File size: 16,028 Bytes
31ca592 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import argparse
import datetime
import numpy as np
import os
import time
from pathlib import Path
import yaml
import glob
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from data import cityscapes
from util.crop import center_crop_arr
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from util.loader import CachedFolder
from models.vae import AutoencoderKL
from models import mar
import copy
from tqdm import tqdm
import util.lr_sched as lr_sched
import logging
def update_ema(target_params, source_params, rate=0.99):
"""
Update target parameters to be closer to those of source parameters using
an exponential moving average.
:param target_params: the target parameter sequence.
:param source_params: the source parameter sequence.
:param rate: the EMA rate (closer to 1 means slower).
"""
for targ, src in zip(target_params, source_params):
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
def logger_file(path):
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
handler = logging.FileHandler(path,"w", encoding=None, delay="true")
handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
def get_args_parser():
parser = argparse.ArgumentParser('MAR training with Diffusion Loss', add_help=False)
parser.add_argument('--batch_size', default=2, type=int,
help='Batch size per GPU (effective batch size is batch_size * # gpus')
parser.add_argument('--epochs', default=2000, type=int)
# Model parameters
parser.add_argument('--model', default='mar_base', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--ckpt_path', default="pretrained_models/mar/city768.16.pth", type=str,
help='model checkpoint path')
# VAE parameters
parser.add_argument('--img_size', default=768, type=int,
help='images input size')
parser.add_argument('--vae_path', default="pretrained_models/vae/modelf16.ckpt", type=str,
help='images input size')
parser.add_argument('--vae_embed_dim', default=16, type=int,
help='vae output embedding dimension')
parser.add_argument('--vae_stride', default=16, type=int,
help='tokenizer stride, default use KL16')
parser.add_argument('--patch_size', default=1, type=int,
help='number of tokens to group as a patch.')
parser.add_argument('--config', default="ldm/config.yaml", type=str,
help='vae model configuration file')
# Generation parameters
parser.add_argument('--num_iter', default=64, type=int,
help='number of autoregressive iterations to generate an image')
parser.add_argument('--num_images', default=3000, type=int,
help='number of images to generate')
parser.add_argument('--cfg', default=1.0, type=float, help="classifier-free guidance")
parser.add_argument('--cfg_schedule', default="linear", type=str)
parser.add_argument('--label_drop_prob', default=0.1, type=float)
parser.add_argument('--eval_freq', type=int, default=40, help='evaluation frequency')
parser.add_argument('--save_last_freq', type=int, default=5, help='save last frequency')
parser.add_argument('--online_eval', action='store_true')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--eval_bsz', type=int, default=64, help='generation batch size')
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.02,
help='weight decay (default: 0.02)')
parser.add_argument('--grad_checkpointing', action='store_true')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--lr_schedule', type=str, default='constant',
help='learning rate schedule')
parser.add_argument('--warmup_epochs', type=int, default=100, metavar='N',
help='epochs to warmup LR')
parser.add_argument('--ema_rate', default=0.9999, type=float)
# MAR params
parser.add_argument('--mask_ratio_min', type=float, default=0.7,
help='Minimum mask ratio')
parser.add_argument('--grad_clip', type=float, default=3.0,
help='Gradient clip')
parser.add_argument('--attn_dropout', type=float, default=0.1,
help='attention dropout')
parser.add_argument('--proj_dropout', type=float, default=0.1,
help='projection dropout')
parser.add_argument('--buffer_size', type=int, default=64)
# Diffusion Loss params
parser.add_argument('--diffloss_d', type=int, default=6)
parser.add_argument('--diffloss_w', type=int, default=1024)
parser.add_argument('--num_sampling_steps', type=str, default="100")
parser.add_argument('--diffusion_batch_mul', type=int, default=4)
parser.add_argument('--temperature', default=1.0, type=float, help='diffusion loss sampling temperature')
# Dataset parameters
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--resume', default=None,
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# caching latents
parser.add_argument('--use_cached', action='store_true', dest='use_cached',
help='Use cached latents')
parser.set_defaults(use_cached=False)
parser.add_argument('--cached_path', default='', help='path to cached latents')
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
log_writer = None
# augmentation following DiT and ADM
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
dataset_train = cityscapes.CityScapes('dataset/CityScapes/trainlist.txt', transform=transform_train, img_size=args.img_size)
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
# define the vae and mar model
with open(args.config, "r") as f:
config = yaml.safe_load(f)
args.ddconfig = config["ddconfig"]
print('cofig: ', config)
vae = AutoencoderKL(
ddconfig=args.ddconfig,
embed_dim=args.vae_embed_dim,
ckpt_path=args.vae_path
).cuda().eval()
for param in vae.parameters():
param.requires_grad = False
model = mar.__dict__[args.model](
img_size=args.img_size,
vae_stride=args.vae_stride,
patch_size=args.patch_size,
vae_embed_dim=args.vae_embed_dim,
mask_ratio_min=args.mask_ratio_min,
label_drop_prob=args.label_drop_prob,
attn_dropout=args.attn_dropout,
proj_dropout=args.proj_dropout,
buffer_size=args.buffer_size,
diffloss_d=args.diffloss_d,
diffloss_w=args.diffloss_w,
num_sampling_steps=args.num_sampling_steps,
diffusion_batch_mul=args.diffusion_batch_mul,
grad_checkpointing=args.grad_checkpointing,
)
if args.ckpt_path:
checkpoint = torch.load(args.ckpt_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
print("Model = %s" % str(model))
# following timm: set wd as 0 for bias and norm layers
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Number of trainable parameters: {}M".format(n_params / 1e6))
model.to(device)
model_without_ddp = model
eff_batch_size = args.batch_size * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr
print("base lr: %.2e" % args.blr)
print("actual lr: %.2e" % args.lr)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
# no weight decay on bias, norm layers, and diffloss MLP
param_groups = misc.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
# resume training
if args.resume and glob.glob(os.path.join(args.output_dir, args.resume, 'checkpoint*.pth')):
try:
checkpoint = torch.load(sorted(glob.glob(os.path.join(args.output_dir, args.resume, 'checkpoint*.pth')))[-1], map_location='cpu')
model.load_state_dict(checkpoint['model'])
except:
checkpoint = torch.load(sorted(glob.glob(os.path.join(args.output_dir, args.resume, 'checkpoint*.pth')))[-2], map_location='cpu')
model.load_state_dict(checkpoint['model'])
state_dict = {key.replace("module.", ""): value for key, value in checkpoint['model'].items()}
model_without_ddp.load_state_dict(state_dict)
model_params = list(model_without_ddp.parameters())
ema_params = copy.deepcopy(model_params)
ema_state_dict = {key.replace("module.", ""): value for key, value in checkpoint['model_ema'].items()}
ema_params = [ema_state_dict[name].cuda() for name, _ in model_without_ddp.named_parameters()]
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
del checkpoint
args.output_dir = os.path.join(args.output_dir, args.resume)
logger = logger_file(args.log_dir+'/'+args.resume+'.log')
if os.path.exists(args.log_dir+'/'+args.resume+'.log'):
with open(args.log_dir+'/'+args.resume+'.log', 'r') as infile:
for line in infile:
logger.info(line.rstrip())
else:
logger.info("All the arguments")
for k, v in vars(args).items():
logger.info(f"{k}: {v}")
logger.info("\n\n Loss information")
else:
model_params = list(model_without_ddp.parameters())
ema_params = copy.deepcopy(model_params)
print("Training from scratch")
args.resume = datetime.datetime.now().strftime("%Y.%m.%d.%H.%M")
args.output_dir = os.path.join(args.output_dir, args.resume)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
logger = logger_file(args.log_dir+'/'+args.resume+'.log')
logger.info("All the arguments")
for k, v in vars(args).items():
logger.info(f"{k}: {v}")
logger.info("\n\n Loss information")
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
for epoch in tqdm(range(args.start_epoch, args.epochs), desc="Training Progress"):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
optimizer.zero_grad()
for data_iter_step, (samples, labels, _) in enumerate(data_loader_train):
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader_train) + epoch, args)
samples = samples.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
with torch.no_grad():
posterior_x = vae.encode(samples)
posterior_y = vae.encode(labels)
x = posterior_x.sample().mul_(0.2325)
y = posterior_y.sample().mul_(0.2325)
with torch.cuda.amp.autocast():
loss = model(x,y)
loss_value = loss.item()
loss_scaler(loss, optimizer, clip_grad=args.grad_clip, parameters=model.parameters(), update_grad=True)
optimizer.zero_grad()
torch.cuda.synchronize()
update_ema(ema_params, model_params, rate=args.ema_rate)
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
metric_logger.synchronize_between_processes()
logger.info(f"epoch: {epoch:4d}, Averaged stats: {metric_logger}")
if (epoch+1)% args.save_last_freq == 0:
misc.save_model(args=args, model=model, model_without_ddp=model, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, ema_params=ema_params, epoch_name=str(epoch).zfill(5))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.log_dir).mkdir(parents=True, exist_ok=True)
main(args)
|