liuganghuggingface's picture
Upload evaluatorQA/1_create_data.py with huggingface_hub
ebf5008 verified
import pandas as pd
import gzip
from pathlib import Path
def load_csv(file_path):
return pd.read_csv(file_path)
def load_gzip_csv(file_path):
with gzip.open(file_path, 'rt') as f:
return pd.read_csv(f)
def save_gzip_csv(df, file_path):
df.to_csv(file_path, index=False, compression='gzip')
def process_and_save_property(df, property_name, output_folder):
# Filter out rows where the property is NaN
property_df = df[['smiles', property_name]].dropna()
# Rename the property column to the standardized name
property_df = property_df.rename(columns={property_name: property_name.replace('mol_', '').replace('plym_', '')})
# Save to csv.gz file
output_path = output_folder / f"{property_name.replace('mol_', '').replace('plym_', '')}.csv.gz"
save_gzip_csv(property_df, output_path)
print(f"Saved {len(property_df)} rows for {property_name} to {output_path}")
def main():
# Input paths
pretrain_qa_folder = Path('/dccstor/graph-design2/liugang/2_model_prepared/step1_graph_dit/data/preprocess/pretrain_qa')
pretrain_path = Path('/dccstor/graph-design2/liugang/2_model_prepared/step1_graph_dit/data/raw/pretrain.csv.gz')
# Output folder (current directory)
output_folder = Path('.')
# Load datasets
train_df = load_csv(pretrain_qa_folder / 'train_df.csv')
test_df = load_csv(pretrain_qa_folder / 'test_df.csv')
pretrain_df = load_gzip_csv(pretrain_path)
# Combine all datasets
all_data = pd.concat([train_df, test_df, pretrain_df], ignore_index=True)
# Remove duplicate SMILES, keeping the first occurrence
all_data = all_data.drop_duplicates(subset='smiles', keep='first')
# List of properties to process
properties = ['mol_BBBP', 'mol_HIV', 'mol_BACE', 'plym_CO2', 'plym_N2', 'plym_O2', 'plym_FFV', 'plym_TC']
# Process and save each property
for prop in properties:
process_and_save_property(all_data, prop, output_folder)
if __name__ == "__main__":
main()