File size: 7,331 Bytes
5f89bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import logging
import os
import sys
import time

import tensorflow as tf
from datasets import load_dataset
from tqdm import tqdm

from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
from transformers.file_utils import is_sagemaker_dp_enabled


if os.environ.get("SDP_ENABLED") or is_sagemaker_dp_enabled():
    SDP_ENABLED = True
    os.environ["SAGEMAKER_INSTANCE_TYPE"] = "p3dn.24xlarge"
    import smdistributed.dataparallel.tensorflow as sdp
else:
    SDP_ENABLED = False


def fit(model, loss, opt, train_dataset, epochs, train_batch_size, max_steps=None):
    pbar = tqdm(train_dataset)
    for i, batch in enumerate(pbar):
        with tf.GradientTape() as tape:
            inputs, targets = batch
            outputs = model(batch)
            loss_value = loss(targets, outputs.logits)

        if SDP_ENABLED:
            tape = sdp.DistributedGradientTape(tape, sparse_as_dense=True)

        grads = tape.gradient(loss_value, model.trainable_variables)
        opt.apply_gradients(zip(grads, model.trainable_variables))

        pbar.set_description(f"Loss: {loss_value:.4f}")

        if SDP_ENABLED and i == 0:
            sdp.broadcast_variables(model.variables, root_rank=0)
            sdp.broadcast_variables(opt.variables(), root_rank=0)

        if max_steps and i >= max_steps:
            break

    train_results = {"loss": loss_value.numpy()}
    return train_results


def get_datasets(tokenizer, train_batch_size, eval_batch_size):
    # Load dataset
    train_dataset, test_dataset = load_dataset("imdb", split=["train", "test"])

    # Preprocess train dataset
    train_dataset = train_dataset.map(
        lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True
    )
    train_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"])

    train_features = {
        x: train_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length])
        for x in ["input_ids", "attention_mask"]
    }
    tf_train_dataset = tf.data.Dataset.from_tensor_slices((train_features, train_dataset["label"]))

    # Preprocess test dataset
    test_dataset = test_dataset.map(
        lambda e: tokenizer(e["text"], truncation=True, padding="max_length"), batched=True
    )
    test_dataset.set_format(type="tensorflow", columns=["input_ids", "attention_mask", "label"])

    test_features = {
        x: test_dataset[x].to_tensor(default_value=0, shape=[None, tokenizer.model_max_length])
        for x in ["input_ids", "attention_mask"]
    }
    tf_test_dataset = tf.data.Dataset.from_tensor_slices((test_features, test_dataset["label"]))

    if SDP_ENABLED:
        tf_train_dataset = tf_train_dataset.shard(sdp.size(), sdp.rank())
        tf_test_dataset = tf_test_dataset.shard(sdp.size(), sdp.rank())
    tf_train_dataset = tf_train_dataset.batch(train_batch_size, drop_remainder=True)
    tf_test_dataset = tf_test_dataset.batch(eval_batch_size, drop_remainder=True)

    return tf_train_dataset, tf_test_dataset


if __name__ == "__main__":

    parser = argparse.ArgumentParser()

    # Hyperparameters sent by the client are passed as command-line arguments to the script.
    parser.add_argument("--epochs", type=int, default=3)
    parser.add_argument("--per_device_train_batch_size", type=int, default=16)
    parser.add_argument("--per_device_eval_batch_size", type=int, default=8)
    parser.add_argument("--model_name_or_path", type=str)
    parser.add_argument("--learning_rate", type=str, default=5e-5)
    parser.add_argument("--do_train", type=bool, default=True)
    parser.add_argument("--do_eval", type=bool, default=True)
    parser.add_argument("--output_dir", type=str)
    parser.add_argument("--max_steps", type=int, default=None)

    # Data, model, and output directories
    parser.add_argument("--output_data_dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"])
    parser.add_argument("--model_dir", type=str, default=os.environ["SM_MODEL_DIR"])
    parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"])

    args, _ = parser.parse_known_args()

    # Set up logging
    logger = logging.getLogger(__name__)

    logging.basicConfig(
        level=logging.getLevelName("INFO"),
        handlers=[logging.StreamHandler(sys.stdout)],
        format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
    )

    if SDP_ENABLED:
        sdp.init()

        gpus = tf.config.experimental.list_physical_devices("GPU")
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)
        if gpus:
            tf.config.experimental.set_visible_devices(gpus[sdp.local_rank()], "GPU")

    # Load model and tokenizer
    model = TFAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path)
    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)

    # get datasets
    tf_train_dataset, tf_test_dataset = get_datasets(
        tokenizer=tokenizer,
        train_batch_size=args.per_device_train_batch_size,
        eval_batch_size=args.per_device_eval_batch_size,
    )

    # fine optimizer and loss
    optimizer = tf.keras.optimizers.Adam(learning_rate=args.learning_rate)
    loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
    metrics = [tf.keras.metrics.SparseCategoricalAccuracy()]
    model.compile(optimizer=optimizer, loss=loss, metrics=metrics)

    # Training
    if args.do_train:

        # train_results = model.fit(tf_train_dataset, epochs=args.epochs, batch_size=args.train_batch_size)
        start_train_time = time.time()
        train_results = fit(
            model,
            loss,
            optimizer,
            tf_train_dataset,
            args.epochs,
            args.per_device_train_batch_size,
            max_steps=args.max_steps,
        )
        end_train_time = time.time() - start_train_time
        logger.info("*** Train ***")
        logger.info(f"train_runtime = {end_train_time}")

        output_eval_file = os.path.join(args.output_dir, "train_results.txt")

        if not SDP_ENABLED or sdp.rank() == 0:
            with open(output_eval_file, "w") as writer:
                logger.info("***** Train results *****")
                logger.info(train_results)
                for key, value in train_results.items():
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")

    # Evaluation
    if args.do_eval and (not SDP_ENABLED or sdp.rank() == 0):

        result = model.evaluate(tf_test_dataset, batch_size=args.per_device_eval_batch_size, return_dict=True)
        logger.info("*** Evaluate ***")

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            logger.info(result)
            for key, value in result.items():
                logger.info(f"  {key} = {value}")
                writer.write(f"{key} = {value}\n")

    # Save result
    if SDP_ENABLED:
        if sdp.rank() == 0:
            model.save_pretrained(args.output_dir)
            tokenizer.save_pretrained(args.output_dir)
    else:
        model.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)