|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
from ldm.modules.diffusionmodules.model import Encoder, Decoder |
|
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution |
|
|
|
from ldm.util import instantiate_from_config |
|
|
|
|
|
class AutoencoderKL(nn.Module): |
|
def __init__(self, |
|
ddconfig, |
|
embed_dim, |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
image_key="image", |
|
colorize_nlabels=None, |
|
monitor=None, |
|
): |
|
super().__init__() |
|
self.image_key = image_key |
|
self.encoder = Encoder(**ddconfig) |
|
self.decoder = Decoder(**ddconfig) |
|
assert ddconfig["double_z"] |
|
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) |
|
self.embed_dim = embed_dim |
|
if colorize_nlabels is not None: |
|
assert type(colorize_nlabels)==int |
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) |
|
if monitor is not None: |
|
self.monitor = monitor |
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) |
|
|
|
def init_from_ckpt(self, path, ignore_keys=list()): |
|
sd = torch.load(path, map_location="cpu")["state_dict"] |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
print("Deleting key {} from state_dict.".format(k)) |
|
del sd[k] |
|
self.load_state_dict(sd, strict=False) |
|
print(f"Restored from {path}") |
|
|
|
def encode(self, x): |
|
h = self.encoder(x) |
|
moments = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
return posterior |
|
|
|
def decode(self, z): |
|
z = self.post_quant_conv(z) |
|
dec = self.decoder(z) |
|
return dec |
|
|
|
def forward(self, input, sample_posterior=True): |
|
posterior = self.encode(input) |
|
if sample_posterior: |
|
z = posterior.sample() |
|
else: |
|
z = posterior.mode() |
|
dec = self.decode(z) |
|
return dec, posterior |