File size: 2,778 Bytes
b8ac573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: bert-small-codesearchnet-python
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-small-codesearchnet-python

This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0582
- Bleu: 0.0347
- Rouge1: 0.6428
- Rouge2: 0.6252
- Avg Length: 17.891

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   | Rouge1 | Rouge2 | Avg Length |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:----------:|
| No log        | 1.0   | 375  | 1.2151          | 0.0    | 0.0928 | 0.0083 | 10.684     |
| 1.9359        | 2.0   | 750  | 1.0291          | 0.0032 | 0.1752 | 0.0338 | 15.0624    |
| 0.9422        | 3.0   | 1125 | 0.9173          | 0.0061 | 0.2506 | 0.0711 | 17.9358    |
| 0.776         | 4.0   | 1500 | 0.8058          | 0.0088 | 0.3321 | 0.1409 | 18.3724    |
| 0.776         | 5.0   | 1875 | 0.6915          | 0.0123 | 0.4044 | 0.2267 | 18.564     |
| 0.6218        | 6.0   | 2250 | 0.5281          | 0.0193 | 0.5382 | 0.4097 | 17.5586    |
| 0.4363        | 7.0   | 2625 | 0.1897          | 0.0333 | 0.6311 | 0.6002 | 17.8768    |
| 0.1518        | 8.0   | 3000 | 0.0834          | 0.0346 | 0.6413 | 0.621  | 17.879     |
| 0.1518        | 9.0   | 3375 | 0.0587          | 0.0349 | 0.6439 | 0.6268 | 17.8886    |
| 0.0579        | 10.0  | 3750 | 0.0547          | 0.0348 | 0.6443 | 0.6276 | 17.885     |
| 0.0437        | 11.0  | 4125 | 0.0525          | 0.0348 | 0.6442 | 0.6278 | 17.8766    |
| 0.0365        | 12.0  | 4500 | 0.0550          | 0.0347 | 0.6436 | 0.6266 | 17.8876    |
| 0.0365        | 13.0  | 4875 | 0.0545          | 0.0347 | 0.6439 | 0.627  | 17.876     |
| 0.032         | 14.0  | 5250 | 0.0539          | 0.0347 | 0.644  | 0.6268 | 17.8822    |
| 0.0288        | 15.0  | 5625 | 0.0582          | 0.0347 | 0.6428 | 0.6252 | 17.891     |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3