import math def adjust_learning_rate(optimizer, epoch, args): """Decay the learning rate with half-cycle cosine after warmup""" if epoch < args.warmup_epochs: lr = args.lr * epoch / args.warmup_epochs else: if args.lr_schedule == "constant": lr = args.lr elif args.lr_schedule == "cosine": lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \ (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs))) else: raise NotImplementedError for param_group in optimizer.param_groups: if "lr_scale" in param_group: param_group["lr"] = lr * param_group["lr_scale"] else: param_group["lr"] = lr return lr