Update src/pipeline.py
Browse files- src/pipeline.py +5 -5
src/pipeline.py
CHANGED
|
@@ -32,17 +32,17 @@ def load_pipeline(pipeline=None) -> StableDiffusionXLPipeline:
|
|
| 32 |
pipeline = compile_pipe(pipeline)
|
| 33 |
load_pipe(pipeline, dir="/home/sandbox/.cache/huggingface/hub/models--RobertML--cached-pipe-02/snapshots/58d70deae87034cce351b780b48841f9746d4ad7")
|
| 34 |
|
| 35 |
-
instance = get_instance(device)
|
| 36 |
# mul = torch.nn.Parameter(torch.tensor(0.3038, requires_grad=False, device=device))
|
| 37 |
# sub = torch.nn.Parameter(torch.tensor(-0.3141, requires_grad=False, device=device))
|
| 38 |
# scaling_factor = torch.nn.Parameter(torch.tensor(0.5439, requires_grad=False, device=device))
|
| 39 |
# mul = torch.nn.Parameter(torch.tensor(0.2940097749233246, requires_grad=False, device=device))
|
| 40 |
# sub = torch.nn.Parameter(torch.tensor(-0.31909096240997314, requires_grad=False, device=device))
|
| 41 |
# scaling_factor = torch.nn.Parameter(torch.tensor(0.554410457611084, requires_grad=False, device=device))
|
| 42 |
-
mul = torch.nn.Parameter(torch.tensor(1.2, requires_grad=False, device=device))
|
| 43 |
-
sub = torch.nn.Parameter(torch.tensor(0.75, requires_grad=False, device=device))
|
| 44 |
-
scaling_factor = torch.nn.Parameter(torch.tensor(pipeline.vae.config.scaling_factor, requires_grad=False, device=device))
|
| 45 |
-
hook_pipe(pipeline, instance, mul, sub, scaling_factor)
|
| 46 |
|
| 47 |
for _ in range(1):
|
| 48 |
deepcache_output = pipeline(prompt="telestereography, unstrengthen, preadministrator, copatroness, hyperpersonal, paramountness, paranoid, guaniferous", output_type="pil", num_inference_steps=20)
|
|
|
|
| 32 |
pipeline = compile_pipe(pipeline)
|
| 33 |
load_pipe(pipeline, dir="/home/sandbox/.cache/huggingface/hub/models--RobertML--cached-pipe-02/snapshots/58d70deae87034cce351b780b48841f9746d4ad7")
|
| 34 |
|
| 35 |
+
# instance = get_instance(device)
|
| 36 |
# mul = torch.nn.Parameter(torch.tensor(0.3038, requires_grad=False, device=device))
|
| 37 |
# sub = torch.nn.Parameter(torch.tensor(-0.3141, requires_grad=False, device=device))
|
| 38 |
# scaling_factor = torch.nn.Parameter(torch.tensor(0.5439, requires_grad=False, device=device))
|
| 39 |
# mul = torch.nn.Parameter(torch.tensor(0.2940097749233246, requires_grad=False, device=device))
|
| 40 |
# sub = torch.nn.Parameter(torch.tensor(-0.31909096240997314, requires_grad=False, device=device))
|
| 41 |
# scaling_factor = torch.nn.Parameter(torch.tensor(0.554410457611084, requires_grad=False, device=device))
|
| 42 |
+
# mul = torch.nn.Parameter(torch.tensor(1.2, requires_grad=False, device=device))
|
| 43 |
+
# sub = torch.nn.Parameter(torch.tensor(0.75, requires_grad=False, device=device))
|
| 44 |
+
# scaling_factor = torch.nn.Parameter(torch.tensor(pipeline.vae.config.scaling_factor, requires_grad=False, device=device))
|
| 45 |
+
# hook_pipe(pipeline, instance, mul, sub, scaling_factor)
|
| 46 |
|
| 47 |
for _ in range(1):
|
| 48 |
deepcache_output = pipeline(prompt="telestereography, unstrengthen, preadministrator, copatroness, hyperpersonal, paramountness, paranoid, guaniferous", output_type="pil", num_inference_steps=20)
|