File size: 7,754 Bytes
65debfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import os
import numpy as np
import jsonlines
from collections import defaultdict
from sklearn.metrics import classification_report
def get_links(sample_string, sample_index):
"""
takes a sample string and returns a list of attach tuples
and a list of rel type strings
"""
#MINECRAFT labels
labels = ['COM','CONTR','CORR','QAP','ACK','ELAB','CLARIFQ','COND','CONTIN',
'RES','EXPL','QELAB','ALT','NARR','CONFQ','SEQ']
split_list = [st.strip() for st in sample_string.split(' ')]
rel_list = []
attach_list = []
bad = 0
good = 0
for a in split_list:
s_tuple = None
rel = None
try:
s = a.split('(')[1].split(')')[0].split(',')
r = a.split('(')[0].strip()
except IndexError:
print('split error at ', sample_index)
else:
try:
s_tuple = (int(s[0]), int(s[1]))
except IndexError:
print('split error at ', sample_index)
except ValueError:
print('value error at ', sample_index)
if r in labels:
#make sure the label is well-formed
rel = r
if rel != None and s_tuple != None and (s_tuple[1] - s_tuple[0]) <= 15: #if using a DISTANCE cutoff
# if rel != None and s_tuple != None: #if not using a DISTANCE cutoff
attach_list.append((int(s[0]), int(s[1])))
rel_list.append(r)
good += 1
else:
bad += 1
#re-construct the full list
#a list of tuples (rel, x, y)
#but don't allow doubles!!
full_list = []
endpoints = []
for i, r in enumerate(attach_list):
if r not in endpoints:
endpoints.append(r)
full_list.append((rel_list[i], r[0], r[1]))
return endpoints, full_list, [good, bad]
current_folder=os.getcwd()
gold_path = '/path/to/jsonl'
pred_path = '/path/to/llamipa_output.txt'
save_results = '/path/to/eval_.txt' #to create
#get predicted
with open(pred_path, 'r') as txt:
text = txt.read().split('\n')
pred_outputs = []
for t in text:
if t.startswith(' ### DS:'):
sample = t.split('### DS:')[1].strip()
pred_outputs.append(sample)
print(len(pred_outputs))
#get gold
gold_outputs = []
with jsonlines.open(gold_path) as reader:
for obj in reader:
if not obj['sample'].startswith('NEW DIALOGUE'): #make sure to ignore incremental formatting
gold_outputs.append(obj['PS'])
att_f1_l = []
att_prec_l = []
att_rec_l = []
total_attach_tp = 0
total_attach_fp = 0
total_attach_fn = 0
type_f1_l = []
type_prec_l = []
type_rec_l = []
total_TP = []
matrix_list = []
bad_output = 0
good_output = 0
for i, s in enumerate(pred_outputs):
pred_att, pred_all, malform = get_links(s, i)
gold_att, gold_all, malform = get_links(gold_outputs[i], i)
bad_output += malform[1]
good_output += malform[0]
#calculate number of nulls there should be -- will use to check null count below
common = len(set(pred_att).intersection(set(gold_att)))
expected_nulls = (len(pred_att) - common) + (len(gold_att) - common)
#calculate the precision, recall, and f1 for the sample FOR ATTACHMENTS
if len(gold_att) > 0 and len(pred_att) > 0:
prec = len([e for e in pred_att if e in gold_att])/len(pred_att)
rec = len([e for e in pred_att if e in gold_att])/len(gold_att)
total_attach_tp += len([e for e in pred_att if e in gold_att])
total_attach_fp += len([e for e in pred_att if e not in gold_att])
total_attach_fn += len([e for e in gold_att if e not in pred_att])
else:
prec = 0
rec = 0
att_prec_l.append(prec)
att_rec_l.append(rec)
if prec+rec==0:
att_f1_l.append(0)
else:
att_f1_l.append(2*prec*rec/(prec+rec))
#calculate the precision, recall, and f1 for the sample FOR ATTACHMENTS+RELATION TYPE
if len(gold_all) > 0 and len(pred_all) > 0:
prec = len([e for e in pred_all if e in gold_all])/len(pred_all)
rec = len([e for e in pred_all if e in gold_all])/len(gold_all)
else:
prec = 0
rec = 0
type_prec_l.append(prec)
type_rec_l.append(rec)
if prec+rec==0:
type_f1_l.append(0)
else:
type_f1_l.append(2*prec*rec/(prec+rec))
#create the relation comparisons by type
TP = [e for e in pred_all if e in gold_all]
leftover_pred = [p for p in pred_all if p not in TP]
leftover_gold = [p for p in gold_all if p not in TP]
#then process the TP, FP, FN for matrix
total_TP.extend(TP)
rem_dict = defaultdict(list)
for x in TP:
matrix_list.append([x[0], x[0]])
for x in leftover_pred:
rem_dict[(x[1], x[2])].append(('p', x[0]))
for x in leftover_gold:
rem_dict[(x[1], x[2])].append(('g', x[0]))
p_count = 0
g_count = 0
null_count = 0
for k in rem_dict.keys():
p = 'NULL'
t = 'NULL'
for re in rem_dict[k]:
if re[0] == 'p':
p = re[1]
p_count += 1
elif re[0] == 'g':
t = re[1]
g_count += 1
matrix_list.append([t,p])
if 'NULL' in [t,p]:
null_count += 1
assert(len(TP) + p_count == len(pred_all))
assert(len(TP) + g_count == len(gold_all))
assert null_count == expected_nulls
#compute labels in gold and pred
gold = [m[0] for m in matrix_list]
pred = [m[1] for m in matrix_list]
gold.extend(pred)
labels = list(set(gold))
microf1 = total_attach_tp/(total_attach_tp + 0.5*(total_attach_fp + total_attach_fn))
gold_list = [labels.index(m[0]) for m in matrix_list]
pred_list = [labels.index(m[1]) for m in matrix_list]
f = open(save_results,"w")
print("Attachment F1:",np.mean(att_f1_l),len(att_f1_l), file=f)
print("Attachment Average Precision:",np.mean(att_prec_l), file=f)
print("Attachment Average Recall:",np.mean(att_rec_l), file=f)
print('Micro F1: ', microf1, file=f)
print('--------------------------------', file=f)
print("Attachment + Rel F1:",np.mean(type_f1_l),len(type_f1_l))
print("Attachment + Rel Average Precision:",np.mean(type_prec_l))
print("Attachment + Rel Average Recall:",np.mean(type_rec_l))
print('---------------------------------------')
print(classification_report(gold_list,pred_list,target_names=labels), file=f)
# The F1-scores for the relation types displayed in the above table are correct.
#That is, while calculating F1 for label l, all the ["NULL", l] entries count towards false-positive for label l
#and all the [l, "NULL"] entries count towards false-negative for label l.
#So, the "NULL" type is affecting the precision/recall/F1 for label l (as it should).
#Now, for the overall weighted average precision/recall/f1-score,
# we want the average to be over the actual relation labels set (i.e. excluding "NULL" class).
#For that, we do this:
d = classification_report(gold_list,pred_list,target_names=labels,output_dict=True)
prec = 0
rec = 0
f1 = 0
count = 0
for label in labels:
if label!="NULL":
prec+=d[label]["precision"]*d[label]["support"]
rec+=d[label]["recall"]*d[label]["support"]
f1+=d[label]["f1-score"]*d[label]["support"]
count+=d[label]["support"]
# checking that support is same as the number of ground truth instance for the label
# assert d[label]["support"] == Counter(g_label_l)[label]
print('--------------------------------', file=f)
print("Weighted Average Precision:", prec/count, file=f)
print("Weighted Average Recall:", rec/count, file=f)
print("Weighted Average F1 score:", f1/count, file=f)
f.close()
|