File size: 47,572 Bytes
460fdd7
 
 
 
 
2c0c592
460fdd7
9aae5ff
460fdd7
 
 
 
9aae5ff
460fdd7
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
 
 
 
 
460fdd7
9aae5ff
 
 
 
 
 
 
 
 
460fdd7
9aae5ff
 
 
 
460fdd7
 
9aae5ff
 
 
 
 
 
 
460fdd7
9aae5ff
 
 
 
 
 
460fdd7
9aae5ff
460fdd7
 
9aae5ff
 
 
 
 
 
 
 
 
 
 
 
 
460fdd7
 
9aae5ff
460fdd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
460fdd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
460fdd7
 
9aae5ff
 
460fdd7
 
9aae5ff
 
 
 
460fdd7
9aae5ff
 
 
 
460fdd7
9aae5ff
460fdd7
 
9aae5ff
 
460fdd7
 
9aae5ff
 
 
 
 
 
 
 
 
 
 
 
460fdd7
 
9aae5ff
 
460fdd7
 
9aae5ff
 
 
 
 
 
 
 
 
 
 
 
 
 
460fdd7
 
9aae5ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460fdd7
 
9aae5ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460fdd7
9aae5ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460fdd7
9aae5ff
460fdd7
 
9aae5ff
 
 
460fdd7
 
9aae5ff
 
 
d8479bb
9aae5ff
460fdd7
9aae5ff
 
 
460fdd7
9aae5ff
 
 
 
 
 
 
460fdd7
9aae5ff
460fdd7
 
9aae5ff
 
 
460fdd7
9aae5ff
 
 
460fdd7
9aae5ff
 
 
 
 
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
 
 
 
 
 
460fdd7
9aae5ff
 
460fdd7
 
2c0c592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460fdd7
9aae5ff
460fdd7
9aae5ff
 
 
 
 
 
460fdd7
9aae5ff
460fdd7
 
 
 
 
 
 
 
 
 
9aae5ff
 
 
 
 
 
 
460fdd7
2c0c592
9aae5ff
460fdd7
9aae5ff
460fdd7
9aae5ff
7df4bf5
9aae5ff
 
 
460fdd7
9aae5ff
460fdd7
 
 
 
9aae5ff
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
 
460fdd7
9aae5ff
 
460fdd7
 
 
9aae5ff
 
 
 
 
 
 
 
2c0c592
 
 
 
 
 
 
 
 
9aae5ff
 
 
 
7df4bf5
9aae5ff
 
 
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
460fdd7
7df4bf5
9aae5ff
 
 
 
460fdd7
9aae5ff
 
 
460fdd7
9aae5ff
 
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
 
 
460fdd7
9aae5ff
 
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
460fdd7
9aae5ff
 
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
 
460fdd7
9aae5ff
460fdd7
 
9aae5ff
 
460fdd7
9aae5ff
460fdd7
 
9aae5ff
460fdd7
9aae5ff
 
 
 
 
 
 
 
 
 
460fdd7
 
9aae5ff
 
 
460fdd7
9aae5ff
 
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
 
 
460fdd7
9aae5ff
 
 
 
460fdd7
9aae5ff
460fdd7
 
9aae5ff
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
 
 
 
 
 
460fdd7
9aae5ff
 
 
 
460fdd7
9aae5ff
 
 
 
 
460fdd7
9aae5ff
 
460fdd7
9aae5ff
460fdd7
 
 
 
 
 
 
 
9aae5ff
 
 
 
460fdd7
 
 
 
9aae5ff
460fdd7
 
 
 
 
 
 
 
 
 
 
9aae5ff
460fdd7
 
 
 
 
 
9aae5ff
460fdd7
9aae5ff
 
460fdd7
 
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
 
 
460fdd7
 
 
 
 
 
 
 
9aae5ff
 
 
 
460fdd7
7df4bf5
9aae5ff
 
 
 
 
 
460fdd7
 
 
 
9aae5ff
 
 
 
 
 
 
 
 
 
 
 
 
 
460fdd7
9aae5ff
 
 
460fdd7
9aae5ff
7df4bf5
9aae5ff
 
 
 
 
 
 
460fdd7
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
460fdd7
 
 
 
9aae5ff
460fdd7
 
 
 
9aae5ff
460fdd7
 
 
 
9aae5ff
460fdd7
9aae5ff
460fdd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
460fdd7
 
 
 
 
 
 
 
 
9aae5ff
 
 
 
460fdd7
 
 
9aae5ff
460fdd7
 
 
 
 
 
9aae5ff
460fdd7
 
 
 
9aae5ff
460fdd7
9aae5ff
460fdd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
460fdd7
 
 
9aae5ff
460fdd7
 
 
9aae5ff
460fdd7
 
 
 
9aae5ff
460fdd7
9aae5ff
460fdd7
 
9aae5ff
460fdd7
9aae5ff
460fdd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
 
460fdd7
9aae5ff
460fdd7
 
 
9aae5ff
 
460fdd7
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
 
460fdd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
460fdd7
 
 
 
 
 
9aae5ff
460fdd7
 
 
 
9aae5ff
 
460fdd7
9aae5ff
460fdd7
 
 
9aae5ff
 
460fdd7
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
 
460fdd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
 
460fdd7
9aae5ff
460fdd7
 
 
9aae5ff
 
460fdd7
 
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
 
460fdd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
460fdd7
 
 
 
 
 
 
9aae5ff
460fdd7
 
 
 
9aae5ff
 
460fdd7
9aae5ff
460fdd7
 
 
9aae5ff
 
460fdd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aae5ff
 
460fdd7
 
 
 
 
 
 
 
 
 
9aae5ff
460fdd7
 
 
 
 
 
9aae5ff
460fdd7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
from __future__ import annotations

import torch
import torch.nn as nn
from torch.nn import functional as F
from torch import _softmax_backward_data as _softmax_backward_data

from functools import partial, lru_cache

from .configuration_gptbert import GptBertConfig
from transformers.modeling_utils import PreTrainedModel
from transformers.activations import gelu_new
from transformers.utils import is_flash_attn_2_available, logging
from transformers.modeling_outputs import (
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
    BaseModelOutput,
    CausalLMOutput
)
import math
from typing import TYPE_CHECKING, Optional, Union, Tuple, List

logger = logging.get_logger(__name__)


# Workaround for transformers < 4.36.0 check_imports issue
# See: https://github.com/huggingface/transformers/issues/28459
try:
    if is_flash_attn_2_available():
        from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
        from flash_attn.layers.rotary import RotaryEmbedding
        from flash_attn.ops.triton.rotary import apply_rotary
    else:
        flash_attn_varlen_qkvpacked_func, RotaryEmbedding, apply_rotary = None, object, None
        logger.warning_once(
            "NorBERT4 støtter FlashAttention, men det er ikke funnet i miljøet ditt. Du bør vurdere å oppdatere miljøet ditt for å få raskere og mindre minnekrevende behandling."
        )
except ImportError:
    flash_attn_varlen_qkvpacked_func, RotaryEmbedding, apply_rotary = None, object, None
    logger.warning_once(
        "NorBERT4 støtter FlashAttention, men det er ikke funnet i miljøet ditt. Du bør vurdere å oppdatere miljøet ditt for å få raskere og mindre minnekrevende behandling."
    )


# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
@torch.compiler.disable()
def _unpad_input(input_ids: torch.Tensor, attention_mask: torch.Tensor):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = int(seqlens_in_batch.max().item())
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))

    if input_ids.dim() == 2:
        unpadded_inputs = input_ids.flatten()[indices]
    else:
        batch_size, sequence_length, *rest = input_ids.shape
        shape = batch_size * sequence_length
        unpadded_inputs = input_ids.view(shape, *rest)[indices]

    return unpadded_inputs, indices, cu_seqlens, max_seqlen_in_batch


# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
def _pad_output(input_ids: torch.Tensor, indices: torch.Tensor, batch_size: int, sequence_length: int) -> torch.Tensor:
    if input_ids.dim() == 1:
        output = torch.zeros(batch_size * sequence_length, dtype=input_ids.dtype, device=input_ids.device)
        output[indices] = input_ids
        padded_inputs = output.view(batch_size, sequence_length)
    else:
        _, *rest = input_ids.shape
        output = torch.zeros(batch_size * sequence_length, *rest, dtype=input_ids.dtype, device=input_ids.device)
        output[indices] = input_ids
        padded_inputs = output.view(batch_size, sequence_length, *rest)

    return padded_inputs


class CastedLinear(nn.Linear):
    def __init__(self, in_features, out_features, bias):
        super().__init__(in_features, out_features, bias=bias)

    def forward(self, x):
        return F.linear(x, self.weight.type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)


class CastedLinearIn(nn.Linear):
    def __init__(self, in_features, out_features, bias):
        super().__init__(in_features, out_features, bias=bias)
        self.scale = nn.Parameter(torch.ones(in_features))

    def forward(self, x):
        return F.linear(x, (self.weight * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)


class MultiCastedLinearOrthoIn(nn.Module):
    def __init__(self, in_features, out_features, bias):
        super().__init__()

        self.in_features = in_features
        self.out_features = out_features

        self.weights = nn.ParameterList()
        for out_feature in out_features:
            self.weights.append(nn.Parameter(torch.empty((out_feature, in_features))))

        if bias:
            self.bias = nn.Parameter(torch.zeros(sum(out_features)))
        else:
            self.bias = self.register_parameter("bias", None)

        self.scale = nn.Parameter(torch.ones(in_features))

    def forward(self, x):
        return F.linear(x, (torch.cat([weight for weight in self.weights], dim=0) * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)


class GeGLU(nn.Module):
    def forward(self, x):
        x, gate = x.chunk(2, dim=-1)
        return x * gelu_new(gate)


class Embedding(nn.Module):
    def __init__(self, config: GptBertConfig):
        super().__init__()

        self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
        self.word_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False, bias=False)
        self.word_scale = nn.Parameter(torch.zeros(config.hidden_size))
        self.dropout = nn.Dropout(config.embedding_dropout)

    def forward(self, input_ids: torch.Tensor):
        word_embedding = self.word_embedding(input_ids)
        word_embedding = self.word_norm(word_embedding)
        word_embedding = word_embedding * (self.word_scale + 1.0)

        return self.dropout(word_embedding)


class LMClassifier(nn.Module):
    def __init__(self, config: GptBertConfig, n_labels: int):
        super().__init__()

        self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
        self.projection = CastedLinearIn(config.hidden_size, config.hidden_size, bias=False)
        self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
        self.emb2vocab = CastedLinearIn(config.hidden_size, n_labels, bias=True)

    def forward(self, x: torch.Tensor):
        x = self.pre_norm(x.float()).type_as(x)
        x = self.projection(x)
        x = gelu_new(x)
        x = self.post_norm(x.float()).type_as(x)
        x = self.emb2vocab(x)
        return x


class Classifier(nn.Module):
    def __init__(self, config: GptBertConfig, n_labels: int):
        super().__init__()

        self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
        self.projection = CastedLinearIn(config.hidden_size, config.hidden_size, bias=False)
        self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
        self.dropout = nn.Dropout(config.classifier_dropout)
        self.output_projection = CastedLinearIn(config.hidden_size, n_labels, bias=True)

    def forward(self, x: torch.Tensor):
        x = self.pre_norm(x.float()).type_as(x)
        x = self.projection(x)
        x = gelu_new(x)
        x = self.post_norm(x.float()).type_as(x)
        x = self.dropout(x)
        x = self.output_projection(x)
        return x


# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
def flash_attention_forward(qkv: torch.Tensor, rotary_emb: UnpaddedRotaryEmbedding, cu_seqlens: torch.Tensor, max_seqlen: int, causal: bool, local_attention: Tuple[int, int], dropout_p: float, deterministic: bool, target_dtype: torch.dtype = torch.bfloat16, **_kwargs):
    qkv = rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)

    convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
    if convert_dtype:
        # FA2 implementation only supports fp16 and bf16. If FA2 is supported,
        # bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
        orig_dtype = qkv.dtype
        qkv = qkv.to(target_dtype)

        attn = flash_attn_varlen_qkvpacked_func(
            qkv,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            dropout_p=dropout_p,
            deterministic=deterministic,
            window_size=local_attention,
            causal=False
        )
        attn = attn.to(orig_dtype)  # type: ignore
    else:
        attn = flash_attn_varlen_qkvpacked_func(
            qkv,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            dropout_p=dropout_p,
            deterministic=deterministic,
            window_size=local_attention,
            causal=False
        )
    return attn


# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
class ApplyRotaryEmbUnpad(torch.autograd.Function):
    @staticmethod
    def forward(ctx, qkv, cos, sin, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None):
        # (total_nnz, 3, nheads, headdim)
        qkv = qkv.contiguous()
        total_nnz, _three, _nheads, headdim = qkv.shape
        # We need qkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
        # we get the same tensor
        # qk = rearrange(qkv[:, :2], "b_s t h d -> b_s (t h) d")
        qk = qkv[:, :2].view(total_nnz, -1, headdim)
        apply_rotary(qk, cos, sin, seqlen_offsets=0, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, interleaved=False, inplace=True)

        ctx.save_for_backward(cos, sin, cu_seqlens)
        ctx.max_seqlen = max_seqlen
        return qkv

    @staticmethod
    def backward(ctx, do):
        cos, sin, cu_seqlens = ctx.saved_tensors
        do = do.contiguous()
        total_nnz, _three, _nheads, headdim = do.shape
        # We need dqkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
        # we get the same tensor
        dqk = do[:, :2].view(total_nnz, -1, headdim)
        apply_rotary(
            dqk,
            cos,
            sin,
            seqlen_offsets=0,
            cu_seqlens=cu_seqlens,
            max_seqlen=ctx.max_seqlen,
            interleaved=False,
            inplace=True,
            conjugate=True,
        )

        return do, None, None, None, None, None, None


# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
def apply_rotary_unpadded(qkv, cos, sin, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None):
    return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)


# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
class UnpaddedRotaryEmbedding(RotaryEmbedding):
    def __init__(self, dim: int, base: float = 10000.0, max_seqlen: Optional[int] = None):
        super().__init__(dim=dim, base=base, device=None, interleaved=False)
        self.max_seqlen = max_seqlen

    def forward(self, qkv: torch.Tensor, cu_seqlens: torch.Tensor, max_seqlen: Optional[int] = None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        if max_seqlen is not None:
            self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)

        qkv = apply_rotary_unpadded(
            qkv,
            self._cos_cached,
            self._sin_cached,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
        )

        return qkv


class RotaryPositionalEmbeddings(nn.Module):
    def __init__(self, config, theta: int):
        super().__init__()

        head_size = config.query_key_head_size
        assert head_size % 2 == 0
        max_seq_len = config.max_sequence_length

        inv_freq = 1.0 / (theta ** (torch.arange(0, head_size, 2, dtype=torch.float32) / head_size))
        pos = torch.arange(max_seq_len, dtype=torch.float32)
        embedding = torch.einsum('n, d -> nd', pos, inv_freq)
        embedding = torch.cat([embedding, embedding], dim=-1).unsqueeze(0)
        self.register_buffer("cos_matrix", embedding.cos(), persistent=False)
        self.register_buffer("sin_matrix", embedding.sin(), persistent=False)

    def forward(self, x: torch.Tensor):
        hidden_layer = x.float()

        seq_len = x.shape[2]

        cos_matrix = self.cos_matrix[:, None, :seq_len, :]
        sin_matrix = self.sin_matrix[:, None, :seq_len, :]

        x_rotate_half = torch.cat(
            [
                -hidden_layer[:, :, :, x.size(-1) // 2:],
                hidden_layer[:, :, :, :x.size(-1) // 2]
            ],
            dim=-1
        )

        out = hidden_layer * cos_matrix + x_rotate_half * sin_matrix
        return out.type_as(x)


class MaskedSoftmax(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x: torch.Tensor, mask: torch.BoolTensor, dim: int) -> torch.Tensor:
        ctx.dim = dim
        x.masked_fill_(mask, float('-inf'))
        x = torch.softmax(x, ctx.dim)
        x.masked_fill_(mask, 0.0)
        ctx.save_for_backward(x)
        return x

    @staticmethod
    def backward(ctx, grad_output: torch.Tensor) -> tuple[torch.Tensor, None, None]:
        output: torch.Tensor

        output, = ctx.saved_tensors
        inputGrad: torch.Tensor = _softmax_backward_data(grad_output, output, ctx.dim, output.dtype)
        return inputGrad, None, None


class SelfAttention(nn.Module):
    def __init__(self, config: GptBertConfig, layer_idx: int):
        super().__init__()

        self.config = config
        self.layer_idx = layer_idx

        self.d_qk = config.query_key_head_size
        self.d_v = config.value_head_size
        self.num_attention_heads = config.num_attention_heads
        self.num_kv_heads = config.num_attention_heads
        self.hidden_size = config.hidden_size

        self.q_out_dim = self.d_qk * self.num_attention_heads
        self.k_out_dim = self.d_qk * self.num_kv_heads
        self.v_out_dim = self.d_v * self.num_kv_heads

        self.qk_proj = MultiCastedLinearOrthoIn(self.hidden_size, [self.q_out_dim, self.k_out_dim], bias=False)
        self.v_proj = CastedLinearIn(self.hidden_size, self.v_out_dim, bias=False)
        self.out_proj = CastedLinearIn(self.d_v*self.num_attention_heads, self.hidden_size, bias=False)

        self.pre_v_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
        self.pre_qk_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
        self.inter_norm = nn.LayerNorm(self.d_v * self.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=False)
        self.q_norm = nn.LayerNorm(self.d_qk, eps=config.layer_norm_eps, elementwise_affine=False, bias=False)
        self.k_norm = nn.LayerNorm(self.d_qk, eps=config.layer_norm_eps, elementwise_affine=False, bias=False)
        self.k_scale = nn.Parameter(torch.ones(self.num_kv_heads, self.d_qk))
        self.q_scale = nn.Parameter(torch.ones(self.num_attention_heads, self.d_qk))

        self.attention_dropout = nn.Dropout(config.attention_dropout)
        self.dropout = nn.Dropout(config.hidden_dropout)

        theta = 160_000 if (layer_idx + 1) % config.local_global_ratio == 0 else 10_000

        # Initialize rotary embeddings based on whether FlashAttention is available
        if flash_attn_varlen_qkvpacked_func is not None:
            self.rope_embedding = UnpaddedRotaryEmbedding(dim=self.d_qk, base=theta, max_seqlen=config.max_sequence_length)
        else:
            self.rope_embedding = RotaryPositionalEmbeddings(config, theta)

        self.scale = 1.0 / math.sqrt(self.d_qk)
        self.lambdas = nn.Parameter(torch.tensor([0.5]))

        self.sequence_length = config.max_sequence_length
        self.is_causal = config.is_decoder
        self.window_length = None

    def set_window_length(self, window_length: int):
        self.window_length = window_length

    def _get_window_mask(self, query_length: int, key_length: int, device: torch.device):
        """Create and cache window attention mask."""
        if self.is_causal:
            mask = torch.ones(query_length, key_length, dtype=torch.bool, device=device)
            mask = mask.tril().triu(diagonal=-self.window_length)
        else:
            mask = torch.ones(query_length, key_length, dtype=torch.bool, device=device)
            mask = mask.tril(diagonal=self.window_length).triu(diagonal=-self.window_length)
        return mask.view(1, 1, query_length, key_length)

    def attention_operation(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, padding_mask: Optional[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
        """Standard attention computation with masking."""
        batch_size, _, query_length, _ = query.size()
        _, _, key_length, _ = key.size()

        # Use cached window mask
        with torch.no_grad():
            window_mask = self._get_window_mask(query_length, key_length, query.device)
            if padding_mask is not None:
                attention_mask = padding_mask & window_mask
            else:
                attention_mask = window_mask

        attention_scores = torch.bmm(query.flatten(0, 1), key.transpose(-1, -2).flatten(0, 1)) * self.scale  # shape: [B*H, Q_T, K_T]
        attention_scores = attention_scores.view(batch_size, self.num_attention_heads, query_length, key_length)

        attention_probabilities = MaskedSoftmax.apply(attention_scores, ~attention_mask, -1)
        attention_probabilities = self.attention_dropout(attention_probabilities)

        output = torch.bmm(attention_probabilities.flatten(0, 1), value.flatten(0, 1))
        output = output.view(batch_size, self.num_attention_heads, query_length, self.d_v)

        return output

    def forward(self, hidden_layer: torch.Tensor, qk_layer: torch.Tensor, v1: torch.Tensor | None, padding_info):
        # Get original shape info
        if flash_attn_varlen_qkvpacked_func is not None:
            # Unpadded case
            indices, cu_seqlens, max_seqlen = padding_info
            total_seqlen = hidden_layer.size(0)
            batch_size = cu_seqlens.size(0) - 1
        else:
            # Padded case
            batch_size, seq_length = hidden_layer.size(0), hidden_layer.size(1)

        hidden_layer = self.pre_v_norm(hidden_layer.float()).type_as(hidden_layer)
        qk_layer = self.pre_qk_norm(qk_layer.float()).type_as(qk_layer)

        query, key = self.qk_proj(qk_layer).tensor_split([self.q_out_dim], dim=-1)
        value = self.v_proj(hidden_layer)

        if flash_attn_varlen_qkvpacked_func is not None:
            # Reshape for FlashAttention: (total_seqlen, num_heads, head_dim)
            query = query.view(total_seqlen, self.num_attention_heads, self.d_qk)
            key = key.view(total_seqlen, self.num_kv_heads, self.d_qk)
            value = value.view(total_seqlen, self.num_kv_heads, self.d_v)

            # Apply layer norm and scaling
            query = ((self.q_scale + 1.0).unsqueeze(0) * self.q_norm(query.float())).type_as(query)
            key = ((self.k_scale + 1.0).unsqueeze(0) * self.k_norm(key.float())).type_as(key)

            if v1 is None:
                v1 = value
            value = (1 - self.lambdas[0]) * value + self.lambdas[0] * v1

            # Prepare qkv for FlashAttention
            qkv = torch.stack([query, key, value], dim=1)  # (total_seqlen, 3, num_heads, head_dim)

            # Determine window size for local attention
            if self.window_length is not None and self.window_length > 0:
                if self.is_causal:
                    local_attention = (self.window_length - 1, 0)
                else:
                    local_attention = (self.window_length - 1, self.window_length - 1)
            else:
                local_attention = (-1, -1)

            # Apply FlashAttention
            output = flash_attention_forward(
                qkv,
                self.rope_embedding,
                cu_seqlens,
                max_seqlen,
                self.is_causal,
                local_attention,
                self.config.attention_dropout if self.training else 0.0,
                self.config.deterministic_flash_attn
            )

            # Reshape output back
            output = output.view(total_seqlen, self.d_v * self.num_attention_heads)

        else:
            # Standard attention path
            query_length = query.size(1)
            key_length = key.size(1)

            query = query.reshape(batch_size, query_length, self.num_attention_heads, self.d_qk).transpose(1, 2)
            key = key.reshape(batch_size, key_length, self.num_kv_heads, self.d_qk).transpose(1, 2)
            value = value.reshape(batch_size, key_length, self.num_kv_heads, self.d_v).transpose(1, 2)

            query = ((self.q_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.q_norm(query.float())).type_as(query)
            key = ((self.k_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.k_norm(key.float())).type_as(key)

            if v1 is None:
                v1 = value
            else:
                value = (1 - self.lambdas[0]) * value + self.lambdas[0] * v1

            # Apply rotary embeddings
            query = self.rope_embedding(query)
            key = self.rope_embedding(key)

            output = self.attention_operation(query, key, value, padding_info)
            output = output.transpose(1, 2).flatten(2, 3)  # shape: [B, T, H*D]

        output = self.inter_norm(output.float()).type_as(output)
        output = self.out_proj(output)
        output = self.dropout(output)

        return output, v1


class FeedForward(nn.Module):    
    def __init__(self, config: GptBertConfig):
        super().__init__()
        self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
        self.up_proj = MultiCastedLinearOrthoIn(config.hidden_size, [config.intermediate_size, config.intermediate_size], bias=False)
        self.activation = GeGLU()
        self.inter_norm = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False)
        self.down_proj = CastedLinearIn(config.intermediate_size, config.hidden_size, bias=False)
        self.dropout = nn.Dropout(config.hidden_dropout)
        
    def forward(self, x: torch.Tensor):
        x = self.pre_norm(x.float()).type_as(x)
        x = self.up_proj(x)
        x = self.activation(x)
        x = self.inter_norm(x.float()).type_as(x)
        x = self.down_proj(x)
        x = self.dropout(x)
        return x


class Layer(nn.Module):
    def __init__(self, config: GptBertConfig, layer_idx: int):
        super().__init__()

        self.attention = SelfAttention(config, layer_idx)
        self.mlp = FeedForward(config)
        self.lambdas = nn.Parameter(torch.tensor([0., 0., 1., 0., 1., 0.]))

    def set_window_length(self, window_length: int):
        self.attention.set_window_length(window_length)

    def forward(self, hidden_layer: torch.Tensor, embeddings: torch.Tensor, v1: torch.Tensor | None, padding_info):
        attention_output = (1 - self.lambdas[0]) * hidden_layer + self.lambdas[0] * embeddings
        qk_layer = (1 - self.lambdas[1]) * hidden_layer + self.lambdas[1] * embeddings
        mlp_layer = F.softplus(self.lambdas[2]) * ((1 - self.lambdas[3]) * hidden_layer + self.lambdas[3] * embeddings)

        attention_output, v1 = self.attention(attention_output, qk_layer, v1, padding_info)
        mlp_layer = mlp_layer + attention_output
        hidden_layer = F.softplus(self.lambdas[4]) * ((1 - self.lambdas[5]) * hidden_layer + self.lambdas[5] * embeddings)
        output = hidden_layer + attention_output + self.mlp(mlp_layer)

        return output, v1


class Encoder(nn.Module):
    def __init__(self, config: GptBertConfig):
        super().__init__()
        self.layers = nn.ModuleList([Layer(config, i) for i in range(config.num_layers)])
        self.local_global_ratio = config.local_global_ratio

    def set_window_length(self, config: GptBertConfig):
        for i, layer in enumerate(self.layers):
            if (i + 1) % self.local_global_ratio == 0:
                layer.set_window_length(config.global_window_length)
            else:
                layer.set_window_length(config.local_window_length)

    def forward(self, hidden_layer: torch.Tensor, padding_info, output_hidden_states=False, checkpoint_activations=False):
        hidden_layers = [hidden_layer] if output_hidden_states else None
        v1 = None
        embeddings = hidden_layer

        for layer in self.layers:
            if checkpoint_activations:
                hidden_layer, v1 = torch.utils.checkpoint.checkpoint(layer, hidden_layer, embeddings, v1, padding_info, use_reentrant=True)
            else:
                hidden_layer, v1 = layer(hidden_layer, embeddings, v1, padding_info)

            if output_hidden_states:
                hidden_layers.append(hidden_layer)

        return hidden_layer, hidden_layers


#
# HuggingFace wrappers
#

class GptBertPreTrainedModel(PreTrainedModel):
    config_class = GptBertConfig
    supports_gradient_checkpointing = True
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_flex_attn = False

    def _init_weights(self, module):
        std = math.sqrt(2.0 / (5.0 * self.hidden_size))

        if isinstance(module, nn.Linear) or isinstance(module, CastedLinearIn):
            nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class GptBertModel(GptBertPreTrainedModel):
    def __init__(self, config: GptBertConfig, add_mlm_layer=False, **kwargs):
        super().__init__(config, **kwargs)
        self.config = config
        self.hidden_size = config.hidden_size

        self.embedding = Embedding(config)
        self.encoder = Encoder(config)
        self.classifier = LMClassifier(config, config.vocab_size) if add_mlm_layer else None
        self.set_window_length(config)
        self.gradient_checkpointing = False
        self.post_init()

    def set_window_length(self, config) -> None:
        self.encoder.set_window_length(config)

    def get_input_embeddings(self):
        return self.embedding.word_embedding

    def set_input_embeddings(self, value):
        self.embedding.word_embedding = value

    def get_contextualized_embeddings(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None
    ):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            raise ValueError("You have to specify input_ids")

        batch_size, seq_length = input_shape
        device = input_ids.device

        if attention_mask is None:
            attention_mask = torch.ones(batch_size, seq_length, dtype=torch.bool, device=device)
        else:
            attention_mask = attention_mask.bool()

        if flash_attn_varlen_qkvpacked_func is not None:
            if len(attention_mask.size()) != 2:
                raise ValueError("Bare `attention_mask` med to dimensjoner støttes nå for FlashAttention.")
            with torch.no_grad():
                input_ids, indices, cu_seqlens, max_seqlen_in_batch = _unpad_input(input_ids, attention_mask)
            padding_info = (indices, cu_seqlens, max_seqlen_in_batch)
        else:
            if len(attention_mask.size()) == 2:
                attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
            elif len(attention_mask.size()) == 3:
                attention_mask = attention_mask.unsqueeze(1)
            padding_info = attention_mask

        static_embeddings = self.embedding(input_ids)

        original_dtype = static_embeddings.dtype
        if torch.cuda.is_available() and torch.cuda.is_bf16_supported() and static_embeddings.dtype == torch.float32:
            static_embeddings = static_embeddings.bfloat16()

        last_layer, contextualized_embeddings = self.encoder(
            static_embeddings,
            padding_info,
            output_hidden_states=output_hidden_states,
            checkpoint_activations=self.gradient_checkpointing and self.training
        )

        last_layer = last_layer.to(original_dtype)
        if output_hidden_states:
            contextualized_embeddings = [layer.to(original_dtype) for layer in contextualized_embeddings]

        # Pad output if using FlashAttention
        if flash_attn_varlen_qkvpacked_func is not None:
            last_layer = _pad_output(last_layer, indices, batch_size, seq_length)
            if output_hidden_states:
                contextualized_embeddings = [_pad_output(layer, indices, batch_size, seq_length) for layer in contextualized_embeddings]
            else:
                contextualized_embeddings = None

        return last_layer, contextualized_embeddings

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs
    ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)

        if not return_dict:
            return (
                sequence_output,
                *([contextualized_embeddings] if output_hidden_states else [])
            )

        return BaseModelOutput(
            last_hidden_state=sequence_output,
            hidden_states=contextualized_embeddings if output_hidden_states else None
        )


class GptBertForMaskedLM(GptBertModel):
    _tied_weights_keys = ["classifier.emb2vocab.weight"]

    def __init__(self, config: GptBertConfig, **kwargs):
        super().__init__(config, add_mlm_layer=True, **kwargs)

    def get_output_embeddings(self):
        return self.classifier.emb2vocab.weight

    def set_output_embeddings(self, new_embeddings):
        self.classifier.emb2vocab.weight = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[torch.LongTensor] = None,
        **kwargs
    ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
        subword_prediction = self.classifier(sequence_output)
        subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)

        masked_lm_loss = None
        if labels is not None:
            labels_flatten = labels[:, 1:].flatten()
            subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
            masked_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)

        bos_logits = torch.zeros(subword_prediction.size(0), 1, self.config.vocab_size, dtype=subword_prediction.dtype, device=subword_prediction.device)
        bos_logits[:, :, self.config.bos_token_id] = 1.0
        subword_prediction = torch.cat([bos_logits, subword_prediction[:, :-1]], dim=1)

        if not return_dict:
            output = (
                subword_prediction,
                *([contextualized_embeddings] if output_hidden_states else [])
            )
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=subword_prediction,
            hidden_states=contextualized_embeddings if output_hidden_states else None
        )


class GptBertForCausalLM(GptBertModel):
    _tied_weights_keys = ["classifier.emb2vocab.weight"]

    def __init__(self, config: GptBertConfig, **kwargs):
        config.is_decoder = True
        super().__init__(config, add_mlm_layer=True, **kwargs)

    def get_output_embeddings(self):
        return self.classifier.emb2vocab.weight

    def set_output_embeddings(self, new_embeddings):
        self.classifier.emb2vocab.weight = new_embeddings

    def get_input_embeddings(self):
        return self.embedding.word_embedding

    def set_input_embeddings(self, value):
        self.embedding.word_embedding = value

    def set_decoder(self, decoder):
        self.encoder = decoder

    def get_decoder(self):
        return self.encoder

    def can_generate(self):
        return True

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None
    ) -> Union[Tuple, CausalLMOutput]:

        assert inputs_embeds is None, "inputs_embeds is not supported for now"
        assert past_key_values is None, "past_key_values is not supported for now"
        assert not use_cache, "use_cache is not supported for now"

        sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
        subword_prediction = self.classifier(sequence_output)
        subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)

        causal_lm_loss = None
        if labels is not None:
            labels_flatten = labels[:, 1:].flatten()
            subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
            causal_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)

        if not return_dict:
            output = (
                subword_prediction,
                *([contextualized_embeddings] if output_hidden_states else [])
            )
            return ((causal_lm_loss,) + output) if masked_lm_loss is not None else output

        return CausalLMOutput(
            loss=causal_lm_loss,
            logits=subword_prediction,
            hidden_states=contextualized_embeddings if output_hidden_states else None
        )

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.Tensor,
        past_key_values: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        use_cache: bool = True,
        num_logits_to_keep: Optional[int] = None,
        **kwargs,
    ):
        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        if past_key_values is not None:
            if inputs_embeds is not None:  # Exception 1
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

                # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s  `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
                position_ids = position_ids.clone(memory_format=torch.contiguous_format)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and cache_position[0] == 0:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids.contiguous()}  # `contiguous()` needed for compilation use cases

        if num_logits_to_keep is not None:
            model_inputs["num_logits_to_keep"] = num_logits_to_keep

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
            }
        )
        return model_inputs


class GptBertForSequenceClassification(GptBertModel):
    _keys_to_ignore_on_load_missing = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
    _keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]

    def __init__(self, config: GptBertConfig, **kwargs):
        super().__init__(config, add_mlm_layer=False, **kwargs)

        self.num_labels = config.num_labels
        self.classifier = Classifier(config, self.num_labels)
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[torch.LongTensor] = None,
        **kwargs
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
        logits = self.classifier(sequence_output[:, 0, :])

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = nn.MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = nn.BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (
                logits,
                *([contextualized_embeddings] if output_hidden_states else [])
            )
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=contextualized_embeddings if output_hidden_states else None
        )


class GptBertForTokenClassification(GptBertModel):
    _keys_to_ignore_on_load_missing = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
    _keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]

    def __init__(self, config: GptBertConfig, **kwargs):
        super().__init__(config, add_mlm_layer=False, **kwargs)

        self.num_labels = config.num_labels
        self.classifier = Classifier(config, self.num_labels)
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: Optional[torch.LongTensor] = None,
        **kwargs
    ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (
                logits,
                *([contextualized_embeddings] if output_hidden_states else []),
                *([attention_probs] if output_attentions else [])
            )
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=contextualized_embeddings if output_hidden_states else None,
            attentions=attention_probs if output_attentions else None
        )


class GptBertForQuestionAnswering(GptBertModel):
    _keys_to_ignore_on_load_missing = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
    _keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]

    def __init__(self, config: GptBertConfig, **kwargs):
        super().__init__(config, add_mlm_layer=False, **kwargs)

        self.num_labels = config.num_labels
        self.classifier = Classifier(config, self.num_labels)
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        start_positions: Optional[torch.Tensor] = None,
        end_positions: Optional[torch.Tensor] = None,
        **kwargs
    ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
        logits = self.classifier(sequence_output)

        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)

            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (
                start_logits,
                end_logits,
                *([contextualized_embeddings] if output_hidden_states else [])
            )
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=contextualized_embeddings if output_hidden_states else None
        )


class GptBertForMultipleChoice(GptBertModel):
    _keys_to_ignore_on_load_missing = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
    _keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]

    def __init__(self, config: GptBertConfig, **kwargs):
        super().__init__(config, add_mlm_layer=False, **kwargs)

        self.num_labels = getattr(config, "num_labels", 2)
        self.classifier = Classifier(config, self.num_labels)
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs
    ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        num_choices = input_ids.shape[1]

        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None

        sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask, output_hidden_states)
        logits = self.classifier(sequence_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

        if not return_dict:
            output = (
                reshaped_logits,
                *([contextualized_embeddings] if output_hidden_states else [])
            )
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=contextualized_embeddings if output_hidden_states else None
        )