OneZero-Y commited on
Commit
1f2caad
·
verified ·
1 Parent(s): 0bc0466

Upload lora_intent_classifier_bert-base-uncased_model LoRA model

Browse files
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-uncased
4
+ tags:
5
+ - lora
6
+ - semantic-router
7
+ - intent-classification
8
+ - text-classification
9
+ - candle
10
+ - rust
11
+ language:
12
+ - en
13
+ pipeline_tag: text-classification
14
+ library_name: candle
15
+ ---
16
+
17
+ # lora_intent_classifier_bert-base-uncased_model
18
+
19
+ ## Model Description
20
+
21
+ This is a LoRA (Low-Rank Adaptation) fine-tuned model based on **bert-base-uncased** for Intent Classification - Classifies text into categories like business, technology, science, etc..
22
+
23
+ This model is part of the [semantic-router](https://github.com/vllm-project/semantic-router) project and is optimized for use with the Candle framework in Rust.
24
+
25
+ ## Model Details
26
+
27
+ - **Base Model**: bert-base-uncased
28
+ - **Task**: Intent Classification
29
+ - **Framework**: Candle (Rust)
30
+ - **Model Size**: ~418MB
31
+ - **LoRA Rank**: N/A
32
+ - **LoRA Alpha**: N/A
33
+ - **Target Modules**:
34
+
35
+ ## Usage
36
+
37
+ ### With semantic-router (Recommended)
38
+
39
+ ```python
40
+ from semantic_router import SemanticRouter
41
+
42
+ # The model will be automatically downloaded and used
43
+ router = SemanticRouter()
44
+ results = router.classify_batch(["Your text here"])
45
+ ```
46
+
47
+ ### With Candle (Rust)
48
+
49
+ ```rust
50
+ use candle_core::{Device, Tensor};
51
+ use candle_transformers::models::bert::BertModel;
52
+
53
+ // Load the model using Candle
54
+ let device = Device::Cpu;
55
+ let model = BertModel::load(&device, &config, &weights)?;
56
+ ```
57
+
58
+ ## Training Details
59
+
60
+ This model was fine-tuned using LoRA (Low-Rank Adaptation) technique:
61
+
62
+ - **Rank**: 16
63
+ - **Alpha**: 32
64
+ - **Dropout**: 0.1
65
+ - **Target Modules**:
66
+
67
+ ## Performance
68
+
69
+ Intent Classification - Classifies text into categories like business, technology, science, etc.
70
+
71
+ For detailed performance metrics, see the [training results](https://github.com/vllm-project/semantic-router/blob/main/training-result.md).
72
+
73
+ ## Files
74
+
75
+ - `model.safetensors`: LoRA adapter weights
76
+ - `config.json`: Model configuration
77
+ - `lora_config.json`: LoRA-specific configuration
78
+ - `tokenizer.json`: Tokenizer configuration
79
+ - `label_mapping.json`: Label mappings for classification
80
+
81
+ ## Citation
82
+
83
+ If you use this model, please cite:
84
+
85
+ ```bibtex
86
+ @misc{semantic-router-lora,
87
+ title={LoRA Fine-tuned Models for Semantic Router},
88
+ author={Semantic Router Team},
89
+ year={2025},
90
+ url={https://github.com/vllm-project/semantic-router}
91
+ }
92
+ ```
93
+
94
+ ## License
95
+
96
+ Apache 2.0
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "business",
14
+ "1": "law",
15
+ "2": "psychology"
16
+ },
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "label2id": {
20
+ "business": 0,
21
+ "law": 1,
22
+ "psychology": 2
23
+ },
24
+ "layer_norm_eps": 1e-12,
25
+ "max_position_embeddings": 512,
26
+ "model_type": "bert",
27
+ "num_attention_heads": 12,
28
+ "num_hidden_layers": 12,
29
+ "pad_token_id": 0,
30
+ "position_embedding_type": "absolute",
31
+ "transformers_version": "4.56.1",
32
+ "type_vocab_size": 2,
33
+ "use_cache": true,
34
+ "vocab_size": 30522
35
+ }
label_mapping.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "category_to_idx": {
3
+ "business": 0,
4
+ "law": 1,
5
+ "psychology": 2
6
+ },
7
+ "idx_to_category": {
8
+ "0": "business",
9
+ "1": "law",
10
+ "2": "psychology"
11
+ }
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8890bf7cb4ddac2b91fa6fe86e46656ee3c6042c548dbba13306498a140d1df8
3
+ size 437961724
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff