequenceClassifierOutput(
|
| 1361 |
+
loss=loss,
|
| 1362 |
+
logits=logits,
|
| 1363 |
+
hidden_states=None,
|
| 1364 |
+
attentions=None,
|
| 1365 |
+
)
|
| 1366 |
+
|
| 1367 |
+
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
|
| 1368 |
+
"""Returns the number of parameters in the model.
|
| 1369 |
+
|
| 1370 |
+
Args:
|
| 1371 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
| 1372 |
+
trainable: only count trainable parameters.
|
| 1373 |
+
"""
|
| 1374 |
+
params = self.bert.get_number_parameters(count_embeddings, trainable)
|
| 1375 |
+
params += _count_parameters(self.head, trainable)
|
| 1376 |
+
params += _count_parameters(self.classifier, trainable)
|
| 1377 |
+
return params
|
| 1378 |
+
|
| 1379 |
+
|
| 1380 |
+
class FlexBertForMultipleChoice(FlexBertPreTrainedModel):
|
| 1381 |
+
"""
|
| 1382 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
| 1383 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
| 1384 |
+
"""
|
| 1385 |
+
|
| 1386 |
+
def __init__(self, config: FlexBertConfig):
|
| 1387 |
+
super().__init__(config)
|
| 1388 |
+
self.num_labels = config.num_labels
|
| 1389 |
+
self.config = config
|
| 1390 |
+
|
| 1391 |
+
self.bert = FlexBertModel(config)
|
| 1392 |
+
self.head = FlexBertPoolingHead(config)
|
| 1393 |
+
|
| 1394 |
+
# In multiple choice tasks, all choices are submitted in a batch, and
|
| 1395 |
+
# we compute a logit for each option independently. The logits are then
|
| 1396 |
+
# normalized in the forward pass to get a probability distribution over
|
| 1397 |
+
# the choices.
|
| 1398 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
| 1399 |
+
|
| 1400 |
+
# Initialize weights and apply final processing
|
| 1401 |
+
self._init_weights(reset_params=False)
|
| 1402 |
+
|
| 1403 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
| 1404 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
| 1405 |
+
if module:
|
| 1406 |
+
self._init_module_weights(module)
|
| 1407 |
+
else:
|
| 1408 |
+
assert isinstance(reset_params, bool)
|
| 1409 |
+
self.bert._init_weights(reset_params=reset_params)
|
| 1410 |
+
self.head._init_weights(reset_params=reset_params)
|
| 1411 |
+
init_weights(self.config, self.classifier, self.config.hidden_size, type_of_module=ModuleType.final_out)
|
| 1412 |
+
|
| 1413 |
+
@classmethod
|
| 1414 |
+
def from_composer(
|
| 1415 |
+
cls,
|
| 1416 |
+
pretrained_checkpoint,
|
| 1417 |
+
state_dict=None,
|
| 1418 |
+
cache_dir=None,
|
| 1419 |
+
from_tf=False,
|
| 1420 |
+
config=None,
|
| 1421 |
+
*inputs,
|
| 1422 |
+
**kwargs,
|
| 1423 |
+
):
|
| 1424 |
+
"""Load from pre-trained."""
|
| 1425 |
+
model = cls(config, *inputs, **kwargs)
|
| 1426 |
+
if from_tf:
|
| 1427 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
| 1428 |
+
|
| 1429 |
+
state_dict = torch.load(pretrained_checkpoint)
|
| 1430 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
| 1431 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
| 1432 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 1433 |
+
|
| 1434 |
+
if len(missing_keys) > 0:
|
| 1435 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
| 1436 |
+
if len(unexpected_keys) > 0:
|
| 1437 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
| 1438 |
+
|
| 1439 |
+
return model
|
| 1440 |
+
|
| 1441 |
+
def forward(
|
| 1442 |
+
self,
|
| 1443 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1444 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1445 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1446 |
+
labels: Optional[torch.Tensor] = None,
|
| 1447 |
+
return_dict: Optional[bool] = None,
|
| 1448 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 1449 |
+
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1450 |
+
# Labels for computing the sequence classification/regression loss.
|
| 1451 |
+
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 1452 |
+
# If `config.num_labels == 1` a regression loss is computed
|
| 1453 |
+
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
| 1454 |
+
# is computed (cross-entropy).
|
| 1455 |
+
|
| 1456 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1457 |
+
num_choices = input_ids.shape[1]
|
| 1458 |
+
|
| 1459 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 1460 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 1461 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 1462 |
+
|
| 1463 |
+
output = self.bert(
|
| 1464 |
+
input_ids,
|
| 1465 |
+
attention_mask=attention_mask,
|
| 1466 |
+
position_ids=position_ids,
|
| 1467 |
+
)
|
| 1468 |
+
|
| 1469 |
+
pooled_output = self.head(output)
|
| 1470 |
+
logits = self.classifier(pooled_output)
|
| 1471 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 1472 |
+
|
| 1473 |
+
loss = None
|
| 1474 |
+
if labels is not None:
|
| 1475 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1476 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 1477 |
+
|
| 1478 |
+
if not return_dict:
|
| 1479 |
+
output = (reshaped_logits,) + output
|
| 1480 |
+
return ((loss,) + output) if loss is not None else output
|
| 1481 |
+
|
| 1482 |
+
return MultipleChoiceModelOutput(
|
| 1483 |
+
loss=loss,
|
| 1484 |
+
logits=reshaped_logits,
|
| 1485 |
+
hidden_states=None,
|
| 1486 |
+
attentions=None,
|
| 1487 |
+
)
|
| 1488 |
+
|
| 1489 |
+
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
|
| 1490 |
+
"""Returns the number of parameters in the model.
|
| 1491 |
+
|
| 1492 |
+
Args:
|
| 1493 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
| 1494 |
+
trainable: only count trainable parameters.
|
| 1495 |
+
"""
|
| 1496 |
+
params = self.bert.get_number_parameters(count_embeddings, trainable)
|
| 1497 |
+
params += _count_parameters(self.head, trainable)
|
| 1498 |
+
params += _count_parameters(self.classifier, trainable)
|
| 1499 |
+
return params
|
| 1500 |
+
|
| 1501 |
+
|
| 1502 |
+
def init_model_from_pretrained(
|
| 1503 |
+
pretrained_model: FlexBertModel,
|
| 1504 |
+
new_model: FlexBertModel,
|
| 1505 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
| 1506 |
+
):
|
| 1507 |
+
"""
|
| 1508 |
+
Initialize the new model from the pretrained model.
|
| 1509 |
+
|
| 1510 |
+
This method uses Gopher layer scaling and Phi-style weight tiling as selected by `mode`.
|
| 1511 |
+
The new model must have the same or more layers and the same or larger dimensions than the pretrained model.
|
| 1512 |
+
|
| 1513 |
+
Args:
|
| 1514 |
+
pretrained_model (FlexBertModel): The smaller, pre-trained model
|
| 1515 |
+
new_model (FlexBertModel): The larger model to be initialized
|
| 1516 |
+
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
|
| 1517 |
+
|
| 1518 |
+
This function assumes that the new_model has more layers and a larger hidden size
|
| 1519 |
+
than the pretrained_model, but the same vocabulary size.
|
| 1520 |
+
"""
|
| 1521 |
+
|
| 1522 |
+
# Tile embeddings
|
| 1523 |
+
assert isinstance(
|
| 1524 |
+
new_model.embeddings, type(pretrained_model.embeddings)
|
| 1525 |
+
), f"Pretrained and new_model layers must be the same type, got {type(new_model.embeddings)} and {type(pretrained_model.embeddings)}"
|
| 1526 |
+
assert isinstance(
|
| 1527 |
+
new_model.embeddings,
|
| 1528 |
+
(FlexBertAbsoluteEmbeddings, FlexBertSansPositionEmbeddings, FlexBertCompiledSansPositionEmbeddings),
|
| 1529 |
+
), f"Unsupported embedding layer type: {type(new_model.embeddings)}"
|
| 1530 |
+
|
| 1531 |
+
tile_embedding(pretrained_model.embeddings.tok_embeddings, new_model.embeddings.tok_embeddings, mode=mode)
|
| 1532 |
+
if isinstance(pretrained_model.embeddings, FlexBertAbsoluteEmbeddings):
|
| 1533 |
+
tile_embedding(pretrained_model.embeddings.pos_embeddings, new_model.embeddings.pos_embeddings, mode=mode)
|
| 1534 |
+
|
| 1535 |
+
if hasattr(pretrained_model.embeddings, "norm"):
|
| 1536 |
+
tile_norm(pretrained_model.embeddings.norm, new_model.embeddings.norm, mode=mode)
|
| 1537 |
+
|
| 1538 |
+
# Tile encoder layers
|
| 1539 |
+
assert isinstance(
|
| 1540 |
+
pretrained_model.encoder, (FlexBertUnpadEncoder, FlexBertPaddedEncoder)
|
| 1541 |
+
), f"Unsupported encoder layer type: {type(pretrained_model.encoder)}"
|
| 1542 |
+
assert isinstance(
|
| 1543 |
+
new_model.encoder, type(pretrained_model.encoder)
|
| 1544 |
+
), f"Pretrained and new_model encoder layers must be the same type, got {type(new_model.encoder)} and {type(pretrained_model.encoder)}"
|
| 1545 |
+
|
| 1546 |
+
# Calculate the layer mapping
|
| 1547 |
+
pretrained_layers = len(pretrained_model.encoder.layers)
|
| 1548 |
+
new_layers = len(new_model.encoder.layers)
|
| 1549 |
+
layer_mapping = [round(i * pretrained_layers / new_layers) for i in range(new_layers)]
|
| 1550 |
+
|
| 1551 |
+
# Initialize layers
|
| 1552 |
+
for new_model_idx, pretrained_idx in enumerate(layer_mapping):
|
| 1553 |
+
new_model_layer = new_model.encoder.layers[new_model_idx]
|
| 1554 |
+
pretrained_layer = pretrained_model.encoder.layers[pretrained_idx]
|
| 1555 |
+
|
| 1556 |
+
# first tile the PreNorm/PostNorm layers
|
| 1557 |
+
assert isinstance(
|
| 1558 |
+
new_model_layer, type(pretrained_layer)
|
| 1559 |
+
), f"Pretrained and new_model prenorm/postnorm layers must be the same type, got {type(new_model_layer)} and {type(pretrained_layer)}"
|
| 1560 |
+
assert isinstance(
|
| 1561 |
+
new_model_layer,
|
| 1562 |
+
(
|
| 1563 |
+
FlexBertUnpadPreNormLayer,
|
| 1564 |
+
FlexBertCompileUnpadPreNormLayer,
|
| 1565 |
+
FlexBertUnpadParallelPreNormLayer,
|
| 1566 |
+
FlexBertUnpadPostNormLayer,
|
| 1567 |
+
FlexBertPaddedPreNormLayer,
|
| 1568 |
+
FlexBertPaddedParallelPreNormLayer,
|
| 1569 |
+
FlexBertPaddedPostNormLayer,
|
| 1570 |
+
),
|
| 1571 |
+
), f"Unsupported prenorm/postnorm layer type: {type(new_model_layer)}"
|
| 1572 |
+
|
| 1573 |
+
# First tile the normalization layers
|
| 1574 |
+
if hasattr(pretrained_layer, "attn_norm"):
|
| 1575 |
+
tile_norm(pretrained_layer.attn_norm, new_model_layer.attn_norm, mode=mode)
|
| 1576 |
+
if hasattr(pretrained_layer, "norm"):
|
| 1577 |
+
tile_norm(pretrained_layer.norm, new_model_layer.norm, mode=mode)
|
| 1578 |
+
if hasattr(pretrained_layer, "mlp_norm"):
|
| 1579 |
+
tile_norm(pretrained_layer.mlp_norm, new_model_layer.mlp_norm, mode=mode)
|
| 1580 |
+
|
| 1581 |
+
# Then tile the attention & mlp layers
|
| 1582 |
+
assert isinstance(
|
| 1583 |
+
new_model_layer.attn, type(pretrained_layer.attn)
|
| 1584 |
+
), f"Pretrained and new_model attention layers must be the same type, got {type(new_model_layer.attn)} and {type(pretrained_layer.attn)}"
|
| 1585 |
+
|
| 1586 |
+
# first try the parallel attention layers
|
| 1587 |
+
if isinstance(pretrained_layer, (FlexBertUnpadParallelPreNormLayer, FlexBertPaddedParallelPreNormLayer)):
|
| 1588 |
+
assert isinstance(
|
| 1589 |
+
pretrained_layer.attn,
|
| 1590 |
+
(
|
| 1591 |
+
FlexBertUnpadParallelAttention,
|
| 1592 |
+
FlexBertPaddedParallelAttention,
|
| 1593 |
+
FlexBertUnpadRopeParallelAttention,
|
| 1594 |
+
FlexBertPaddedRopeParallelAttention,
|
| 1595 |
+
),
|
| 1596 |
+
), f"Parallel prenorm layer must have parallel attention layer: {type(pretrained_layer.attn)}"
|
| 1597 |
+
if not isinstance(pretrained_layer.mlp, (FlexBertParallelGLU)):
|
| 1598 |
+
raise ValueError(f"Parallel prenorm layer must have parallel MLP layer: {type(pretrained_layer.mlp)}")
|
| 1599 |
+
tile_linear(
|
| 1600 |
+
pretrained_layer.Wqkvff,
|
| 1601 |
+
new_model_layer.Wqkvff,
|
| 1602 |
+
linear_type=TileLinear.wqkvff,
|
| 1603 |
+
mode=mode,
|
| 1604 |
+
pretrained_attn_size=pretrained_layer.attn_size,
|
| 1605 |
+
pretrained_mlp_size=pretrained_layer.mlp_size,
|
| 1606 |
+
new_attn_size=new_model_layer.attn_size,
|
| 1607 |
+
new_mlp_size=new_model_layer.mlp_size,
|
| 1608 |
+
wqkvff_is_glu=True,
|
| 1609 |
+
)
|
| 1610 |
+
|
| 1611 |
+
# then try the fused attention layers
|
| 1612 |
+
elif isinstance(
|
| 1613 |
+
pretrained_layer.attn,
|
| 1614 |
+
(
|
| 1615 |
+
FlexBertUnpadAttention,
|
| 1616 |
+
FlexBertPaddedAttention,
|
| 1617 |
+
FlexBertUnpadRopeAttention,
|
| 1618 |
+
FlexBertPaddedRopeAttention,
|
| 1619 |
+
),
|
| 1620 |
+
):
|
| 1621 |
+
tile_linear(pretrained_layer.attn.Wqkv, new_model_layer.attn.Wqkv, linear_type=TileLinear.wqkv, mode=mode)
|
| 1622 |
+
else:
|
| 1623 |
+
raise ValueError(f"Unsupported attention layer type: {type(pretrained_layer.attn)}")
|
| 1624 |
+
|
| 1625 |
+
# finally, tile the attention output layer
|
| 1626 |
+
tile_linear(pretrained_layer.attn.Wo, new_model_layer.attn.Wo, linear_type=TileLinear.default, mode=mode)
|
| 1627 |
+
|
| 1628 |
+
# tile the mlp layer if the model is not using parallel attention layers
|
| 1629 |
+
if not isinstance(pretrained_layer.mlp, (FlexBertMLP, FlexBertGLU, FlexBertParallelGLU)):
|
| 1630 |
+
raise ValueError(f"Unsupported MLP layer type: {type(pretrained_layer.mlp)}")
|
| 1631 |
+
assert isinstance(
|
| 1632 |
+
new_model_layer.mlp, type(pretrained_layer.mlp)
|
| 1633 |
+
), f"Pretrained and new_model mlp layers must be the same type, got {type(new_model_layer.mlp)} and {type(pretrained_layer.mlp)}"
|
| 1634 |
+
|
| 1635 |
+
# already tiled the parallel glu layer if it exists, so only need to handle mlp & glu Wi
|
| 1636 |
+
if isinstance(pretrained_layer.mlp, FlexBertGLU):
|
| 1637 |
+
tile_linear(pretrained_layer.mlp.Wi, new_model_layer.mlp.Wi, linear_type=TileLinear.glu, mode=mode)
|
| 1638 |
+
elif isinstance(pretrained_layer.mlp, FlexBertMLP):
|
| 1639 |
+
tile_linear(pretrained_layer.mlp.Wi, new_model_layer.mlp.Wi, linear_type=TileLinear.default, mode=mode)
|
| 1640 |
+
# tile the output for both ParallelGLU and MLP/GLU
|
| 1641 |
+
tile_linear(pretrained_layer.mlp.Wo, new_model_layer.mlp.Wo, linear_type=TileLinear.default, mode=mode)
|
| 1642 |
+
|
| 1643 |
+
|
| 1644 |
+
def init_mlm_model_from_pretrained(
|
| 1645 |
+
config: FlexBertConfig,
|
| 1646 |
+
pretrained_model: FlexBertForMaskedLM,
|
| 1647 |
+
new_model: FlexBertForMaskedLM,
|
| 1648 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
| 1649 |
+
):
|
| 1650 |
+
"""
|
| 1651 |
+
Initialize the new model from the pretrained model.
|
| 1652 |
+
|
| 1653 |
+
This method uses Gopher layer scaling and Phi-style weight tiling as selected by `mode`.
|
| 1654 |
+
The new model must have the same or more layers and the same or larger dimensions than the pretrained model.
|
| 1655 |
+
|
| 1656 |
+
Args:
|
| 1657 |
+
config (FlexBertConfig): The configuration of the new_model
|
| 1658 |
+
pretrained_model (FlexBertForMaskedLM): The smaller, pre-trained model
|
| 1659 |
+
new_model (FlexBertForMaskedLM): The larger model to be initialized from the pretrained model
|
| 1660 |
+
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
|
| 1661 |
+
|
| 1662 |
+
This function assumes that the new_model has more layers and a larger hidden size
|
| 1663 |
+
than the pretrained_model, but the same vocabulary size.
|
| 1664 |
+
"""
|
| 1665 |
+
init_model_from_pretrained(pretrained_model.bert, new_model.bert, mode=mode)
|
| 1666 |
+
|
| 1667 |
+
# TODO: uncomment this when the repo is turned into a pip installable package
|
| 1668 |
+
# if not isinstance(pretrained_model.head, FlexBertPredictionHead):
|
| 1669 |
+
# raise ValueError(f"Pretrained model must have a prediction head: {type(pretrained_model.head)}")
|
| 1670 |
+
# if not isinstance(new_model.head, FlexBertPredictionHead):
|
| 1671 |
+
# raise ValueError(f"New model must have a prediction head: {type(new_model.head)}")
|
| 1672 |
+
|
| 1673 |
+
# tile the prediction head
|
| 1674 |
+
tile_linear(pretrained_model.head.dense, new_model.head.dense, linear_type=TileLinear.default, mode=mode)
|
| 1675 |
+
tile_norm(pretrained_model.head.norm, new_model.head.norm, mode=mode)
|
| 1676 |
+
|
| 1677 |
+
# setup weight tying
|
| 1678 |
+
if config.tie_word_embeddings:
|
| 1679 |
+
new_model.decoder.weight = new_model.bert.embeddings.tok_embeddings.weight
|
| 1680 |
+
tile_linear(
|
| 1681 |
+
pretrained_model.decoder, new_model.decoder, linear_type=TileLinear.default, mode=mode, bias_only=True
|
| 1682 |
+
)
|
| 1683 |
+
else:
|
| 1684 |
+
tile_linear(pretrained_model.decoder, new_model.decoder, linear_type=TileLinear.default, mode=mode)
|
normalization.py
CHANGED
|
@@ -10,7 +10,7 @@ import torch
|
|
| 10 |
import torch.nn as nn
|
| 11 |
from torch.nn import init
|
| 12 |
|
| 13 |
-
from configuration_bert import FlexBertConfig
|
| 14 |
|
| 15 |
try:
|
| 16 |
from flash_attn.ops.triton.layer_norm import RMSNorm as TritonRMSNorm
|
|
|
|
| 10 |
import torch.nn as nn
|
| 11 |
from torch.nn import init
|
| 12 |
|
| 13 |
+
from .configuration_bert import FlexBertConfig
|
| 14 |
|
| 15 |
try:
|
| 16 |
from flash_attn.ops.triton.layer_norm import RMSNorm as TritonRMSNorm
|
options.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
-
from normalization import NORM2CLS
|
| 2 |
-
from embeddings import EBB2CLS
|
| 3 |
-
from activation import ACT2CLS
|
| 4 |
-
from attention import ATTN2CLS
|
| 5 |
-
from mlp import MLP2CLS
|
| 6 |
-
from layers import LAYER2CLS
|
| 7 |
|
| 8 |
|
| 9 |
def print_layer_options():
|
|
|
|
| 1 |
+
from .normalization import NORM2CLS
|
| 2 |
+
from .embeddings import EBB2CLS
|
| 3 |
+
from .activation import ACT2CLS
|
| 4 |
+
from .attention import ATTN2CLS
|
| 5 |
+
from .mlp import MLP2CLS
|
| 6 |
+
from .layers import LAYER2CLS
|
| 7 |
|
| 8 |
|
| 9 |
def print_layer_options():
|