Update src/pipeline.py
Browse files- src/pipeline.py +311 -136
src/pipeline.py
CHANGED
@@ -1,141 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import gc
|
3 |
-
import time
|
4 |
import torch
|
5 |
-
import
|
6 |
-
from
|
|
|
|
|
|
|
7 |
from PIL.Image import Image
|
8 |
-
from
|
9 |
-
from
|
10 |
-
|
11 |
-
from diffusers import (
|
12 |
-
FluxTransformer2DModel,
|
13 |
-
DiffusionPipeline,
|
14 |
-
AutoencoderTiny
|
15 |
-
)
|
16 |
from transformers import T5EncoderModel
|
17 |
from huggingface_hub.constants import HF_HUB_CACHE
|
18 |
from torchao.quantization import quantize_, int8_weight_only, float8_weight_only
|
|
|
19 |
from pipelines.models import TextToImageRequest
|
20 |
-
from torch import Generator
|
21 |
-
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
@dataclass
|
25 |
-
class
|
26 |
-
|
27 |
-
|
28 |
-
DEVICE: str = "cuda"
|
29 |
-
DTYPE = torch.bfloat16
|
30 |
-
PYTORCH_CUDA_ALLOC_CONF: str = "expandable_segments:True"
|
31 |
-
|
32 |
-
# Initialize global settings
|
33 |
-
def init_global_settings():
|
34 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
35 |
-
torch.backends.cudnn.enabled = True
|
36 |
-
torch.backends.cudnn.benchmark = True
|
37 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = Config.PYTORCH_CUDA_ALLOC_CONF
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
@staticmethod
|
42 |
-
def orig_comparison(t1, t2, *, threshold=0.85):
|
43 |
-
mean_diff = (t1 - t2).abs().mean()
|
44 |
-
mean_t1 = t1.abs().mean()
|
45 |
-
diff = mean_diff / mean_t1
|
46 |
-
return diff.item() < threshold
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
@staticmethod
|
54 |
-
def relative_comparison(t1, t2, threshold=0.15):
|
55 |
-
with torch.no_grad():
|
56 |
-
mean_diff = torch.mean(torch.abs(t1 - t2))
|
57 |
-
mean_t1 = torch.mean(torch.abs(t1))
|
58 |
-
relative_diff = mean_diff / (mean_t1 + 1e-8)
|
59 |
-
return relative_diff.item() < threshold
|
60 |
-
|
61 |
-
@staticmethod
|
62 |
-
def normalized_comparison(t1, t2, threshold=0.85):
|
63 |
-
with torch.no_grad():
|
64 |
-
t1_norm = (t1 - t1.mean()) / (t1.std() + 1e-8)
|
65 |
-
t2_norm = (t2 - t2.mean()) / (t2.std() + 1e-8)
|
66 |
-
diff = torch.mean(torch.abs(t1_norm - t2_norm))
|
67 |
-
return diff.item() < threshold
|
68 |
-
|
69 |
-
@staticmethod
|
70 |
-
def l1_comparison(t1, t2, threshold=0.85):
|
71 |
-
with torch.no_grad():
|
72 |
-
l1_dist = torch.nn.L1Loss()(t1, t2)
|
73 |
-
return l1_dist.item() < threshold
|
74 |
-
|
75 |
-
@staticmethod
|
76 |
-
def max_diff_comparison(t1, t2, threshold=0.85):
|
77 |
-
with torch.no_grad():
|
78 |
-
max_diff = torch.max(torch.abs(t1 - t2))
|
79 |
-
return max_diff.item() < threshold
|
80 |
-
|
81 |
-
# Memory management
|
82 |
-
class MemoryManager:
|
83 |
-
@staticmethod
|
84 |
-
def empty_cache():
|
85 |
-
gc.collect()
|
86 |
-
torch.cuda.empty_cache()
|
87 |
-
torch.cuda.reset_max_memory_allocated()
|
88 |
-
torch.cuda.reset_peak_memory_stats()
|
89 |
-
|
90 |
-
# Pipeline management
|
91 |
-
class PipelineManager:
|
92 |
-
@staticmethod
|
93 |
-
def load_pipeline() -> DiffusionPipeline:
|
94 |
-
MemoryManager.empty_cache()
|
95 |
-
|
96 |
-
text_encoder_2 = T5EncoderModel.from_pretrained(
|
97 |
-
"city96/t5-v1_1-xxl-encoder-bf16",
|
98 |
-
revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
|
99 |
-
torch_dtype=Config.DTYPE
|
100 |
-
).to(memory_format=torch.channels_last)
|
101 |
-
vae = AutoencoderTiny.from_pretrained("RobertML/FLUX.1-schnell-vae_e3m2", revision="da0d2cd7815792fb40d084dbd8ed32b63f153d8d", torch_dtype=Config.DTYPE)
|
102 |
-
# vae.encoder=_load(vae.encoder, "E", dtype=torch.bfloat16); vae.decoder=_load(vae.decoder, "D", dtype=torch.bfloat16)
|
103 |
-
|
104 |
-
path = os.path.join(HF_HUB_CACHE, "models--RobertML--FLUX.1-schnell-int8wo/snapshots/307e0777d92df966a3c0f99f31a6ee8957a9857a")
|
105 |
-
model = FluxTransformer2DModel.from_pretrained(
|
106 |
-
path,
|
107 |
-
torch_dtype=Config.DTYPE,
|
108 |
-
use_safetensors=False
|
109 |
-
).to(memory_format=torch.channels_last)
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
pipeline = DiffusionPipeline.from_pretrained(
|
112 |
-
|
113 |
-
vae=vae,
|
114 |
-
revision=
|
115 |
-
transformer=
|
116 |
-
text_encoder_2=
|
117 |
-
torch_dtype=
|
118 |
-
).to(
|
119 |
-
|
120 |
-
apply_cache_on_pipe(pipeline)
|
121 |
-
pipeline.to(memory_format=torch.channels_last)
|
122 |
-
pipeline.vae = torch.compile(pipeline.vae, mode="max-autotune")
|
123 |
-
quantize_(pipeline.vae, int8_weight_only())
|
124 |
-
quantize_(pipeline.vae, float8_weight_only())
|
125 |
-
PipelineManager._warmup(pipeline)
|
126 |
|
|
|
|
|
|
|
127 |
return pipeline
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
139 |
generator=generator,
|
140 |
guidance_scale=0.0,
|
141 |
num_inference_steps=4,
|
@@ -143,18 +332,4 @@ class PipelineManager:
|
|
143 |
height=request.height,
|
144 |
width=request.width,
|
145 |
output_type="pil"
|
146 |
-
).images[0]
|
147 |
-
return image
|
148 |
-
|
149 |
-
# Initialize global settings
|
150 |
-
init_global_settings()
|
151 |
-
|
152 |
-
# Keep original interface
|
153 |
-
load_pipeline = PipelineManager.load_pipeline
|
154 |
-
infer = PipelineManager.infer
|
155 |
-
are_two_tensors_similar = TensorComparator.orig_comparison
|
156 |
-
are_two_tensors_similar_relative = TensorComparator.relative_comparison
|
157 |
-
are_two_tensors_similar_normalized = TensorComparator.normalized_comparison
|
158 |
-
are_two_tensors_similar_l1 = TensorComparator.l1_comparison
|
159 |
-
are_two_tensors_similar_max_diff = TensorComparator.max_diff_comparison
|
160 |
-
empty_cache = MemoryManager.empty_cache
|
|
|
1 |
+
# import os
|
2 |
+
# import gc
|
3 |
+
# import time
|
4 |
+
# import torch
|
5 |
+
# import torch.nn.functional as F
|
6 |
+
# from PIL import Image as img
|
7 |
+
# from PIL.Image import Image
|
8 |
+
# from typing import Optional, Type
|
9 |
+
# from dataclasses import dataclass
|
10 |
+
|
11 |
+
# from diffusers import (
|
12 |
+
# FluxTransformer2DModel,
|
13 |
+
# DiffusionPipeline,
|
14 |
+
# AutoencoderTiny
|
15 |
+
# )
|
16 |
+
# from transformers import T5EncoderModel
|
17 |
+
# from huggingface_hub.constants import HF_HUB_CACHE
|
18 |
+
# from torchao.quantization import quantize_, int8_weight_only, float8_weight_only
|
19 |
+
# from pipelines.models import TextToImageRequest
|
20 |
+
# from torch import Generator
|
21 |
+
# from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
|
22 |
+
|
23 |
+
# # Configuration
|
24 |
+
# @dataclass
|
25 |
+
# class Config:
|
26 |
+
# CKPT_ID: str = "black-forest-labs/FLUX.1-schnell"
|
27 |
+
# CKPT_REVISION: str = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
28 |
+
# DEVICE: str = "cuda"
|
29 |
+
# DTYPE = torch.bfloat16
|
30 |
+
# PYTORCH_CUDA_ALLOC_CONF: str = "expandable_segments:True"
|
31 |
+
|
32 |
+
# # Initialize global settings
|
33 |
+
# def init_global_settings():
|
34 |
+
# torch.backends.cuda.matmul.allow_tf32 = True
|
35 |
+
# torch.backends.cudnn.enabled = True
|
36 |
+
# torch.backends.cudnn.benchmark = True
|
37 |
+
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = Config.PYTORCH_CUDA_ALLOC_CONF
|
38 |
+
|
39 |
+
# # Tensor comparison utilities
|
40 |
+
# class TensorComparator:
|
41 |
+
# @staticmethod
|
42 |
+
# def orig_comparison(t1, t2, *, threshold=0.85):
|
43 |
+
# mean_diff = (t1 - t2).abs().mean()
|
44 |
+
# mean_t1 = t1.abs().mean()
|
45 |
+
# diff = mean_diff / mean_t1
|
46 |
+
# return diff.item() < threshold
|
47 |
+
|
48 |
+
# @staticmethod
|
49 |
+
# def mse_comparison(t1, t2, threshold=0.95):
|
50 |
+
# mse = F.mse_loss(t1, t2)
|
51 |
+
# return mse.item() < threshold
|
52 |
+
|
53 |
+
# @staticmethod
|
54 |
+
# def relative_comparison(t1, t2, threshold=0.15):
|
55 |
+
# with torch.no_grad():
|
56 |
+
# mean_diff = torch.mean(torch.abs(t1 - t2))
|
57 |
+
# mean_t1 = torch.mean(torch.abs(t1))
|
58 |
+
# relative_diff = mean_diff / (mean_t1 + 1e-8)
|
59 |
+
# return relative_diff.item() < threshold
|
60 |
+
|
61 |
+
# @staticmethod
|
62 |
+
# def normalized_comparison(t1, t2, threshold=0.85):
|
63 |
+
# with torch.no_grad():
|
64 |
+
# t1_norm = (t1 - t1.mean()) / (t1.std() + 1e-8)
|
65 |
+
# t2_norm = (t2 - t2.mean()) / (t2.std() + 1e-8)
|
66 |
+
# diff = torch.mean(torch.abs(t1_norm - t2_norm))
|
67 |
+
# return diff.item() < threshold
|
68 |
+
|
69 |
+
# @staticmethod
|
70 |
+
# def l1_comparison(t1, t2, threshold=0.85):
|
71 |
+
# with torch.no_grad():
|
72 |
+
# l1_dist = torch.nn.L1Loss()(t1, t2)
|
73 |
+
# return l1_dist.item() < threshold
|
74 |
+
|
75 |
+
# @staticmethod
|
76 |
+
# def max_diff_comparison(t1, t2, threshold=0.85):
|
77 |
+
# with torch.no_grad():
|
78 |
+
# max_diff = torch.max(torch.abs(t1 - t2))
|
79 |
+
# return max_diff.item() < threshold
|
80 |
+
|
81 |
+
# # Memory management
|
82 |
+
# class MemoryManager:
|
83 |
+
# @staticmethod
|
84 |
+
# def empty_cache():
|
85 |
+
# gc.collect()
|
86 |
+
# torch.cuda.empty_cache()
|
87 |
+
# torch.cuda.reset_max_memory_allocated()
|
88 |
+
# torch.cuda.reset_peak_memory_stats()
|
89 |
+
|
90 |
+
# # Pipeline management
|
91 |
+
# class PipelineManager:
|
92 |
+
# @staticmethod
|
93 |
+
# def load_pipeline() -> DiffusionPipeline:
|
94 |
+
# MemoryManager.empty_cache()
|
95 |
+
|
96 |
+
# text_encoder_2 = T5EncoderModel.from_pretrained(
|
97 |
+
# "city96/t5-v1_1-xxl-encoder-bf16",
|
98 |
+
# revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
|
99 |
+
# torch_dtype=Config.DTYPE
|
100 |
+
# ).to(memory_format=torch.channels_last)
|
101 |
+
# vae = AutoencoderTiny.from_pretrained("RobertML/FLUX.1-schnell-vae_e3m2", revision="da0d2cd7815792fb40d084dbd8ed32b63f153d8d", torch_dtype=Config.DTYPE)
|
102 |
+
# # vae.encoder=_load(vae.encoder, "E", dtype=torch.bfloat16); vae.decoder=_load(vae.decoder, "D", dtype=torch.bfloat16)
|
103 |
+
|
104 |
+
# path = os.path.join(HF_HUB_CACHE, "models--RobertML--FLUX.1-schnell-int8wo/snapshots/307e0777d92df966a3c0f99f31a6ee8957a9857a")
|
105 |
+
# model = FluxTransformer2DModel.from_pretrained(
|
106 |
+
# path,
|
107 |
+
# torch_dtype=Config.DTYPE,
|
108 |
+
# use_safetensors=False
|
109 |
+
# ).to(memory_format=torch.channels_last)
|
110 |
+
|
111 |
+
# pipeline = DiffusionPipeline.from_pretrained(
|
112 |
+
# Config.CKPT_ID,
|
113 |
+
# vae=vae,
|
114 |
+
# revision=Config.CKPT_REVISION,
|
115 |
+
# transformer=model,
|
116 |
+
# text_encoder_2=text_encoder_2,
|
117 |
+
# torch_dtype=Config.DTYPE,
|
118 |
+
# ).to(Config.DEVICE)
|
119 |
+
|
120 |
+
# apply_cache_on_pipe(pipeline)
|
121 |
+
# pipeline.to(memory_format=torch.channels_last)
|
122 |
+
# pipeline.vae = torch.compile(pipeline.vae, mode="max-autotune")
|
123 |
+
# quantize_(pipeline.vae, int8_weight_only())
|
124 |
+
# quantize_(pipeline.vae, float8_weight_only())
|
125 |
+
# PipelineManager._warmup(pipeline)
|
126 |
+
|
127 |
+
# return pipeline
|
128 |
+
|
129 |
+
# @staticmethod
|
130 |
+
# def _warmup(pipeline):
|
131 |
+
# for _ in range(3):
|
132 |
+
# pipeline(prompt=" ")
|
133 |
+
|
134 |
+
# @staticmethod
|
135 |
+
# @torch.no_grad()
|
136 |
+
# def infer(request: TextToImageRequest, pipeline: DiffusionPipeline, generator: Generator) -> Image:
|
137 |
+
# image = pipeline(
|
138 |
+
# request.prompt,
|
139 |
+
# generator=generator,
|
140 |
+
# guidance_scale=0.0,
|
141 |
+
# num_inference_steps=4,
|
142 |
+
# max_sequence_length=256,
|
143 |
+
# height=request.height,
|
144 |
+
# width=request.width,
|
145 |
+
# output_type="pil"
|
146 |
+
# ).images[0]
|
147 |
+
# return image
|
148 |
+
|
149 |
+
# # Initialize global settings
|
150 |
+
# init_global_settings()
|
151 |
+
|
152 |
+
# # Keep original interface
|
153 |
+
# load_pipeline = PipelineManager.load_pipeline
|
154 |
+
# infer = PipelineManager.infer
|
155 |
+
# are_two_tensors_similar = TensorComparator.orig_comparison
|
156 |
+
# are_two_tensors_similar_relative = TensorComparator.relative_comparison
|
157 |
+
# are_two_tensors_similar_normalized = TensorComparator.normalized_comparison
|
158 |
+
# are_two_tensors_similar_l1 = TensorComparator.l1_comparison
|
159 |
+
# are_two_tensors_similar_max_diff = TensorComparator.max_diff_comparison
|
160 |
+
# empty_cache = MemoryManager.empty_cache
|
161 |
+
|
162 |
+
|
163 |
+
from __future__ import annotations
|
164 |
import os
|
|
|
|
|
165 |
import torch
|
166 |
+
import functools
|
167 |
+
from enum import Enum, auto
|
168 |
+
from contextlib import contextmanager
|
169 |
+
from typing import Protocol, TypeVar, Generic, Callable, Any
|
170 |
+
from dataclasses import dataclass, field
|
171 |
from PIL.Image import Image
|
172 |
+
from torch import Generator
|
173 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, FluxTransformer2DModel
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
from transformers import T5EncoderModel
|
175 |
from huggingface_hub.constants import HF_HUB_CACHE
|
176 |
from torchao.quantization import quantize_, int8_weight_only, float8_weight_only
|
177 |
+
from first_block_cache.diffusers_adapters import apply_cache_on_pipe
|
178 |
from pipelines.models import TextToImageRequest
|
|
|
|
|
179 |
|
180 |
+
T = TypeVar('T')
|
181 |
+
|
182 |
+
class ModelComponent(Protocol):
|
183 |
+
def to(self, *args, **kwargs) -> Any: ...
|
184 |
+
|
185 |
+
class ModelState(Enum):
|
186 |
+
INITIALIZED = auto()
|
187 |
+
LOADED = auto()
|
188 |
+
OPTIMIZED = auto()
|
189 |
+
READY = auto()
|
190 |
+
|
191 |
+
class ResourceMonitor:
|
192 |
+
"""Monitors and manages system resources."""
|
193 |
+
|
194 |
+
@contextmanager
|
195 |
+
def monitor_memory(self, threshold_mb: int = 1000):
|
196 |
+
initial_memory = torch.cuda.memory_allocated() / 1024**2
|
197 |
+
yield
|
198 |
+
final_memory = torch.cuda.memory_allocated() / 1024**2
|
199 |
+
if final_memory - initial_memory > threshold_mb:
|
200 |
+
torch.cuda.empty_cache()
|
201 |
+
|
202 |
@dataclass
|
203 |
+
class ModelRegistry(Generic[T]):
|
204 |
+
"""Type-safe registry for model components."""
|
205 |
+
_components: dict[str, T] = field(default_factory=dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
+
def register(self, name: str, component: T) -> None:
|
208 |
+
self._components[name] = component
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
def get(self, name: str) -> T:
|
211 |
+
return self._components[name]
|
212 |
+
|
213 |
+
def __iter__(self):
|
214 |
+
return iter(self._components.values())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
class PipelineBuilder:
|
217 |
+
"""Fluent builder for pipeline construction."""
|
218 |
+
|
219 |
+
def __init__(self):
|
220 |
+
self.config = {
|
221 |
+
"model_id": "black-forest-labs/FLUX.1-schnell",
|
222 |
+
"revision": "741f7c3ce8b383c54771c7003378a50191e9efe9",
|
223 |
+
"device": "cuda",
|
224 |
+
"dtype": torch.bfloat16
|
225 |
+
}
|
226 |
+
self.registry = ModelRegistry[ModelComponent]()
|
227 |
+
self.state = ModelState.INITIALIZED
|
228 |
+
self.monitor = ResourceMonitor()
|
229 |
+
|
230 |
+
def with_torch_settings(self) -> PipelineBuilder:
|
231 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
232 |
+
torch.backends.cudnn.enabled = True
|
233 |
+
torch.backends.cudnn.benchmark = True
|
234 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = "expandable_segments:True"
|
235 |
+
return self
|
236 |
+
|
237 |
+
def load_text_encoder(self) -> PipelineBuilder:
|
238 |
+
with self.monitor.monitor_memory():
|
239 |
+
encoder = T5EncoderModel.from_pretrained(
|
240 |
+
"city96/t5-v1_1-xxl-encoder-bf16",
|
241 |
+
revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
|
242 |
+
torch_dtype=self.config["dtype"]
|
243 |
+
).to(memory_format=torch.channels_last)
|
244 |
+
self.registry.register("text_encoder", encoder)
|
245 |
+
return self
|
246 |
+
|
247 |
+
def load_vae(self) -> PipelineBuilder:
|
248 |
+
with self.monitor.monitor_memory():
|
249 |
+
vae = AutoencoderTiny.from_pretrained(
|
250 |
+
"RobertML/FLUX.1-schnell-vae_e3m2",
|
251 |
+
revision="da0d2cd7815792fb40d084dbd8ed32b63f153d8d",
|
252 |
+
torch_dtype=self.config["dtype"]
|
253 |
+
)
|
254 |
+
self.registry.register("vae", vae)
|
255 |
+
return self
|
256 |
+
|
257 |
+
def load_transformer(self) -> PipelineBuilder:
|
258 |
+
with self.monitor.monitor_memory():
|
259 |
+
path = os.path.join(
|
260 |
+
HF_HUB_CACHE,
|
261 |
+
"models--RobertML--FLUX.1-schnell-int8wo/snapshots/307e0777d92df966a3c0f99f31a6ee8957a9857a"
|
262 |
+
)
|
263 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
264 |
+
path,
|
265 |
+
torch_dtype=self.config["dtype"],
|
266 |
+
use_safetensors=False
|
267 |
+
).to(memory_format=torch.channels_last)
|
268 |
+
self.registry.register("transformer", transformer)
|
269 |
+
return self
|
270 |
+
|
271 |
+
def optimize(self, pipeline: DiffusionPipeline) -> PipelineBuilder:
|
272 |
+
with self.monitor.monitor_memory():
|
273 |
+
pipeline.to(memory_format=torch.channels_last)
|
274 |
+
pipeline.vae = torch.compile(pipeline.vae, mode="max-autotune")
|
275 |
+
quantize_(pipeline.vae, int8_weight_only())
|
276 |
+
quantize_(pipeline.vae, float8_weight_only())
|
277 |
+
apply_cache_on_pipe(pipeline)
|
278 |
+
return self
|
279 |
+
|
280 |
+
def warmup(self, pipeline: DiffusionPipeline) -> PipelineBuilder:
|
281 |
+
with torch.no_grad(), self.monitor.monitor_memory():
|
282 |
+
for _ in range(3):
|
283 |
+
pipeline(prompt=" ")
|
284 |
+
return self
|
285 |
+
|
286 |
+
def build(self) -> DiffusionPipeline:
|
287 |
pipeline = DiffusionPipeline.from_pretrained(
|
288 |
+
self.config["model_id"],
|
289 |
+
vae=self.registry.get("vae"),
|
290 |
+
revision=self.config["revision"],
|
291 |
+
transformer=self.registry.get("transformer"),
|
292 |
+
text_encoder_2=self.registry.get("text_encoder"),
|
293 |
+
torch_dtype=self.config["dtype"],
|
294 |
+
).to(self.config["device"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
+
self.optimize(pipeline)
|
297 |
+
self.warmup(pipeline)
|
298 |
+
self.state = ModelState.READY
|
299 |
return pipeline
|
300 |
|
301 |
+
class InferenceContext:
|
302 |
+
"""Context manager for inference operations."""
|
303 |
+
|
304 |
+
def __init__(self, pipeline: DiffusionPipeline):
|
305 |
+
self.pipeline = pipeline
|
306 |
+
self.monitor = ResourceMonitor()
|
307 |
+
|
308 |
+
@contextmanager
|
309 |
+
def inference_mode(self):
|
310 |
+
with torch.no_grad(), self.monitor.monitor_memory():
|
311 |
+
yield self.pipeline
|
312 |
+
|
313 |
+
def load() -> DiffusionPipeline:
|
314 |
+
"""Build and configure the pipeline using the fluent builder pattern."""
|
315 |
+
return (PipelineBuilder()
|
316 |
+
.with_torch_settings()
|
317 |
+
.load_text_encoder()
|
318 |
+
.load_vae()
|
319 |
+
.load_transformer()
|
320 |
+
.build())
|
321 |
|
322 |
+
def infer(request: TextToImageRequest, pipeline: DiffusionPipeline, generator: Generator) -> Image:
|
323 |
+
"""Generate image using the pipeline within a managed context."""
|
324 |
+
context = InferenceContext(pipeline)
|
325 |
+
with context.inference_mode() as p:
|
326 |
+
return p(
|
327 |
+
prompt=request.prompt,
|
328 |
generator=generator,
|
329 |
guidance_scale=0.0,
|
330 |
num_inference_steps=4,
|
|
|
332 |
height=request.height,
|
333 |
width=request.width,
|
334 |
output_type="pil"
|
335 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|