Update README.md
Browse files
README.md
CHANGED
|
@@ -1,64 +1,31 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
---
|
| 4 |
license: mit
|
| 5 |
datasets:
|
| 6 |
- HuggingFaceH4/MATH
|
| 7 |
language:
|
| 8 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
tags:
|
| 10 |
-
-
|
| 11 |
-
- number-theory
|
| 12 |
-
- lora
|
| 13 |
-
- quantized
|
| 14 |
-
- tinyllama
|
| 15 |
-
- reasoning
|
| 16 |
-
- education
|
| 17 |
-
inference:
|
| 18 |
-
parameters:
|
| 19 |
-
max_new_tokens: 256
|
| 20 |
-
temperature: 0.7
|
| 21 |
-
top_p: 0.95
|
| 22 |
-
top_k: 50
|
| 23 |
---
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# lambdai · TinyLlama-1.1B finetuned on Number Theory
|
| 28 |
-
[](https://huggingface.co/lambdaindie)
|
| 29 |
-
|
| 30 |
-
</div>
|
| 31 |
-
|
| 32 |
-
**lambdai** é o primeiro modelo oficial da organização **Lambda (Λ)** — uma startup solo angolana de pesquisa em IA liderada por Marius Jabami.
|
| 33 |
-
|
| 34 |
-
Esse modelo foi finetunado a partir do [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) usando **LoRA + quantização em 8 bits**, com foco em **raciocínio matemático simbólico**, especialmente **teoria dos números**.
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
## Dataset
|
| 39 |
|
| 40 |
-
|
| 41 |
|
| 42 |
---
|
| 43 |
|
| 44 |
-
##
|
| 45 |
-
|
| 46 |
-
**Parâmetros LoRA**:
|
| 47 |
-
- `r=8`, `alpha=16`
|
| 48 |
-
- `target_modules=["q_proj", "v_proj"]`
|
| 49 |
-
- `dropout=0.05`
|
| 50 |
-
- Quantização 8-bit (QLoRA)
|
| 51 |
-
|
| 52 |
-
**Formato de entrada:**
|
| 53 |
-
```text
|
| 54 |
-
Problem: <descrição do problema>
|
| 55 |
-
Solution:
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
---
|
| 59 |
-
|
| 60 |
-
Exemplo de uso
|
| 61 |
|
|
|
|
| 62 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 63 |
|
| 64 |
model = AutoModelForCausalLM.from_pretrained("lambdaindie/lambdai")
|
|
@@ -68,49 +35,4 @@ prompt = "Problem: What is the smallest prime factor of 91?\nSolution:"
|
|
| 68 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 69 |
outputs = model.generate(**inputs, max_new_tokens=256)
|
| 70 |
|
| 71 |
-
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
---
|
| 75 |
-
|
| 76 |
-
Aplicações
|
| 77 |
-
|
| 78 |
-
IA explicativa para matemática
|
| 79 |
-
|
| 80 |
-
Tutores autônomos com raciocínio passo a passo
|
| 81 |
-
|
| 82 |
-
Assistência em resolução simbólica
|
| 83 |
-
|
| 84 |
-
Agentes educacionais
|
| 85 |
-
|
| 86 |
-
Treinamento de reasoning agents
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
---
|
| 91 |
-
|
| 92 |
-
Sobre a Lambda
|
| 93 |
-
|
| 94 |
-
Λ Lambda é uma startup indie fundada por Marius Jabami, com foco em IA educacional, modelos compactos e agentes autônomos. lambdai é parte do ΛCore, núcleo de pesquisa e experimentação em LLMs e raciocínio simbólico.
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
---
|
| 98 |
-
|
| 99 |
-
Links
|
| 100 |
-
|
| 101 |
-
Lambda Indie @ Hugging Face
|
| 102 |
-
|
| 103 |
-
TinyLlama Base Model
|
| 104 |
-
|
| 105 |
-
Dataset: HuggingFaceH4/MATH
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
---
|
| 110 |
-
|
| 111 |
-
Licença
|
| 112 |
-
|
| 113 |
-
MIT License — uso livre para fins educacionais, de pesquisa ou pessoais.
|
| 114 |
-
|
| 115 |
-
---
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
datasets:
|
| 4 |
- HuggingFaceH4/MATH
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
+
metrics:
|
| 8 |
+
- bertscore
|
| 9 |
+
- accuracy
|
| 10 |
+
new_version: lambdaindie/lambdai
|
| 11 |
+
pipeline_tag: text-generation
|
| 12 |
+
library_name: transformers
|
| 13 |
tags:
|
| 14 |
+
- code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# lambdai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
**lambdai** é o primeiro modelo oficial da organização [lambdaindie](https://huggingface.co/lambdaindie).
|
| 20 |
+
Ele foi treinado com foco em **raciocínio matemático**, usando o subset `number_theory` do dataset [HuggingFaceH4/MATH](https://huggingface.co/datasets/HuggingFaceH4/MATH).
|
|
|
|
| 21 |
|
| 22 |
+
Esse modelo é baseado no [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) e foi finetunado com **LoRA** e **quantização de 8 bits**, otimizando para dispositivos com pouca memória.
|
| 23 |
|
| 24 |
---
|
| 25 |
|
| 26 |
+
## Exemplo de uso
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
```python
|
| 29 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 30 |
|
| 31 |
model = AutoModelForCausalLM.from_pretrained("lambdaindie/lambdai")
|
|
|
|
| 35 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 36 |
outputs = model.generate(**inputs, max_new_tokens=256)
|
| 37 |
|
| 38 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|