File size: 3,122 Bytes
ae57b8b 9cf114d ae57b8b cd520ee 9cf114d ae57b8b 9cf114d cd520ee ae57b8b 9cf114d ae57b8b aedecc7 ae57b8b d9a7c5f aedecc7 cd520ee aedecc7 9cf114d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
base_model:
- Qwen/Qwen2.5-Coder-7B-Instruct
datasets:
- luzimu/WebGen-Bench
language:
- en
library_name: transformers
license: mit
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- code-generation
---
# WebGen-LM
WebGen-LM is trained using the Bolt.diy trajectories generated from a subset of the training set of WebGen-Bench (🤗 [luzimu/WebGen-Bench](https://huggingface.co/datasets/luzimu/WebGen-Bench)). It has been introduced in the paper [WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch](https://arxiv.org/abs/2505.03733).
The training data and code can be found at [WebGen-Bench (Github)](https://github.com/mnluzimu/WebGen-Bench).
The WebGen-LM family of models are as follows:
|Models | HF Links |
|---|---|
|WebGen-LM-7B | 🤗 [luzimu/WebGen-LM-7B](https://huggingface.co/luzimu/WebGen-LM-7B) |
|WebGen-LM-14B | 🤗 [luzimu/WebGen-LM-14B](https://huggingface.co/luzimu/WebGen-LM-14B) |
|WebGen-LM-32B | 🤗 [luzimu/WebGen-LM-32B](https://huggingface.co/luzimu/WebGen-LM-32B) |
## Performance on WebGen-Bench

## Sample Usage
You can use this model with the Hugging Face `transformers` library.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "luzimu/WebGen-LM-7B" # This model card refers to WebGen-LM-7B
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
# Example for website generation
user_prompt = "Generate a simple HTML page with a heading 'Hello, World!' and a paragraph of lorem ipsum text."
messages = [
{"role": "user", "content": user_prompt}
]
# Apply chat template for instruction-following format
text_input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Generate output
model_inputs = tokenizer(text_input, return_tensors="pt").to(model.device)
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=500, do_sample=True, temperature=0.01, top_k=50, top_p=0.95)
# Decode and print the generated code
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(generated_text)
# Example using Hugging Face pipeline for simpler inference
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
result = generator(user_prompt, max_new_tokens=500, do_sample=True, temperature=0.01, top_k=50, top_p=0.95)
print(result[0]['generated_text'])
```
## Citation
If you find our project useful, please cite:
```
@misc{lu2025webgenbenchevaluatingllmsgenerating,
title={WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch},
author={Zimu Lu and Yunqiao Yang and Houxing Ren and Haotian Hou and Han Xiao and Ke Wang and Weikang Shi and Aojun Zhou and Mingjie Zhan and Hongsheng Li},
year={2025},
eprint={2505.03733},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.03733},
}
``` |