|
import pandas as pd |
|
import gzip |
|
from pathlib import Path |
|
|
|
def load_csv(file_path): |
|
return pd.read_csv(file_path) |
|
|
|
def load_gzip_csv(file_path): |
|
with gzip.open(file_path, 'rt') as f: |
|
return pd.read_csv(f) |
|
|
|
def save_gzip_csv(df, file_path): |
|
df.to_csv(file_path, index=False, compression='gzip') |
|
|
|
def process_and_save_property(df, property_name, output_folder): |
|
|
|
property_df = df[['smiles', property_name]].dropna() |
|
|
|
|
|
property_df = property_df.rename(columns={property_name: property_name.replace('mol_', '').replace('plym_', '')}) |
|
|
|
|
|
output_path = output_folder / f"{property_name.replace('mol_', '').replace('plym_', '')}.csv.gz" |
|
save_gzip_csv(property_df, output_path) |
|
print(f"Saved {len(property_df)} rows for {property_name} to {output_path}") |
|
|
|
def main(): |
|
|
|
pretrain_qa_folder = Path('/dccstor/graph-design2/liugang/2_model_prepared/step1_graph_dit/data/preprocess/pretrain_qa') |
|
pretrain_path = Path('/dccstor/graph-design2/liugang/2_model_prepared/step1_graph_dit/data/raw/pretrain.csv.gz') |
|
|
|
|
|
output_folder = Path('.') |
|
|
|
|
|
train_df = load_csv(pretrain_qa_folder / 'train_df.csv') |
|
test_df = load_csv(pretrain_qa_folder / 'test_df.csv') |
|
pretrain_df = load_gzip_csv(pretrain_path) |
|
|
|
|
|
all_data = pd.concat([train_df, test_df, pretrain_df], ignore_index=True) |
|
|
|
|
|
all_data = all_data.drop_duplicates(subset='smiles', keep='first') |
|
|
|
|
|
properties = ['mol_BBBP', 'mol_HIV', 'mol_BACE', 'plym_CO2', 'plym_N2', 'plym_O2', 'plym_FFV', 'plym_TC'] |
|
|
|
|
|
for prop in properties: |
|
process_and_save_property(all_data, prop, output_folder) |
|
|
|
if __name__ == "__main__": |
|
main() |