File size: 3,400 Bytes
39bd792
3f49360
 
39bd792
 
 
 
f28bd42
3f49360
39bd792
 
3f49360
f28bd42
 
39bd792
3f49360
39bd792
 
8bf2b14
39bd792
f28bd42
39bd792
 
 
 
 
 
 
 
 
 
f28bd42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39bd792
 
 
8bf2b14
 
 
 
 
 
 
 
 
 
 
 
 
 
f28bd42
7d10337
 
 
 
 
 
 
 
 
 
f28bd42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
base_model:
- Qwen/Qwen2.5-Coder-7B-Instruct
datasets:
- luzimu/WebGen-Bench
language:
- en
library_name: transformers
license: mit
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- code-generation
---

# WebGen-LM

WebGen-LM is trained using the Bolt.diy trajectories generated from a subset of the training set of WebGen-Bench (🤗 [luzimu/WebGen-Bench](https://huggingface.co/datasets/luzimu/WebGen-Bench)). It has been introduced in the paper [WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch](https://arxiv.org/abs/2505.03733).

Project page: https://webgen-bench.github.io/
The training data and code can be found at [WebGen-Bench (Github)](https://github.com/mnluzimu/WebGen-Bench).

The WebGen-LM family of models are as follows:

|Models | HF Links |
|---|---|
|WebGen-LM-7B | 🤗 [luzimu/WebGen-LM-7B](https://huggingface.co/luzimu/WebGen-LM-7B) |
|WebGen-LM-14B | 🤗 [luzimu/WebGen-LM-14B](https://huggingface.co/luzimu/WebGen-LM-14B) |
|WebGen-LM-32B | 🤗 [luzimu/WebGen-LM-32B](https://huggingface.co/luzimu/WebGen-LM-32B) |

## Sample Usage

You can use this model with the `transformers` library for text generation tasks, specifically for code generation based on instructions.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_id = "luzimu/WebGen-LM-32B"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

messages = [
    {"role": "user", "content": "Write HTML, CSS, and JavaScript for a simple to-do list web application. The list should allow users to add and remove items."},
]

chat_input = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

model_inputs = tokenizer([chat_input], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=2048,
    do_sample=True,
    temperature=0.7,
    top_p=0.95
)

# Decode only the newly generated tokens
output_text = tokenizer.decode(generated_ids[0][model_inputs.input_ids.shape[1]:], skip_special_tokens=False)
print(output_text)
```

## Performance on WebGen-Bench

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b0bfef2f2f9c345b87e673/ADt1JdvKw-IZ_xnS17adL.png)

## Citation

If you find our project useful, please cite:

```
@misc{lu2025webgenbenchevaluatingllmsgenerating,
      title={WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch}, 
      author={Zimu Lu and Yunqiao Yang and Houxing Ren and Haotian Hou and Han Xiao and Ke Wang and Weikang Shi and Aojun Zhou and Mingjie Zhan and Hongsheng Li},
      year={2025},
      eprint={2505.03733},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.03733}, 
}

@misc{lu2025webgenagentenhancinginteractivewebsite,
      title={WebGen-Agent: Enhancing Interactive Website Generation with Multi-Level Feedback and Step-Level Reinforcement Learning}, 
      author={Zimu Lu and Houxing Ren and Yunqiao Yang and Ke Wang and Zhuofan Zong and Junting Pan and Mingjie Zhan and Hongsheng Li},
      year={2025},
      eprint={2509.22644},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2509.22644}, 
}
```