Fill-Mask
Transformers
Safetensors
Japanese
modernbert
speed commited on
Commit
1cf964c
·
verified ·
1 Parent(s): 9284dc3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -180
README.md CHANGED
@@ -1,199 +1,59 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - ja
6
  ---
7
 
8
+ # llm-jp-modernbert-base-v4-ja
9
 
10
+ This model is based on the [modernBERT-base](https://arxiv.org/abs/2412.13663) architecture with [llm-jp-tokenizer](https://github.com/llm-jp/llm-jp-tokenizer).
11
+ It was trained using the Japanese subset (3.4TB) of the llm-jp-corpus v4 and supports a max sequence length of 8192.
12
 
13
 
14
+ ## Training
15
 
16
+ This model was trained with a max_seq_len of 1024 in stage 1, and then with a max_seq_len of 8192 in stage 2.
17
 
18
+ | Model | stage 1 | stage 2 |
19
+ |:------------------ |----------------:|----------------:|
20
+ | max_seq_len | 1024 | 8192 |
21
+ | max_steps | 500,000 | 200,000 |
22
+ | Total batch size | 3328 | 384 |
23
+ | Peak LR | 5e-4 | 5e-5 |
24
+ | warmup step | 24,000 | |
25
+ | LR schedule | Linear decay | |
26
+ | Adam beta 1 | 0.9 | |
27
+ | Adam beta 2 | 0.98 | |
28
+ | Adam eps | 1e-6 | |
29
+ | MLM prob | 0.30 | |
30
+ | Gradient clipping | 1.0 | |
31
+ | weight decay | 1e-5 | |
32
+ | line_by_line | True | |
33
 
34
+ The blank in stage 2 indicate the same value as in stage 1.
35
 
36
+ In theory, stage 1 consumes 1.7T tokens, but sentences with fewer than 1024 tokens are truncated, so the actual consumption is lower. Stage 2 theoretically consumes 0.6T tokens.
37
 
38
+ For reference, Warner et al.'s ModernBERT uses 1.72T tokens for stage 1, 250B tokens for stage 2, and 50B tokens for stage 3.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  ## Evaluation
41
 
42
+ For the sentence classification task evaluation, the datasets JSTS, JNLI, and JCoLA from [JGLUE](https://aclanthology.org/2022.lrec-1.317/) were used. For the evaluation of the Zero-shot Sentence Retrieval task, the [miracl/miracl](https://huggingface.co/datasets/miracl/miracl) dataset (ja subset) was used.
43
+ Evaluation code can be found at https://github.com/speed1313/bert-eval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ | Model | JSTS | JNLI | JCoLA | Avg(JGLUE) | miracl | Avg |
46
+ |------------------------------------------------|--------|--------|---------|--------------|----------|--------|
47
+ | tohoku-nlp/bert-base-japanese-v3 | 0.9196 | 0.9117 | 0.8798 | 0.9037 | 0.74 | 0.8628 |
48
+ | sbintuitions/modernbert-ja-130m | 0.9159 | 0.9273 | 0.8682 | 0.9038 | 0.5069 | 0.8046 |
49
+ | sbintuitions/modernbert-ja-310m | 0.9317 | 0.9326 | 0.8832 | 0.9158 | 0.6569 | 0.8511 |
50
+ | llm-jp-modernbert-base-v3-stage1-500k | 0.9247 | 0.917 | 0.8555 | 0.8991 | 0.5515 | 0.8122 |
51
+ | llm-jp-modernbert-base-v3-stage2-200k | 0.9238 | 0.9108 | 0.8439 | 0.8928 | 0.5384 | 0.8042 |
52
+ | llm-jp-modernbert-base-v4-ja-stage1-100k | 0.9213 | 0.9182 | 0.8613 | 0.9003 | N/A | N/A |
53
+ | llm-jp-modernbert-base-v4-ja-stage1-300k | 0.9199 | 0.9187 | 0.852 | 0.8969 | N/A | N/A |
54
+ | llm-jp-modernbert-base-v4-ja-stage1-400k | 0.9214 | 0.9203 | 0.8555 | 0.8991 | N/A | N/A |
55
+ | llm-jp-modernbert-base-v4-ja-stage1-500k | 0.9212 | 0.9195 | 0.8451 | 0.8953 | 0.6025 | 0.8221 |
56
+ | llm-jp-modernbert-base-v4-ja-stage2-200k | 0.9177 | 0.9133 | 0.8439 | 0.8916 | 0.5739 | 0.8122 |
57
 
 
58
 
 
59