File size: 10,538 Bytes
b324dc2 31ca592 d76c5e0 31ca592 b1f3ea1 31ca592 b1f3ea1 31ca592 b1f3ea1 31ca592 b1f3ea1 31ca592 b324dc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
---
language:
- en
metrics:
- precision
pipeline_tag: image-segmentation
tags:
- Trasnformer
- CAM
---
# CAM-Seg: A Continuous-valued Embedding Approach for Semantic Image Generation
**Official PyTorch Implementation**
This is a PyTorch/GPU implementation of the paper [CAM-Seg: A Continuous-valued Embedding Approach for Semantic Image Generation](https://arxiv.org/abs/2503.15617)
```
@article{ahmed2025cam,
title={CAM-Seg: A Continuous-valued Embedding Approach for Semantic Image Generation},
author={Ahmed, Masud and Hasan, Zahid and Haque, Syed Arefinul and Faridee, Abu Zaher Md and Purushotham, Sanjay and You, Suya and Roy, Nirmalya},
journal={arXiv preprint arXiv:2503.15617},
year={2025}
}
```
GitHub Repo: [https://github.com/mahmed10/CAMSS](https://github.com/mahmed10/CAMSS)
## Abstract
Traditional transformer-based semantic segmentation relies on quantized embeddings. However, our analysis reveals that autoencoder accuracy on segmentation mask using quantized embeddings (e.g. VQ-VAE) is 8\% lower than continuous-valued embeddings (e.g. KL-VAE). Motivated by this, we propose a continuous-valued embedding framework for semantic segmentation. By reformulating semantic mask generation as a continuous image-to-embedding diffusion process, our approach eliminates the need for discrete latent representations while preserving fine-grained spatial and semantic details. Our key contribution includes a diffusion-guided autoregressive transformer that learns a continuous semantic embedding space by modeling long-range dependencies in image features. Our framework contains a unified architecture combining a VAE encoder for continuous feature extraction, a diffusion-guided transformer for conditioned embedding generation, and a VAE decoder for semantic mask reconstruction. Our setting facilitates zero-shot domain adaptation capabilities enabled by the continuity of the embedding space. Experiments across diverse datasets (e.g., Cityscapes and domain-shifted variants) demonstrate state-of-the-art robustness to distribution shifts, including adverse weather (e.g., fog, snow) and viewpoint variations. Our model also exhibits strong noise resilience, achieving robust performance ($\approx$ 95\% AP compared to baseline) under gaussian noise, moderate motion blur, and moderate brightness/contrast variations, while experiencing only a moderate impact ($\approx$ 90\% AP compared to baseline) from 50\% salt and pepper noise, saturation and hue shifts.
## Result
Trained on Cityscape dataset and tested on SemanticKITTI, ACDC, CADEdgeTune dataset
<p align="center">
<img src="demo/qualitative.png" width="720">
</p>
Quantitative results of semantic segmentation under various noise conditions
<p align="center">
<table>
<tr>
<td align="center"><img src="demo/saltpepper_noise.png" width="200"/><br>Salt & Pepper Noise</td>
<td align="center"><img src="demo/motion_blur.png" width="200"/><br>Motion Blur</td>
<td align="center"><img src="demo/gaussian_noise.png" width="200"/><br>Gaussian Noise</td>
<td align="center"><img src="demo/gaussian_blur.png" width="200"/><br>Gaussian Blur</td>
</tr>
<tr>
<td align="center"><img src="demo/brightness.png" width="200"/><br>Brightness Variation</td>
<td align="center"><img src="demo/contrast.png" width="200"/><br>Contrast Variation</td>
<td align="center"><img src="demo/saturation.png" width="200"/><br>Saturation Variation</td>
<td align="center"><img src="demo/hue.png" width="200"/><br>Hue Variation</td>
</tr>
</table>
</p>
## Prerequisite
To install the docker environment, first edit the `docker_env/Makefile`:
```
IMAGE=img_name/dl-aio
CONTAINER=containter_name
AVAILABLE_GPUS='0,1,2,3'
LOCAL_JUPYTER_PORT=18888
LOCAL_TENSORBOARD_PORT=18006
PASSWORD=yourpassword
WORKSPACE=workspace_directory
```
- Edit the `img_name`, `containter_name`, `available_gpus`, `jupyter_port`, `tensorboard_port`, `password`, `workspace_directory`
1. For the first time run the following commands in terminal:
```
cd docker_env
make docker-build
make docker-run
```
2. or further use to docker environment
- To stop the environmnet: `make docker-stop`
- To resume the environmente: `make docker-resume`
For coding open a web browser `ip_address:jupyter_port` e.g.,`http://localhost:18888`
## Dataset
Four Dataset is used in the work
1. [Cityscapes Dataset](https://www.cityscapes-dataset.com/)
2. [KITTI Dataset](https://www.cvlibs.net/datasets/kitti/eval_step.php)
3. [ACDC Dataset](https://acdc.vision.ee.ethz.ch/)
4. [CAD-EdgeTune Dataset](https://ieee-dataport.org/documents/cad-edgetune)
**Modify the trainlist and vallist file to edit train and test split**
### Dataset structure
- Cityscapes Dataset
```
|-CityScapes
|----leftImg8bit
|--------train
|------------aachen #contians the RGB images
|------------bochum #contians the RGB images
|................
|------------zurich #contians the RGB images
|--------val
|................
|----gtFine
|--------train
|------------aachen #contians the RGB images #contains semantic segmentation labels
|------------bochum #contians the RGB images #contains semantic segmentation labels
|................
|------------zurich #contians the RGB images #contains semantic segmentation labels
|--------val
|................
|----trainlist.txt #image list used for training
|----vallist.txt #image list used for testing
|----cityscape.yaml #configuration file for CityScapes dataset
```
- ACDC Dataset
```
|-ACDC
|----rgb_anon
|--------fog
|------------train
|----------------GOPR0475 #contians the RGB images
|----------------GOPR0476 #contians the RGB images
|................
|----------------GP020478 #contians the RGB images
|------------val
|................
|--------rain
|................
|--------snow
|................
|----gt
|--------fog
|------------train
|----------------GOPR0475 #contains semantic segmentation labels
|----------------GOPR0476 #contains semantic segmentation labels
|................
|----------------GP020478 #contains semantic segmentation labels
|------------val
|................
|--------rain
|................
|--------snow
|................
|----vallist_fog.txt #image list used for testing fog data
|----vallist_rain.txt #image list used for testing rain data
|----vallist_snow.txt #image list used for testing snow data
|----acdc.yaml #configuration file for ACDC dataset
```
- SemanticKitti Dataset
```
|-SemanticKitti
|----training
|--------image_02
|------------0000 #contians the RGB images
|------------0001 #contians the RGB images
|................
|------------0020 #contians the RGB images
|----kitti-step
|--------panoptic_maps
|------------train
|----------------0000 #contains semantic segmentation labels
|----------------0001 #contains semantic segmentation labels
|................
|----------------0020 #contains semantic segmentation labels
|------------val
|................
|----trainlist.txt #image list used for training
|----vallist.txt #image list used for testing
|----semantickitti.yaml #configuration file for SemanticKitti dataset
```
- CADEdgeTune Dataset
```
|-CADEdgeTune
|----SEQ1
|--------Images #contians the RGB images
|--------LabelMasks #contains semantic segmentation labels
|----SEQ2
|--------Images #contians the RGB images
|--------LabelMasks #contains semantic segmentation labels
|................
|----SEQ17
|----all.txt #image list complete
|----trainlist.txt #image list used for training
|----vallist.txt #image list used for testing
|----cadedgetune.yaml #configuration file for CADEdgeTune dataset
```
## Weights
To download the pretrained weights please visit [Hugging Face Repo](https://huggingface.co/mahmed10/CAM-Seg)
- **LDM model** Pretrained model from Rombach et al.'s Latent Diffusion Models is used [Link](https://huggingface.co/mahmed10/CAM-Seg/resolve/main/pretrained_models/vae/modelf16.ckpt)
- **MAR model** Following mar model is used
|Training Data|Model|Params|Link|
|-------------|-----|------|----|
|Cityscapes | Mar-base| 217M|[link](https://huggingface.co/mahmed10/CAM-Seg/resolve/main/pretrained_models/mar/city768.16.pth)|
Download this weight files and organize as follow
```
|-pretrained_models
|----mar
|--------city768.16.pth
|----vae
|--------modelf16.ckpt
```
**Alternative code to automatically download pretrain weights**
```
import os
import requests
# Define URLs and file paths
files_to_download = {
"https://huggingface.co/mahmed10/CAM-Seg/resolve/main/pretrained_models/vae/modelf16.ckpt":
"pretrained_models/vae/modelf16.ckpt",
"https://huggingface.co/mahmed10/CAM-Seg/resolve/main/pretrained_models/mar/city768.16.pth":
"pretrained_models/mar/city768.16.pth"
}
for url, path in files_to_download.items():
os.makedirs(os.path.dirname(path), exist_ok=True)
print(f"Downloading from {url}...")
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Saved to {path}")
else:
print(f"Failed to download from {url}, status code {response.status_code}")
```
## Validation
Open the `validation.ipnyb` file
Edit the **Block 6** to select which dataset is to use for validation
```
dataset_train = cityscapes.CityScapes('dataset/CityScapes/vallist.txt', data_set= 'val', transform=transform_train,seed=36, img_size=768)
# dataset_train = umbc.UMBC('dataset/UMBC/all.txt', data_set= 'val', transform=transform_train,seed=36, img_size=768)
# dataset_train = acdc.ACDC('dataset/ACDC/vallist_fog.txt', data_set= 'val', transform=transform_train,seed=36, img_size=768)
# dataset_train = semantickitti.SemanticKITTI('dataset/SemanticKitti/vallist.txt', data_set= 'val', transform=transform_train, seed=36, img_size=768)
```
Run all the blocks
## Training
### From Scratch
Run the following code in terminal
```
torchrun --nproc_per_node=4 train.py
```
it will save checkpoint in `output_dir/year.month.day.hour.min` folder, for e.g. `output_dir/2025.05.09.02.27`
### Resume Training
Run the following code in terminal
```
torchrun --nproc_per_node=4 train.py --resume year.month.day.hour.min
```
Here is an example code
```
torchrun --nproc_per_node=4 train.py --resume 2025.05.09.02.27
```
## Acknowlegement
The code is developed on top following codework
1. [latent-diffusion](https://github.com/CompVis/latent-diffusion)
2. [mar](https://github.com/LTH14/mar) |